CN111848170A - 一种碳化硼基复合陶瓷材料及其制备方法 - Google Patents

一种碳化硼基复合陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111848170A
CN111848170A CN202010756987.5A CN202010756987A CN111848170A CN 111848170 A CN111848170 A CN 111848170A CN 202010756987 A CN202010756987 A CN 202010756987A CN 111848170 A CN111848170 A CN 111848170A
Authority
CN
China
Prior art keywords
sintering
powder
pressure
graphite
composite ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010756987.5A
Other languages
English (en)
Inventor
钟志宏
魏仁伟
陈成民
吴玉程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010756987.5A priority Critical patent/CN111848170A/zh
Publication of CN111848170A publication Critical patent/CN111848170A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种碳化硼基复合陶瓷材料及其制备方法,该复合陶瓷材料由B4C粉末、Ti3SiC2粉末及金属氢化物粉末经压力烧结制备而成。本发明在较低的烧结温度和较短的烧结保温时间下,获得了高致密度、高硬度、高弯曲强度和断裂韧性、可电火花线切割加工的碳化硼基复合陶瓷材料,改善了碳化硼陶瓷的力学性能和加工性能,具有较高的实用价值。

Description

一种碳化硼基复合陶瓷材料及其制备方法
技术领域
本发明涉及一种碳化硼(B4C)基复合陶瓷材料及其制备工艺,属于陶瓷基复合材料反应烧结制备领域。
背景技术
碳化硼(B4C)陶瓷因具有一系列优异的化学和物理性能,如良好的化学稳定性、高硬度、低密度、高熔点和良好的耐磨性,在防弹装甲、耐火材料、磨料涂层、电子等领域有广阔的应用前景,同时由于硼元素具有良好的中子吸收能力,B4C陶瓷可用于核反应堆中作为中子吸收剂和屏蔽材料使用。然而,由于B4C陶瓷的烧结性极差,一般需要烧结温度到达2200℃且保温时间不低于30min,这导致了B4C陶瓷晶粒组织易变得粗大,降低了陶瓷材料的综合力学性能。此外,B4C陶瓷的机械加工性能差、脆性大、断裂韧性差等问题,也限制了B4C陶瓷的应用。因此,研究和发展B4C基复合陶瓷材料,探索B4C基复合陶瓷材料的烧结制备工艺具有重要的意义。
B4C陶瓷的烧结性能差归因于其B-C之间的高共价键和原子之间低扩散迁移率,机械加工性能差归因于其高硬度和低电导率,脆性大归因于其对裂纹扩展的高度敏感,所以研究降低B4C陶瓷的烧结温度,提高其断裂韧性及改善其机械加工性能对其应用而言至关重要。 Ti3SiC2是一种具有三元层状的MAX相陶瓷,它综合了金属和陶瓷的诸多优良性能,具有很好的导热性和导电性,相对较低的维氏硬度和较高的弹性模量,且有延展性,同时具有高的屈服强度、高熔点、高热稳定性和良好的抗氧化性能等性能。B4C与Ti3SiC2及金属氢化物在一定条件下能够反应生成SiC、TiB2和金属碳化物。碳化硅(SiC)具有化学性能稳定、硬度高、熔点高、耐磨性能好等特点,能够大幅提高复合陶瓷的抗氧化能力和断裂韧性;二硼化钛(TiB2)具有硬度高、熔点高、热稳定性与抗氧化性能好、耐酸碱腐蚀等特点,且具有良好的导电性,能够提高复合陶瓷的断裂韧性和改善陶瓷的机械加工性能;TiC、ZrC、VC和HfC等金属碳化物具有高熔点、高硬度、良好的导热和导电性能,能够大幅度提高复合陶瓷的机械加工性能。SiC、TiB2和金属碳化物在促进B4C陶瓷烧结致密化的同时,也通过弥散强化等多种机制作用抑制了B4C陶瓷晶粒的长大,对提高复合陶瓷的综合力学性能具有非常显著的作用。因此,使用Ti3SiC2和金属氢化物粉末烧结助剂,利用原位反应生成SiC、TiB2和金属碳化物强韧化相,不仅能够在较低的温度下制备出高致密度的陶瓷材料,且在基体中均匀分布的强韧化相能够有效地抑制B4C晶粒长大,得到综合力学性能优异的复合陶瓷材料。此外,生成的TiB2和金属碳化物强韧化相因具有较高的电导率,使得陶瓷能够用电火花线切割进行加工。研究在较低的烧结温度下,控制添加烧结助剂的含量,制备出具有高致密度、高电导率、综合力学性能优异的B4C基复合陶瓷材料,具有重要的现实意义。
发明内容
为了避免现有技术中存在的不足之处,本发明旨在提供一种高致密度、高电导率、综合力学性能优异的B4C基复合陶瓷材料及其制备方法。
本发明为实现发明目的,采用如下技术方案:
本发明公开了一种碳化硼基复合陶瓷材料,其特点在于:所述复合陶瓷材料是由B4C粉末、Ti3SiC2粉末及金属氢化物粉末经压力烧结制备而成。所述的金属氢化物为TiH2、VH2、 ZrH2和HfH2中的至少一种。
进一步地,所述复合陶瓷材料的原料按质量百分数的配比为:Ti3SiC2粉末10-30wt.%,金属氢化物粉末5-30wt.%,余量为B4C粉末。
本发明所述碳化硼基复合陶瓷材料的制备方法,包括如下步骤:
步骤1、混合粉末的制备
按配比量称取B4C粉末、Ti3SiC2粉末以及金属氢化物粉末,倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球磨机的转速为360rpm,球磨混合12h,再置于 50℃真空干燥箱中干燥12h,即得所需混合粉末;
步骤2、压力烧结
准备一个石墨模具或钼包套,将步骤1制取的混合粉末装入石墨模具或钼包套中,再将装配完成的石墨模具或钼包套放入压力烧结炉中进行压力烧结,即得B4C基复合陶瓷材料。
进一步地:步骤1中,所述B4C粉末的粒度为0.5-5μm,纯度不低于96%;所述Ti3SiC2粉末的粒度为0.5-10μm,纯度不低于98%:所述金属氢化物粉末的粒度为0.5-10μm,纯度不低于98%。
进一步地,步骤2中,压力烧结可以为放电等离子烧结、热压烧结或热等静压烧结等常规压力烧结方法。
当采用放电等离子烧结时,烧结粉末用模具为石墨模具,烧结条件为:烧结炉真空状态下,对样品施加压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,继续升温至烧结温度并保温,升温速率为50-100℃/min,烧结温度为1700-1800℃,保温时间为10-20min;保温结束后随即降压、降温,样品随炉冷却;
当采用热压烧结时,烧结粉末用模具为石墨模具,烧结条件为:烧结炉真空状态下,以 5-20℃/min的升温速率将样品加热至1700-1850℃,保温时间为60-180min,加载压力为 15-40MPa;保温结束后随即降压、降温,样品随炉冷却;
当采用热等静压烧结时,将混合粉末装入铺有石墨纸的钼包套内,烧结条件为:在氩气下以30-100℃/min的升温速率将样品加热至1600-1800℃,保温时间为60-240min,加载压力为150-300MPa;保温结束后随即降压、降温,样品随炉冷却。
本发明利用原位反应压力烧结方法制备了B4C基复合陶瓷。采用常规的烧结技术,在低温下实现烧结致密,改善碳化硼的烧结性能,提高材料的力学性能,丰富高熵陶瓷体系。制备的复合陶瓷材料中含有TiB2和金属碳化物导电相,可采用电火花线切割进行加工,改善碳化硼陶瓷的机械加工性能。
与现有技术相比,本发明的有益效果体现在:
1、本发明探索了B4C、Ti3SiC2和金属氢化物粉末配比以及压力烧结方法,在较低的烧结温度(1600-1850℃)及较短的烧结保温时间(最短10min)下,制备了高致密度B4C基复合陶瓷。Ti3SiC2和金属氢化物烧结助剂的加入,有效降低了B4C陶瓷的烧结温度、缩短了烧结保温时间,解决了B4C陶瓷烧结温度高及保温时间长等难烧结的问题。
2、本发明在保持B4C陶瓷高强度和高硬度的前提下,通过原位反应生成了晶粒细小且在B4C基体中均匀分布的TiB2、SiC和金属碳化物等强韧化相,促进烧结致密化的同时有效抑制了晶粒长大,解决了B4C陶瓷烧结致密度不高及断裂韧性低的问题。
3、本发明中,由于原位反应生成了较高含量的具有良好电导率的TiB2相和MC(M=Ti, Zr,V,Hf)金属碳化物相,因而B4C-TiB2-SiC-MC多相复合陶瓷可用电火花线切割加工,解决了B4C陶瓷机械加工困难的问题。
附图说明
图1是添加不同质量百分数Ti3SiC2和TiH2粉末制备的B4C基复合陶瓷的XRD图谱。其中,曲线(a)对应实施例1所制备的B4C基复合陶瓷(B4C+11.67wt.%Ti3SiC2+7.5wt.%TiH2);曲线(b)对应实施例2所制备的B4C基复合陶瓷(B4C+15.03wt.%Ti3SiC2+9.6wt.%TiH2);曲线(c)对应实施例3所制备的B4C基复合陶瓷(B4C+18.1wt.%Ti3SiC2+11.56wt.%TiH2);曲线(d)对应实施例4所制备的B4C基复合陶瓷(B4C+21.1wt.%Ti3SiC2+13.39wt.%TiH2)。从图1可以看出添加不同含量Ti3SiC2和TiH2粉末所制备出的复合陶瓷材料,在烧结温度 1750℃、压力30MPa、保温时间10min的工艺参数下,都生成了TiB2、SiC和TiC强韧化相。
具体实施方式
以下结合具体的实施例对本发明的技术方案作进一步的分析说明。
下述实施例中,所用B4C粉末的粒度为0.5-5μm、纯度≥97%,所用Ti3SiC2粉末的粒度为 0.5-10μm,纯度≥98%,所用TiH2粉末的粒度为0.5-10μm、纯度≥99%,所用ZrH2粉末的粒度为0.5-10μm、纯度≥99%,所用VH2粉末的粒度为0.5-10μm、纯度≥99%,所用HfH2粉末的粒度为0.5-10μm、纯度≥99%。
对比例1
本对比例通过放电等离子烧结技术制备纯B4C陶瓷的工艺如下:
准备一个内径20mm的石墨模具,两个配套的石墨压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径20mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;将矩形石墨纸贴在石墨模具内壁,并按照石墨压头/石墨垫片/石墨纸/碳化硼粉末/石墨纸/石墨垫片/ 石墨压头的顺序进行装配;
将装配完成的石墨模具放入放电等离子烧结炉中,室温下对烧结炉抽真空至20Pa以下,对样品加载压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,以100℃/min 的升温速率继续升温至1750℃并保温10min,保温结束后随即降压、降温,样品随炉冷却。
经测试,如表1所示,本实施例所得的B4C基复合陶瓷材料的相对密度、维氏硬度、断裂韧性、弯曲强度分别为85.4%、7.9GPa、2.9MPa·m1/2、182.7MPa。
实施例1
本实施例通过原位反应放电等离子烧结技术制备B4C基复合陶瓷材料的工艺如下:
步骤1、混合粉末的制备
按照质量百分数,称取80.83wt.%B4C粉末、11.67wt.%Ti3SiC2粉末和7.5wt.%TiH2粉末,将三种粉末倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球磨机的转速为360rpm,球磨12h至完全混合均匀,随后置于真空干燥箱中50℃干燥12h,即得反应烧结混合粉末;
步骤2、放电等离子烧结
准备一个内径20mm的石墨模具,两个配套的石墨压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径20mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;将矩形石墨纸贴在石墨模具内壁,并按照石墨压头/石墨垫片/石墨纸/反应烧结混合粉末/石墨纸/石墨垫片/石墨压头的顺序进行装配;
将装配完成的石墨模具放入放电等离子烧结炉中,室温下对烧结炉抽真空至20Pa以下,对样品加载压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,以100℃/min 的升温速率继续升温至1750℃并保温10min,保温结束后随即降压、降温,样品随炉冷却。
经测试,如表1所示,本实施例所得的B4C基复合陶瓷材料的相对密度、维氏硬度、断裂韧性、弯曲强度分别为94.3%、22.3GPa、5.6MPa·m1/2、395.4MPa。
实施例2
本实施例通过原位反应放电等离子烧结技术制备B4C基复合陶瓷材料的工艺如下:
步骤1、混合粉末的制备
按照质量百分数,称取75.37wt.%B4C粉末、15.03wt.%Ti3SiC2粉末和9.6wt.%TiH2,将三种粉末倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球磨机的转速为360rpm,球磨12h至完全混合均匀,随后置于真空干燥箱中50℃干燥12h,即得反应烧结混合粉末;
步骤2、放电等离子烧结
准备一个内径20mm的石墨模具,两个配套的石墨压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径20mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;将矩形石墨纸贴在石墨模具内壁,并按照石墨压头/石墨垫片/石墨纸/反应烧结混合粉末/石墨纸/石墨垫片/石墨压头的顺序进行装配;
将装配完成的石墨模具放入放电等离子烧结炉中,室温下对烧结炉抽真空至20Pa以下,对样品加载压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,以100℃/min 的升温速率继续升温至1750℃并保温10min,保温结束后随即降压、降温,样品随炉冷却。
经测试,如表1所示,本实施例所得B4C基复合陶瓷材料的相对密度、维氏硬度、断裂韧性、弯曲强度分别为95.8%、25.7GPa、6.9MPa·m1/2、436.8MPa。
实施例3
本实施例通过原位反应放电等离子烧结技术制备B4C基复合陶瓷材料的工艺如下:
步骤1、混合粉末的制备
按照质量百分数,称取70.34wt.%B4C粉末、18.1wt.%Ti3SiC2粉末和11.56wt.%TiH2粉末,将三种粉末倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球磨机的转速为360rpm,球磨12h至完全混合均匀,随后置于真空干燥箱中50℃干燥12h,即得反应烧结混合粉末;
步骤2、放电等离子烧结
准备一个内径20mm的石墨模具,两个配套的石墨压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径20mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;将矩形石墨纸贴在石墨模具内壁,并按照石墨压头/石墨垫片/石墨纸/反应烧结混合粉末/石墨纸/石墨垫片/石墨压头的顺序进行装配;
将装配完成的石墨模具放入放电等离子烧结炉中,室温下对烧结炉抽真空至20Pa以下,对样品加载压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,以100℃/min 的升温速率继续升温至1750℃并保温10min,保温结束后随即降压、降温,样品随炉冷却。
经测试,如表1所示,本实施例所得B4C基复合陶瓷材料的相对密度、维氏硬度、断裂韧性、弯曲强度分别为96.4%、29.6GPa、8.2MPa·m1/2、492.7MPa。
实施例4
本实施例通过原位反应放电等离子烧结技术制备B4C基复合陶瓷材料的工艺如下:
步骤1、混合粉末的制备
按照质量百分数,称取65.51wt.%B4C粉末、21.1wt.%Ti3SiC2粉末和13.39wt.%TiH2粉末,将三种粉末倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球磨机的转速为360rpm,球磨12h至完全混合均匀,随后置于真空干燥箱中50℃干燥12h,即得反应烧结混合粉末;
步骤2、放电等离子烧结
准备一个内径20mm的石墨模具,两个配套的石墨压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径20mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;将矩形石墨纸贴在石墨模具内壁,并按照石墨压头/石墨垫片/石墨纸/反应烧结混合粉末/石墨纸/石墨垫片/石墨压头的顺序进行装配;
将装配完成的石墨模具放入放电等离子烧结炉中,室温下对烧结炉抽真空至20Pa以下,对样品加载压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,以100℃/min 的升温速率继续升温至1750℃并保温10min,保温结束后随即降压、降温,样品随炉冷却。
经测试,如表1所示,本实施例所得B4C基复合陶瓷材料的相对密度、维氏硬度、断裂韧性、弯曲强度分别为96.3%、27.4GPa、8.6MPa·m1/2、514.6MPa。
实施例5
本实施例通过原位反应放电等离子烧结技术制备B4C基复合陶瓷材料的工艺如下:
步骤1、混合粉末的制备
按照质量百分数,称取74.6wt.%B4C粉末、15.1wt.%Ti3SiC2粉末和10.3wt.%VH2粉末,将三种粉末倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球磨机的转速为360rpm,球磨12h至完全混合均匀,随后置于真空干燥箱中50℃干燥12h,即得反应烧结混合粉末;
步骤2、放电等离子烧结
准备一个内径20mm的石墨模具,两个配套的石墨压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径20mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;将矩形石墨纸贴在石墨模具内壁,并按照石墨压头/石墨垫片/石墨纸/反应烧结混合粉末/石墨纸/石墨垫片/石墨压头的顺序进行装配;
将装配完成的石墨模具放入放电等离子烧结炉中,室温下对烧结炉抽真空至20Pa以下,对样品加载压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,以100℃/min 的升温速率继续升温至1750℃并保温10min,保温结束后随即降压、降温,样品随炉冷却。
经测试,如表1所示,本实施例所得B4C基复合陶瓷材料的相对密度、维氏硬度、断裂韧性、弯曲强度分别为97.1%、28.4GPa、7.7MPa·m1/2、484.2MPa。
实施例6
本实施例通过原位反应放电等离子烧结技术制备B4C基复合陶瓷材料的工艺如下:
步骤1、混合粉末的制备
按照质量百分数,称取71.2wt.%B4C粉末、13.2wt.%Ti3SiC2粉末和15.6wt.%ZrH2粉末,将三种粉末倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球磨机的转速为360rpm,球磨12h至完全混合均匀,随后置于真空干燥箱中50℃干燥12h,即得反应烧结混合粉末;
步骤2、放电等离子烧结
准备一个内径20mm的石墨模具,两个配套的石墨压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径20mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;将矩形石墨纸贴在石墨模具内壁,并按照石墨压头/石墨垫片/石墨纸/反应烧结混合粉末/石墨纸/石墨垫片/石墨压头的顺序进行装配;
将装配完成的石墨模具放入放电等离子烧结炉中,室温下对烧结炉抽真空至20Pa以下,对样品加载压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,以100℃/min 的升温速率继续升温至1750℃并保温10min,保温结束后随即降压、降温,样品随炉冷却。
经测试,如表1所示,本实施例所得B4C基复合陶瓷材料的相对密度、维氏硬度、断裂韧性、弯曲强度分别为96.2%、30.8GPa、7.9MPa·m1/2、491.5MPa。
实施例7
本实施例通过原位反应放电等离子烧结技术制备B4C基复合陶瓷材料的工艺如下:
步骤1、混合粉末的制备
按照质量百分数,称取61.9wt.%B4C粉末、11.5wt.%Ti3SiC2粉末和26.6wt.%HfH2粉末,将三种粉末倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球磨机的转速为360rpm,球磨12h至完全混合均匀,随后置于真空干燥箱中50℃干燥12h,即得反应烧结混合粉末;
步骤2、放电等离子烧结
准备一个内径20mm的石墨模具,两个配套的石墨压头,两个石墨垫片,石墨纸;将石墨纸裁出两个直径20mm的圆形石墨纸和一个正好覆盖石墨模具内壁的矩形石墨纸;将矩形石墨纸贴在石墨模具内壁,并按照石墨压头/石墨垫片/石墨纸/反应烧结混合粉末/石墨纸/石墨垫片/石墨压头的顺序进行装配;
将装配完成的石墨模具放入放电等离子烧结炉中,室温下对烧结炉抽真空至20Pa以下,对样品加载压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,以100℃/min 的升温速率继续升温至1750℃并保温10min,保温结束后随即降压、降温,样品随炉冷却。
经测试,如表1所示,本实施例所得B4C基复合陶瓷材料的相对密度、维氏硬度、断裂韧性、弯曲强度分别为97.4%、29.4GPa、7.3MPa·m1/2、472.4MPa。
各实施例结果总结:
Figure RE-GDA0002648223170000081
本发明利用B4C粉末与Ti3SiC2粉末及金属氢化物粉末原位反应,在B4C基体中形成TiB2、 SiC和MC碳化物(M=Ti,V,Zr,Hf)等强韧化相,获得了高致密度、综合力学性能优良、电导率良好的B4C-TiB2-SiC-MC多相复合陶瓷。Ti3SiC2和金属氢化物烧结助剂的加入,在较低的烧结温度和较短的烧结保温时间下,通过原位反应生成了晶粒细小且在B4C基体中分布均匀的TiB2、SiC和MC强韧化相,促进烧结致密化的同时有效抑制了B4C晶粒长大,提高了材料的综合力学性能。此外,B4C-TiB2-SiC-MC多相复合陶瓷具有较高的电导率,可使用电火花线切割进行加工。本发明可以制备综合力学性能优异、高电导率的B4C基复合陶瓷材料,解决了B4C基复合陶瓷制备及应用的一个技术问题。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种碳化硼基复合陶瓷材料,其特征在于:所述复合陶瓷材料是由B4C粉末、Ti3SiC2粉末及金属氢化物粉末经压力烧结制备而成。
2.根据权利要求1所述的碳化硼基复合陶瓷材料,其特征在于:所述的金属氢化物为TiH2、VH2、ZrH2和HfH2中的至少一种。
3.根据权利要求1或2所述的碳化硼基复合陶瓷材料,其特征在于,所述复合陶瓷材料的原料按质量百分数的配比为:Ti3SiC2粉末10-30wt.%,金属氢化物粉末5-30wt.%,余量为B4C粉末。
4.一种权利要求1~3中任意一项所述碳化硼基复合陶瓷材料的制备方法,其特征在于,包括如下步骤:
步骤1、混合粉末的制备
按配比量称取B4C粉末、Ti3SiC2粉末以及金属氢化物粉末,倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球磨机的转速为360rpm,球磨混合12h,再置于50℃真空干燥箱中干燥12h,即得所需混合粉末;
步骤2、压力烧结
将所述混合粉末装配至石墨模具或钼包套中,再将装配完成的石墨模具或钼包套放入烧结炉中进行压力烧结,即得B4C基复合陶瓷材料。
5.根据权利要求4所述的制备方法,其特征在于:所述B4C粉末的粒度为0.5-5μm,纯度不低于96%;所述Ti3SiC2粉末的粒度为0.5-10μm,纯度不低于98%;所述金属氢化物粉末的粒度为0.5-10μm,纯度不低于98%。
6.根据权利要求4所述的制备方法,其特征在于:步骤2中,所述压力烧结为放电等离子烧结、热压烧结或热等静压烧结。
7.根据权利要求6所述的制备方法,其特征在于:
当采用放电等离子烧结时,烧结条件为:烧结炉真空状态下,对样品施加压力10MPa并加热升温至700℃保温10min,随后施加压力至30MPa,继续升温至烧结温度并保温,升温速率为50-100℃/min,烧结温度为1700-1800℃,保温时间为10-20min;保温结束后随即降压、降温,样品随炉冷却;
当采用热压烧结时,烧结条件为:烧结炉真空状态下,以5-20℃/min的升温速率将样品加热至1700-1850℃,保温时间为60-180min,加载压力为15-40MPa;保温结束后随即降压、降温,样品随炉冷却;
当采用热等静压烧结时,烧结条件为:在氩气下以30-100℃/min的升温速率将样品加热至1600-1800℃,保温时间为60-240min,加载压力为150-300MPa;保温结束后随即降压、降温,样品随炉冷却。
CN202010756987.5A 2020-07-31 2020-07-31 一种碳化硼基复合陶瓷材料及其制备方法 Pending CN111848170A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010756987.5A CN111848170A (zh) 2020-07-31 2020-07-31 一种碳化硼基复合陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010756987.5A CN111848170A (zh) 2020-07-31 2020-07-31 一种碳化硼基复合陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111848170A true CN111848170A (zh) 2020-10-30

Family

ID=72952633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010756987.5A Pending CN111848170A (zh) 2020-07-31 2020-07-31 一种碳化硼基复合陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111848170A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266247A (zh) * 2020-11-17 2021-01-26 济南大学 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN112553494A (zh) * 2020-11-13 2021-03-26 南京航空航天大学 一种冷冻装置及其制备高强韧层状多孔钛合金材料的方法
CN115991606A (zh) * 2023-02-22 2023-04-21 中南大学 一种TiB2-SiC-B4C三元超硬陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8600902D0 (sv) * 1986-02-28 1986-02-28 Asea Cerama Ab Sett att framstella kroppar av borkarbid
CN101555137A (zh) * 2009-05-20 2009-10-14 南京工业大学 (TiB2+TiC)/Ti3SiC2复相陶瓷材料及其制备方法
CN103979973A (zh) * 2014-05-15 2014-08-13 武汉理工大学 一种以TiH2为烧结助剂的B4C基陶瓷材料及其制备方法
CN110256081A (zh) * 2019-06-25 2019-09-20 合肥工业大学 一种碳化硼基复合陶瓷材料及其制备工艺
CN111410537A (zh) * 2020-03-24 2020-07-14 中国科学院上海硅酸盐研究所 一种具有线性导电特性的碳化硼基复相陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8600902D0 (sv) * 1986-02-28 1986-02-28 Asea Cerama Ab Sett att framstella kroppar av borkarbid
CN101555137A (zh) * 2009-05-20 2009-10-14 南京工业大学 (TiB2+TiC)/Ti3SiC2复相陶瓷材料及其制备方法
CN103979973A (zh) * 2014-05-15 2014-08-13 武汉理工大学 一种以TiH2为烧结助剂的B4C基陶瓷材料及其制备方法
CN110256081A (zh) * 2019-06-25 2019-09-20 合肥工业大学 一种碳化硼基复合陶瓷材料及其制备工艺
CN111410537A (zh) * 2020-03-24 2020-07-14 中国科学院上海硅酸盐研究所 一种具有线性导电特性的碳化硼基复相陶瓷材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SONG QI 等: "Microstructure and mechanical properties of super-hard B4C ceramic fabricated by spark plasma sintering with (Ti3SiC2+Si) as sintering aid", 《CERAMICS INTERNATIONAL》 *
WEN QUN 等: "High toughness and electrical discharge machinable B4C-TiB2-SiC composites fabricated at low sintering temperature", 《MATERIALS SCIENCE & ENGINEERING A》 *
何平 等: "Ti3SiC2添加剂对B4C陶瓷组成、结构与性能的影响", 《复合材料学报》 *
魏仁伟: "B4C-TiB2-SiC-TiC复合陶瓷的制备及其连接研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112553494A (zh) * 2020-11-13 2021-03-26 南京航空航天大学 一种冷冻装置及其制备高强韧层状多孔钛合金材料的方法
CN112266247A (zh) * 2020-11-17 2021-01-26 济南大学 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN115991606A (zh) * 2023-02-22 2023-04-21 中南大学 一种TiB2-SiC-B4C三元超硬陶瓷材料及其制备方法
CN115991606B (zh) * 2023-02-22 2023-05-26 中南大学 一种TiB2-SiC-B4C三元超硬陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN110735076B (zh) 一种高熵金属陶瓷及其制备方法和应用
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN111848170A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN109608203B (zh) 高熵二硅化物及其制备方法
CN114315359B (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN110606748A (zh) 一种氧化铝增强高熵硼化物陶瓷及其制备方法和应用
CN113121237B (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN104630533A (zh) 一种刀具材料的复合硬质合金的制备方法
CN110436928B (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN112063905B (zh) 一种高性能WC-WCoB-Co复相硬质合金及其制备方法
CN110655404A (zh) 一种钛碳化硅基复合陶瓷材料及其制备工艺
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN101100383A (zh) 一种钛铝碳三元层状可加工陶瓷材料的制备方法
CN113416077B (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN115557793B (zh) 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
EP4056540B1 (en) Method for obtaining a high refractory composite from boron carbide and intermetallic compound of the ti-si system
CN113416078B (zh) 一种非化学计量比硼化钛及利用该非化学计量比硼化钛制备的高熵硼化物陶瓷
CN110607475B (zh) 一种碳化硼增强二硼化钛基金属陶瓷及其制备方法和应用
CN114774750A (zh) 一种由增强型高熵合金粘结的碳化钨材料及制备方法
CN111410539B (zh) 一种Y-Al-Si-O多元玻璃相增强六方氮化硼基复相陶瓷
CN113292343A (zh) 一种原位反应无压烧结制备碳化硼基复相陶瓷的方法
CN113941708A (zh) 一种增强PcBN复合片界面结合能力的制备方法
CN109175387B (zh) 非晶晶化制备纳米晶WC-Co硬质合金的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201030

RJ01 Rejection of invention patent application after publication