CN109608203B - 高熵二硅化物及其制备方法 - Google Patents

高熵二硅化物及其制备方法 Download PDF

Info

Publication number
CN109608203B
CN109608203B CN201910091158.7A CN201910091158A CN109608203B CN 109608203 B CN109608203 B CN 109608203B CN 201910091158 A CN201910091158 A CN 201910091158A CN 109608203 B CN109608203 B CN 109608203B
Authority
CN
China
Prior art keywords
entropy
disilicide
powder
preparation
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910091158.7A
Other languages
English (en)
Other versions
CN109608203A (zh
Inventor
张国军
刘吉轩
秦渊
李飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201910091158.7A priority Critical patent/CN109608203B/zh
Publication of CN109608203A publication Critical patent/CN109608203A/zh
Application granted granted Critical
Publication of CN109608203B publication Critical patent/CN109608203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种高熵二硅化物及其制备方法。所述高熵二硅化物的化学式为(A0.2D0.2E0.2G0.2J0.2)Si2,其中,A、D、E、G、J为Ti、Zr、Nb、Mo、Hf和W中的任意五种不同的金属元素。制备方法为:将五种金属粉末与Si粉混合;所得混合粉体装入石墨模具,并置于放电等离子体烧结炉内,于1250‑1350℃、10‑80MPa的烧结条件下,在真空条件下或氩气气氛中,烧结5‑30分钟,制得高熵二硅化物。本发明通过放电等离子体烧结法制备出的高熵二硅化物,不仅具有高熵特征,还表现出了优异的力学性能,可作为高温结构件、高温发热元件、高温热防护材料,有着广泛的应用前景。

Description

高熵二硅化物及其制备方法
技术领域
本发明涉及高熵二硅化物及其制备方法,属于高温材料技术领域。
背景技术
金属二硅化物具有优异的高温抗氧化性能、导电性能和导热性能,可作为高温热防护材料、集成电路电极薄膜、高温结构件、高温发热元件等使用,如,MoSi2、TaSi2、NbSi2、HfSi2等。其中,MoSi2的应用最为广泛,其不仅被用作航天器热结构部件的表面高温抗氧化涂层,还可作为高温发热体。该发热体在空气中使用温度可以高达1800℃。但是,MoSi2的断裂韧性较低,导致其脆性大、易碎。这也是此类金属二硅化物共同存在的主要缺点之一。进一步提高金属二硅化物断裂韧性,是材料领域重要的追求目标。
研究发现,通过添加稀土氧化物、合金元素、晶须等,可以改善金属二硅化物的力学性能及抗氧化性能。如,在MoSi2中引入少量稀土氧化物La2O3,可以使MoSi2的室温断裂韧性从3.16MPa·m1/2提高至5.62MPa·m1/2,但材料的抗氧化性能有所降低[颜建辉,等,中国稀土学报25(2007)437-441]。另有研究表明,向MoSi2中引入Al元素,不仅有利于促进材料烧结过程中的致密化,还可以有效提高其在500℃左右低温区域的抗氧化性能[GJ Zhang,et al.,Journal of Materials Science 34(1999)593-597.]。
通过向材料基体添加多种合金元素,使材料的熵值显著增加,获得高熵材料,是一种获得高性能材料的新方法。目前,高熵材料主要包括高熵合金及高熵陶瓷材料。高熵合金通常是指含有5种及5种以上金属元素的单相合金。而高熵陶瓷材料一般是指由5种及5种以上金属元素和1种非金属元素组成的单相化合物。其中,各金属元素的摩尔百分数基本一致。由于这类材料的晶胞中含有多种元素,使其具有较高的熵值,它们往往表现出较高的热力学稳定性和优异的力学性能、热物理性能和耐蚀性能等。如,高熵氧化物(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)1-x-yAxGayO(A=Li,Na or K)就具有极高的介电常数和优异的导电性能[Bérardan,et al.,physica status solidi(RRL)-Rapid Research Letters 10(2016)328-333]。高熵硼化物(Mo0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2表现出了较高的硬度和优异的抗氧化性能[J.Gild,et al.,Scientific Reports 6(2016)37946]。高熵碳化物(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C比二元碳化物HfC、ZrC、TaC、TiC等具有更低的热导率[X.Yan,etal.,Journal of the American Ceramic Society 101(2018)4486-4491.]。目前,已有报道的高熵材料主要包括:高熵合金、高熵氧化物、高熵硼化物、高熵碳化物。但是,尚未见有关高熵硅化物的报道。通过合理的设计硅化物的组分和制备工艺,有希望合成出具有高性能的高熵硅化物,对硅化物材料的发展和应用具有重要意义。
发明内容
本发明所要解决的问题是:提供一种高熵二硅化物及其制备方法。
为了解决上述问题,本发明采用的技术方案如下:
一种高熵二硅化物,其特征在于,其化学式为(A0.2D0.2E0.2G0.2J0.2)Si2,其中,A、D、E、G、J为Ti、Zr、Nb、Mo、Hf和W中的任意五种不同的金属元素。
本发明还提供了上述高熵二硅化物的制备方法,其特征在于,包括以下步骤:
步骤1):按照摩尔比1:1:1:1:1:2的比例分别称取A、D、E、G、J的金属粉末及Si粉;
步骤2):将五种金属粉末与Si粉混合;
步骤3):将所得混合粉体装入石墨模具,并置于放电等离子体烧结炉内,于1250-1350℃、10-80MPa的烧结条件下,在真空条件下或氩气气氛中,烧结5-30分钟,制得高熵二硅化物。
优选地,所述步骤1)中金属粉末的粒径为1-50μm,质量纯度≥99%;Si粉的粒径为1-45μm,质量纯度≥99.5%。
优选地,所述步骤2)中原料混合方式为湿法行星球磨,球磨介质为乙醇或丙酮,磨球材质为Si3N4,具体步骤为:采用湿法行星球磨工艺,在400~580转/分钟的转速下,将所称取的原料粉体球磨混合8-24h,再利用旋转蒸发仪将所得料浆烘干,得到干燥的混合粉体。
优选地,所述步骤3)中真空条件的真空度小于10Pa。
优选地,所述步骤3)中氩气的质量纯度大于99.99%。
本发明采用Ti、Zr、Nb、Mo、Hf、W中的任意5种不同的金属粉末和高纯Si粉为原料,通过放电等离子体烧结法,原位反应合成单相的高熵二硅化物,且仅通过简单调节初始原料中金属粉末的组合种类,即可获得多种单相的高熵二硅化物。与商业的二硅化物相比,本发明所制备的单相高熵二硅化物的晶胞中因含有5种金属元素,使其具有较高的熵值,从而表现出了更优异的力学性能。此外,本发明方法还具有制备工艺简单、可操控性强、容易实现规模化等优点。
附图说明
图1为实施例1制备的高熵二硅化物(Ti0.2Zr0.2Nb0.2Mo0.2W0.2)Si2的XRD图谱;
图2为实施例2制备的高熵二硅化物(Ti0.2Zr0.2Nb0.2Mo0.2Hf0.2)Si2的抛光面SEM形貌及相关EDS元素的对比图;
图3为实施例3制备的高熵二硅化物(Ti0.2Zr0.2Mo0.2Hf0.2W0.2)Si2的断口SEM形貌;
图4为实施例4制备的高熵二硅化物(Ti0.2Nb0.2Mo0.2Hf0.2W0.2)Si2的断口SEM形貌。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
一种高熵二硅化物的制备方法:
将Ti、Zr、Nb、Mo、W的原料粉末(1-50μm,99wt%)和Si粉(1-45μm,99.5wt%)按摩尔比1:1:1:1:1:2进行配料。以乙醇为介质、Si3N4球为磨球,在行星球磨机上以560转/分钟的转速进行球磨混合12h,再经旋转蒸发得到干燥的混合粉末;将所得混合粉末装入石墨模具,然后置于放电等离子体烧结炉内,在气压低于10Pa的真空中,于1320℃、30MPa的烧结条件下,保温15min,制得(Ti0.2Zr0.2Nb0.2Mo0.2W0.2)Si2高熵二硅化物。
经分析:所制备材料的致密度达99.2%,其XRD图谱如图1所示。可见,所制备的材料为单相材料,其内仅含有六方结构的(Ti0.2Zr0.2Nb0.2Mo0.2W0.2)Si2相。
实施例2
一种高熵二硅化物的制备方法:
将Ti、Zr、Nb、Mo、Hf的原料粉末(1-50μm,99wt%)和Si粉(1-45μm,99.5wt%)按摩尔比1:1:1:1:1:2进行配料。以丙酮为介质、Si3N4球为磨球,在行星球磨机上以500转/分钟的转速进行球磨混合18h,再经旋转蒸发得到混合干粉;将所得混合干粉装入石墨模具,然后置于放电等离子体烧结炉内,在气压低于10Pa的真空中,于1250℃、50MPa的烧结条件下,保温25min,制得(Ti0.2Zr0.2Nb0.2Mo0.2Hf0.2)Si2高熵二硅化物;
经分析:所制备材料的致密度达99%,其抛光面的SEM形貌及相关EDS元素分布情况如图2所示,可见,所制得的材料为元素分布均匀的单相高熵二硅化物,无明显的第二相存在。
实施例3
一种高熵二硅化物的制备方法:
将Ti、Zr、Mo、Hf、W的原料粉末(1-50μm,99wt%)和Si粉(1-45μm,99.5wt%)按摩尔比1:1:1:1:1:2进行配料。以乙醇为介质、Si3N4球为磨球,在行星球磨机上以580转/分钟的转速进行球磨混合10h,再经旋转蒸发得到混合干粉;将所得混合干粉装入石墨模具,然后置于放电等离子体烧结炉内,在惰性气氛(质量纯度99.99以上的氩气)中,于1350℃、20MPa的烧结条件下,保温20min,制得(Ti0.2Zr0.2Mo0.2Hf0.2W0.2)Si2高熵二硅化物;
经分析:所制备材料的致密度达98%,其断口的SEM形貌如图3所示,可见,所得材料的显微结构均匀,平均晶粒尺寸约为8μm。
实施例4
一种高熵二硅化物的制备方法:
将Ti、Nb、Mo、Hf、W的原料粉末(1-50μm,99wt%)和Si粉(1-45μmμm,99.5wt%)按摩尔比1:1:1:1:1:2进行配料。以丙酮为介质、Si3N4球为磨球,在行星球磨机上以400转/分钟的转速进行球磨混合24h,再经旋转蒸发得到混合干粉;将所得混合干粉装入石墨模具,然后置于放电等离子体烧结炉内,在惰性气氛(质量纯度99.99以上的氩气)中,于1280℃、80MPa的烧结条件下,保温15min,制得(Ti0.2Nb0.2Mo0.2Hf0.2W0.2)Si2高熵二硅化物;
经分析:所制备材料的致密度达98.5%,其断口的SEM形貌如图4所示,可见,所得材料的显微结构均匀,平均晶粒尺寸约为5μm。
实施例5
一种高熵二硅化物的制备方法:
将Zr、Nb、Mo、Hf、W的原料粉末(1-50μm,99wt%)和Si粉(1-45μmμm,99.5wt%)按摩尔比1:1:1:1:1:2进行配料。以乙醇为介质、Si3N4球为磨球,在行星球磨机上以500转/分钟的转速进行球磨混合18h,再经旋转蒸发得到混合干粉;将所得混合干粉装入石墨模具,然后置于放电等离子体烧结炉内,在惰性气氛(质量纯度99.99以上的氩气)中,于1300℃、50MPa的烧结条件下,保温10min,制得(Zr0.2Nb0.2Mo0.2Hf0.2W0.2)Si2高熵二硅化物;
经分析:所制备材料的致密度达98.8%。采用维氏压痕法测量了所得材料的室温断裂韧性。结果表明,其断裂韧性达4.2±0.4MPa·m1/2,较商业MoSi2的断裂韧性3.2±0.2MPa·m1/2提高了31%。

Claims (5)

1.一种高熵二硅化物,其特征在于,其化学式为(A0.2D0.2E0.2G0.2J0.2)Si2,其中,A、D、E、G、J为Ti、Zr、Nb、Mo、Hf和W中的任意五种不同的金属元素;所述的高熵二硅化物的制备方法,包括以下步骤:
步骤1):按照摩尔比1:1:1:1:1:2的比例分别称取A、D、E、G、J的金属粉末及Si粉;
步骤2):将五种金属粉末与Si粉混合;
步骤3):将所得混合粉体装入石墨模具,并置于放电等离子体烧结炉内,于1250-1350℃、10-80MPa的烧结条件下,在真空条件下或氩气气氛中,烧结5-30分钟,制得高熵二硅化物。
2.如权利要求1所述高熵二硅化物,其特征在于,所述步骤1)中金属粉末的粒径为1-50μm,质量纯度≥99%;Si粉的粒径为1-45μm,质量纯度≥99.5%。
3.如权利要求1所述高熵二硅化物,其特征在于,所述步骤2)中原料混合方式为湿法行星球磨,球磨介质为乙醇或丙酮,磨球材质为Si3N4,具体步骤为:采用湿法行星球磨工艺,在400~580转/分钟的转速下,将所称取的原料粉体球磨混合8-24h,再利用旋转蒸发仪将所得料浆烘干,得到干燥的混合粉体。
4.如权利要求1所述高熵二硅化物,其特征在于,所述步骤3)中真空条件的真空度小于10Pa。
5.如权利要求1所述高熵二硅化物,其特征在于,所述步骤3)中氩气的质量纯度大于99.99%。
CN201910091158.7A 2019-01-30 2019-01-30 高熵二硅化物及其制备方法 Active CN109608203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910091158.7A CN109608203B (zh) 2019-01-30 2019-01-30 高熵二硅化物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910091158.7A CN109608203B (zh) 2019-01-30 2019-01-30 高熵二硅化物及其制备方法

Publications (2)

Publication Number Publication Date
CN109608203A CN109608203A (zh) 2019-04-12
CN109608203B true CN109608203B (zh) 2021-05-04

Family

ID=66018632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910091158.7A Active CN109608203B (zh) 2019-01-30 2019-01-30 高熵二硅化物及其制备方法

Country Status (1)

Country Link
CN (1) CN109608203B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146550B (zh) * 2019-06-13 2020-03-13 南京航空航天大学 基于电阻抗成像的复合材料高温部件氧化程度监测方法
US20230407460A1 (en) * 2020-11-06 2023-12-21 The Regents Of The University Of California Single phase high entropy intermetallics and method for manufacturing
CN115745018B (zh) * 2021-01-08 2024-02-06 北京航空航天大学 高熵MXene材料、高熵MAX相材料及其制备方法、电极和电池
CN114853014B (zh) * 2021-02-04 2023-10-31 中国科学院宁波材料技术与工程研究所 高硬度的m位中高熵的max相材料及其制备方法与应用
CN113307632B (zh) * 2021-05-26 2022-04-12 山东大学 一种氧化物高熵陶瓷纤维的制备方法
CN115594494A (zh) * 2021-07-08 2023-01-13 武汉苏泊尔炊具有限公司(Cn) 不粘材料及其制备方法、不粘涂料与烹饪器具
CN113773089B (zh) * 2021-08-27 2023-03-28 郑州大学 一种高熵二硅化物及其制备方法
CN114605154B (zh) * 2022-03-31 2023-03-03 大连理工大学 一种基于金属预合金化的高熵陶瓷材料及其制备方法
CN117247278A (zh) * 2023-10-12 2023-12-19 中国科学院兰州化学物理研究所 一种(ZrNbTaMoX)C0.8Si0.2双阴离子高熵陶瓷的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213013A (zh) * 2014-09-28 2014-12-17 哈尔滨工业大学 一种TiZrNbMoxHfy多主元高温合金及其制备方法
WO2015057732A1 (en) * 2013-10-14 2015-04-23 Certain Teed Gypsum, Inc. Struvite-k and syngenite composition for use in building materials
CN106187165A (zh) * 2016-07-11 2016-12-07 福州大学 一种高储能密度介质陶瓷材料及其制备方法
WO2018009115A1 (en) * 2016-07-07 2018-01-11 Rosén Johanna Nanolaminated material, two-dimensional material and process for manufacturing a two-dimensional material
CN108018550A (zh) * 2016-11-04 2018-05-11 叶均蔚 多层膜结构
CN108299006A (zh) * 2018-01-24 2018-07-20 北京工业大学 一种复合高熵钎料涂层激光钎焊陶瓷和金属的方法
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN109180188A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015057732A1 (en) * 2013-10-14 2015-04-23 Certain Teed Gypsum, Inc. Struvite-k and syngenite composition for use in building materials
CN104213013A (zh) * 2014-09-28 2014-12-17 哈尔滨工业大学 一种TiZrNbMoxHfy多主元高温合金及其制备方法
WO2018009115A1 (en) * 2016-07-07 2018-01-11 Rosén Johanna Nanolaminated material, two-dimensional material and process for manufacturing a two-dimensional material
CN106187165A (zh) * 2016-07-11 2016-12-07 福州大学 一种高储能密度介质陶瓷材料及其制备方法
CN108018550A (zh) * 2016-11-04 2018-05-11 叶均蔚 多层膜结构
CN108299006A (zh) * 2018-01-24 2018-07-20 北京工业大学 一种复合高熵钎料涂层激光钎焊陶瓷和金属的方法
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN109180188A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
a high ertropy silicide by reactive spark palsma sintering;Qin yuan;《JOURNAL OF ADVANCED CERAMICS》;20190331(第1期);第148-152页 *

Also Published As

Publication number Publication date
CN109608203A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN109608203B (zh) 高熵二硅化物及其制备方法
CN109180188B (zh) 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法
CN109180189B (zh) 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN103145422B (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
Sonber et al. Investigations on synthesis of HfB2 and development of a new composite with TiSi2
Zhang et al. Understanding the oxidation behavior of Ta–Hf–C ternary ceramics at high temperature
WO2006005267A1 (fr) Materiau composite ceramique en ti2aln renforce a durcissement par phase dispersee de al2o3
CN107473237B (zh) 一种二元钨硼化物超硬材料的制备方法
CN113831133B (zh) 一种非化学计量比高熵陶瓷及其制备方法
CN114315359A (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN111943702B (zh) 一种原位自生β-SIALON晶须增韧碳化钨复合材料及其制备方法与应用
EP0349740B1 (en) Complex boride cermets
CN110436928A (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN111848170A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
He et al. Interfacial reactions and mechanical properties of SiC fiber reinforced Ti3SiC2 and Ti3 (SiAl) C2 composites
WO2019233076A1 (zh) 一种铼掺杂的四硼化钨材料的制备方法
CN107285329B (zh) 一种二硼化钨硬质材料及其制备方法和应用
WO2014154135A1 (zh) 三氧化二铝弥散强化钛四铝氮三陶瓷复合材料及制备方法
CN110981489A (zh) 一种TiNx-Ti3SiC2复合材料及其制备方法
CN113416078B (zh) 一种非化学计量比硼化钛及利用该非化学计量比硼化钛制备的高熵硼化物陶瓷
Wang et al. Spark plasma sintering of polycrystalline La0. 6Ce0. 3Pr0. 1B6–ZrB2 composites
JP2774761B2 (ja) 高熱伝導性窒化けい素焼結体およびその製造方法
CN113735591A (zh) 采用放电等离子烧结制备氮掺杂导电碳化硅陶瓷的方法
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
JPH09221367A (ja) 導電性炭化珪素質複合材料及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant