CN111732436A - 易烧结钛和钨共掺杂碳化锆粉体及其制备方法 - Google Patents

易烧结钛和钨共掺杂碳化锆粉体及其制备方法 Download PDF

Info

Publication number
CN111732436A
CN111732436A CN202010559052.8A CN202010559052A CN111732436A CN 111732436 A CN111732436 A CN 111732436A CN 202010559052 A CN202010559052 A CN 202010559052A CN 111732436 A CN111732436 A CN 111732436A
Authority
CN
China
Prior art keywords
tungsten
zirconium carbide
titanium
carbide powder
doped zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010559052.8A
Other languages
English (en)
Inventor
吴事江
林杨
李拯
杨焕顺
张合军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Yilaisheng New Material Technology Co ltd
Zibo Qimingxing New Material Co ltd
Zibo Xingao New Materials Research Institute Co ltd
Shandong Ultraming Fine Ceramics Co ltd
Original Assignee
Shandong Yilaisheng New Material Technology Co ltd
Zibo Qimingxing New Material Co ltd
Zibo Xingao New Materials Research Institute Co ltd
Shandong Ultraming Fine Ceramics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Yilaisheng New Material Technology Co ltd, Zibo Qimingxing New Material Co ltd, Zibo Xingao New Materials Research Institute Co ltd, Shandong Ultraming Fine Ceramics Co ltd filed Critical Shandong Yilaisheng New Material Technology Co ltd
Priority to CN202010559052.8A priority Critical patent/CN111732436A/zh
Publication of CN111732436A publication Critical patent/CN111732436A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及超高温陶瓷技术领域,具体涉及一种易烧结钛和钨共掺杂碳化锆粉体及其制备方法。所述的易烧结钛和钨共掺杂碳化锆粉,化学式为Zr1‑x‑yTixWyC,0<x≤0.05,0<y≤0.05;其制备方法采用ZrO2、TiO2、WO3和炭黑为原料,在真空或氩气保护下进行高温碳热还原反应,制得钛和钨共掺杂碳化锆粉。本发明的易烧结钛和钨共掺杂碳化锆粉体,晶粒尺寸小、含氧量低、相纯度高,烧结活性高,应用范围广,可以作为无压烧结碳化锆体材料的原料、超高温防热涂层材料、太阳能吸收材料和超高温复合材料的基体材料应用;本发明还提供其制备方法,原料成本低、工艺过程简单、设备要求低,适合大规模生产。

Description

易烧结钛和钨共掺杂碳化锆粉体及其制备方法
技术领域
本发明涉及超高温陶瓷技术领域,具体涉及一种易烧结钛和钨共掺杂碳化锆粉体及其制备方法。
背景技术
碳化锆陶瓷具有熔点高、硬度高、耐腐蚀、抗辐照、抗烧蚀、导电、导热等优异的性能,在航天、航空、核工业领域具有广泛的应用前景。最近的研究表明碳化锆陶瓷在真空和氩气中的稳定性好、抗挥发、电阻随温度变化的特性也和金属W、Mo相似,可以作为新型的电加热元件用于高真空炉加热。然而,碳化锆陶瓷的烧结难,通常需要高温加压烧结如热压烧结、放电等离子烧结、热等静压烧结等方法获得致密的体材料,这些烧结方法的成本高、制备得到的碳化锆陶瓷形状简单,限制了碳化锆陶瓷的大规模应用。为了解决碳化锆陶瓷的烧结难问题,必须研究工艺简单的无压烧结方法。
高活性粉体是用无压烧结方法制备碳化锆陶瓷体材料的关键。目前,虽然碳化锆陶瓷粉体的制备方法很多,但是存在烧结活性不高、成本高等诸多问题,不适于无压烧结制备碳化锆陶瓷。文献1(Adv.Powder Tech.27(2016)1547-1551)报道了用ZrCl4与金属钠反应制备ZrC粉体的方法,该方法虽然反应温度只有600℃,但原料成本高、反应过程复杂、不易控制,不适合大规模应用。文献2(Ceram.Inter.41(2015)7359-7365)报道了用ZrCl4和酚醛树脂制备ZrC粉体的方法,反应过程中首先生成氧化锆ZrO2,然后1500℃以上经碳热还原反应才生成ZrC,过程复杂、不易控制。文献3(Inter.J.Refrac.Met.Hard Mater.64(2017)98–105)报道了以ZrO2和炭黑为原料在1600℃制备ZrC纳米粉体的方法,所制备的粉体经2100℃、80MPa放电等离子烧结30分钟才能制备得到致密度97%的体材料。文献4(J.AlloyCompd.483(2009)468–472)报道了以Zr(OC4H9)4为原料,经激光加热裂解的方法制备ZrC纳米粉体,该方法所制备ZrC纳米粉体表面包覆了一层碳,阻碍ZrC的高温烧结。文献5(Ceram.Inter.41(2015)8397–8401)报道了用机械化学法将ZrO2、C和金属Mg混合经高能球磨30小时制备ZrC粉体,该方法金属杂质去除工艺复杂并且高能球磨不适合制备大量粉体。文献6(J.Ceram.Soc.Japan 124(2016)1171–1174)报道了用ZrOCl2.8H2O、C2H8O7.H2O、C2H6O2为原料经高温微波加热合成ZrC粉体的方法,该方法虽然合成的粉体尺寸小200-300nm,但氧含量高达1at%,不利于高温烧结。
对比分析发现,以上碳化锆陶瓷粉体的制备方法或者过程复杂、不适合大规模生产,或者制备得到的碳化锆陶瓷粉体的氧含量高、烧结活性低。为了降低碳化锆陶瓷的制备成本,必须发明新的材料组成和制备工艺。
发明内容
本发明的目的是提供一种易烧结钛和钨共掺杂碳化锆粉体,晶粒尺寸小、氧含量低、相纯度高,烧结活性高,应用范围广,可以作为无压烧结碳化锆体材料的原料、超高温防热涂层材料、太阳能吸收材料和超高温复合材料的基体材料应用;本发明还提供其制备方法,原料成本低、工艺过程简单、设备要求低,适合大规模生产。
本发明所述的易烧结钛和钨共掺杂碳化锆粉,化学式为Zr1-x-yTixWyC,0<x≤0.05,0<y≤0.05。钛和钨的掺杂量过低不利于提高Zr1-x-yTixWyC粉体的活性和去除氧的效果,掺杂量过高会降低Zr1-x-yTixWyC的高温性能,特别是高温抗氧化性能和高温抗烧蚀性能。
所述钛和钨共掺杂碳化锆粉体烧结活性高,可用无压烧结工艺在1800-2000℃烧结制备得到致密的钛和钨共掺杂碳化锆Zr1-x-yTixWyC陶瓷体材料;也可以作为超高温防热涂层材料、太阳能吸收材料和超高温复合材料的基体材料应用。
本发明所述的易烧结钛和钨共掺杂碳化锆粉的制备方法,采用ZrO2、TiO2、WO3和炭黑为原料,在真空或氩气保护下进行高温碳热还原反应,制得钛和钨共掺杂碳化锆粉;其中:以摩尔比计,ZrO2:TiO2:WO3:炭黑=(1-x-y):x:y:3.21,0<x≤0.05,0<y≤0.05。
优选的,所述的易烧结钛和钨共掺杂碳化锆粉的制备方法,步骤如下:
(1)将原料ZrO2、TiO2、WO3、炭黑进行湿法混合;
(2)将混合均匀的原料进行真空干燥处理;
(3)将干燥后的粉体干压成生坯放入石墨坩埚中,进行高温碳热还原反应,反应结束后随炉冷却至室温,经破碎和研磨即得易烧结钛和钨共掺杂碳化锆粉体。
ZrO2、TiO2和WO3粉体的纯度≥99.9wt%,粒度为2-5μm;炭黑的纯度≥99wt%。
步骤(1)中湿法混合条件为:以无水乙醇和氧化锆球为介质,转速80-150r/min,混合10-20h。原料混合采用湿法混合工艺可以避免原料混合不均匀的问题。
步骤(2)中真空干燥温度为25-35℃,时间为10-36h。
步骤(3)中高温碳热还原反应条件为:反应温度1450-1600℃,加热速率10-20℃/min,保温反应时间1-5h,反应气氛为真空或流动的氩气。采用真空或流动的氩气中的碳热还原反应,可以降低碳热还原反应温度、W和Ti在合成过程中固溶到ZrC晶格中,使碳热还原反应和固溶一步完成,工艺过程简单。
该方法的原理和过程如下:
W是过渡金属碳化物和硼化物的除氧剂并可掺杂到ZrC晶格中形成固溶体,Ti也可以固溶到ZrC晶格中形成固溶体并引起较大的晶格畸变从而促进ZrC的扩散、促进烧结,将W和Ti掺杂到碳化锆中,得到的Zr1-x-yTixWyC(0<x≤0.05,0<y≤0.05)固溶体既具有烧结活性好又具有氧含量低的特点。
将混合好的原料粉体经高温反应真空或氩气保护碳热还原反应合成钛和钨共掺杂碳化锆Zr1-x-yTixWyC(0<x≤0.05,0<y≤0.05)粉体,反应过程如下:
ZrO2+3C→ZrC+2CO (1)
TiO2+3C→TiC+2CO (2)
WO3+4C→WC+3CO (3)
(1-x-y)ZrC+xTiC+yWC→Zr1-x-yTixWyC (4)
与现有技术相比,本发明具有以下有益效果:
(1)本发明从过渡金属氧化物的混和物和炭黑原料出发,经过真空或氩气保护下高温碳热还原反应合成获得钛和钨共掺杂结碳化锆粉体,原料成本低、工艺过程简单、设备要求低,适合大规模生产;
(2)本发明合成的钛和钨共掺杂碳化锆粉体晶粒尺寸小、氧含量低、相纯度高;
(3)本发明合成的钛和钨共掺杂碳化锆粉体烧结活性高,可用无压烧结工艺在1800-2000℃烧结制备得到致密的钛和钨共掺杂碳化锆Zr1-x-yTixWyC陶瓷体材料;
(4)本发明合成的钛和钨共掺杂碳化锆粉体应用范围广,可以作为无压烧结碳化锆体材料的原料、超高温防热涂层材料、太阳能吸收材料和超高温复合材料的基体材料应用。
附图说明
图1为本发明实施例1制备的钛和钨共掺杂碳化锆Zr0.91Ti0.06W0.03C粉体与ZrC粉体的X-射线衍射谱对比图;
图2为本发明实施例2制备的钛和钨共掺杂碳化锆Zr0.90Ti0.08W0.02C粉体的扫描电镜照片。
具体实施方式
下面结合附图和实施例详述本发明。
实施例1
(1)将原料ZrO2、TiO2和WO3粉体和炭黑按ZrO2:TiO2:WO3:炭黑=0.91:0.06:0.03:3.21的摩尔比例称重,然后置于氧化锆混料罐中,加入无水乙醇,用氧化锆球作球磨介质,在90r/min转速下混合12h;
(2)将混合均匀的原料放入真空干燥箱中,在30℃的恒定温度下干燥24h;
(3)将干燥处理后的原料粉干压成型后放入石墨坩埚中,在真空石墨炉中以15℃/min速率加热到1450℃,保温3h,随炉冷却至室温,研磨所得的粉体经X-射线衍射分析表明为纯的钛和钨共掺杂碳化锆Zr0.91Ti0.06W0.03C固溶体粉体,没有杂质相,如图1所示。
从图1可以看出,由于Ti和W原子的共价键半径较小,所以钛和钨共掺杂碳化锆Zr0.91Ti0.06W0.03C固溶体的衍射峰与纯的ZrC粉体的XRD谱相比,固溶W和Ti后衍射峰向大角方向发生了移动的现象。
将钛和钨共掺杂碳化锆Zr0.91Ti0.06W0.03C粉体在100MPa下冷等静压成型,在1850℃温度下无压烧结,得到致密度92.7%的钛和钨共掺杂碳化锆陶瓷体材料。
实施例2
(1)将原料ZrO2、TiO2和WO3粉体和炭黑按ZrO2:TiO2:WO3:炭黑=0.90:0.08:0.02:3.21的摩尔比例称重,然后置于氧化锆混料罐中,加入无水乙醇,用氧化锆球作球磨介质,在120r/min转速下混合15h;
(2)将混合均匀的原料放入真空干燥箱中,在28℃的恒定温度下干燥36h;
(3)将干燥处理后的原料粉干压成型后放入石墨坩埚中,在氩气石墨炉中以20℃/min速率加热到1580℃,保温1h,随炉冷却至室温,研磨所得的粉体为纯的钛和钨共掺杂碳化锆Zr0.90Ti0.08W0.02C固溶体粉体,其扫描电镜图如图2所示。
从图2可以看出,钛和钨共掺杂碳化锆Zr0.90Ti0.08W0.02C粉体的晶粒尺寸为200-500nm,晶粒细小,粉体的氧含量为0.56%。
将钛和钨共掺杂碳化锆Zr0.91Ti0.06W0.03C粉体在100MPa下冷等静压成型,在2000℃温度下无压烧结,得到致密度98.1%的钛和钨共掺杂碳化锆陶瓷体材料。
实施例3
(1)将原料ZrO2、TiO2和WO3粉体和炭黑按ZrO2:TiO2:WO3:炭黑=0.85:0.10:0.05:3.21的摩尔比例称重,然后置于氧化锆混料罐中,加入无水乙醇,用氧化锆球作球磨介质,在150r/min转速下混合20h;
(2)将混合均匀的原料放入真空干燥箱中,在25℃的恒定温度下干燥36h;
(3)将干燥处理后的原料粉干压成型后放入石墨坩埚中,在真空石墨炉中以15℃/min速率加热到1500℃,保温2h,随炉冷却至室温,破碎、研磨所得的粉体为纯的钛和钨共掺杂碳化锆Zr0.85Ti0.10W0.05C固溶体粉体,晶粒尺寸为200-400nm。
将钛和钨共掺杂碳化锆Zr0.85Ti0.10W0.05C粉体在80MPa压力下干压成型,在1900℃温度下无压烧结,得到致密度97.2%的钛和钨共掺杂碳化锆陶瓷体材料。测得体材料弹性模量405GPa、维氏硬度18GPa、断裂韧性3.8MPa.m1/2,三点弯曲强度309MPa。
实施例4
(1)将原料ZrO2、TiO2和WO3粉体和炭黑按ZrO2:TiO2:WO3:炭黑=0.88:0.12:0.01:3.21的摩尔比例称重,然后置于氧化锆混料罐中,加入无水乙醇,用氧化锆球作球磨介质,在100r/min转速下混合18h;
(2)将混合均匀的原料放入真空干燥箱中,在35℃的恒定温度下干燥10h;
(3)将干燥处理后的原料粉干压成型后放入石墨坩埚中,在氩气石墨炉中以10℃/min速率加热到1650℃,保温1h,随炉冷却至室温,破碎、研磨所得的粉体为纯的钛和钨共掺杂碳化锆Zr0.88Ti0.12W0.01C固溶体粉体,晶粒尺寸为300-600nm。
将钛和钨共掺杂碳化锆Zr0.85Ti0.10W0.05C粉体在50MPa压力下干压成型,在1950℃温度下无压烧结,得到致密度96.5%的钛和钨共掺杂碳化锆陶瓷体材料。用四探针法测得体材料电阻率随着温度升高而增加,室温电阻率为9.0×10-5(Ω.cm),大约是W电阻率的2倍。
实施例1-4制备的钛和钨共掺杂碳化锆粉体以及其制备的钛和钨共掺杂碳化锆陶瓷体材料的性能指标如表1所示。
表1实施例1-4的产品性能指标
Figure BDA0002545619560000051
Figure BDA0002545619560000061

Claims (7)

1.一种易烧结钛和钨共掺杂碳化锆粉,其特征在于:化学式为Zr1-x-yTixWyC,0<x≤0.05,0<y≤0.05。
2.一种权利要求1所述的易烧结钛和钨共掺杂碳化锆粉的制备方法,其特征在于:采用ZrO2、TiO2、WO3和炭黑为原料,在真空或氩气保护下进行高温碳热还原反应,制得钛和钨共掺杂碳化锆粉;其中:以摩尔比计,ZrO2:TiO2:WO3:炭黑=(1-x-y):x:y:3.21,0<x≤0.05,0<y≤0.05。
3.根据权利要求2所述的易烧结钛和钨共掺杂碳化锆粉的制备方法,其特征在于:步骤如下:
(1)将原料ZrO2、TiO2、WO3、炭黑进行湿法混合;
(2)将混合均匀的原料进行真空干燥处理;
(3)将干燥后的粉末干压成生坯放入石墨坩埚中,进行高温碳热还原反应,反应结束后随炉冷却至室温,经破碎和研磨即得易烧结钛和钨共掺杂碳化锆粉体。
4.根据权利要求2或3所述的易烧结钛和钨共掺杂碳化锆粉的制备方法,其特征在于:ZrO2、TiO2和WO3粉末的纯度≥99.9wt%,粒度为2-5μm;炭黑的纯度≥99wt%。
5.根据权利要求3所述的易烧结钛和钨共掺杂碳化锆粉的制备方法,其特征在于:步骤(1)中湿法混合条件为:以无水乙醇和氧化锆球为介质,转速80-150r/min,混合10-20h。
6.根据权利要求3所述的易烧结钛和钨共掺杂碳化锆粉的制备方法,其特征在于:步骤(2)中真空干燥温度为25-35℃,时间为10-36h。
7.根据权利要求3所述的易烧结钛和钨共掺杂碳化锆粉的制备方法,其特征在于:步骤(3)中高温碳热还原反应条件为:反应温度1450-1600℃,加热速率10-20℃/min,保温反应时间1-5h,反应气氛为真空或流动的氩气。
CN202010559052.8A 2020-06-18 2020-06-18 易烧结钛和钨共掺杂碳化锆粉体及其制备方法 Pending CN111732436A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010559052.8A CN111732436A (zh) 2020-06-18 2020-06-18 易烧结钛和钨共掺杂碳化锆粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010559052.8A CN111732436A (zh) 2020-06-18 2020-06-18 易烧结钛和钨共掺杂碳化锆粉体及其制备方法

Publications (1)

Publication Number Publication Date
CN111732436A true CN111732436A (zh) 2020-10-02

Family

ID=72649667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010559052.8A Pending CN111732436A (zh) 2020-06-18 2020-06-18 易烧结钛和钨共掺杂碳化锆粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN111732436A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115872748A (zh) * 2022-12-02 2023-03-31 无锡博智复合材料有限公司 一种钨改性ZrC骨架增强热解碳复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273638A1 (en) * 2007-12-26 2010-10-28 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof
CN102910628A (zh) * 2011-08-05 2013-02-06 中国科学院上海硅酸盐研究所 高熔点过渡金属碳化物超细粉体的合成方法
CN103058660A (zh) * 2013-01-11 2013-04-24 航天材料及工艺研究所 一种高强度抗氧化碳化锆陶瓷材料及其制备方法
CN104451321A (zh) * 2014-12-08 2015-03-25 长沙伟徽高科技新材料股份有限公司 一种碳化钨钛铌锆固溶体粉末及其制备方法
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN110078512A (zh) * 2019-05-17 2019-08-02 淄博星澳新材料研究院有限公司 超高温高熵碳化物粉体及其制备方法
CN110330341A (zh) * 2019-07-24 2019-10-15 哈尔滨工业大学 一种高纯超细过渡金属碳化物单相高熵陶瓷粉体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273638A1 (en) * 2007-12-26 2010-10-28 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof
CN102910628A (zh) * 2011-08-05 2013-02-06 中国科学院上海硅酸盐研究所 高熔点过渡金属碳化物超细粉体的合成方法
CN103058660A (zh) * 2013-01-11 2013-04-24 航天材料及工艺研究所 一种高强度抗氧化碳化锆陶瓷材料及其制备方法
CN104451321A (zh) * 2014-12-08 2015-03-25 长沙伟徽高科技新材料股份有限公司 一种碳化钨钛铌锆固溶体粉末及其制备方法
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN110078512A (zh) * 2019-05-17 2019-08-02 淄博星澳新材料研究院有限公司 超高温高熵碳化物粉体及其制备方法
CN110330341A (zh) * 2019-07-24 2019-10-15 哈尔滨工业大学 一种高纯超细过渡金属碳化物单相高熵陶瓷粉体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
毕见强等: "《特种陶瓷工艺与性能》", 31 July 2018, 哈尔滨工业大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115872748A (zh) * 2022-12-02 2023-03-31 无锡博智复合材料有限公司 一种钨改性ZrC骨架增强热解碳复合材料及其制备方法和应用
CN115872748B (zh) * 2022-12-02 2023-11-14 无锡博智复合材料有限公司 一种钨改性ZrC骨架增强热解碳复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109516812B (zh) 一种超细高熵固熔体粉末及其制备方法和应用
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN109608203B (zh) 高熵二硅化物及其制备方法
CN110128146B (zh) 一种具有多功能的碳化硼基复相陶瓷及其反应热压烧结制备方法
JPH01301508A (ja) 炭化珪素質材料の製造方法及び原料組成物
CN109180180B (zh) 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
US20210317045A1 (en) Highly oriented nanometer max phase ceramic and preparation method for max phase in-situ autogenous oxide nanocomposite ceramic
CN113121237B (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN112679213B (zh) 一种超多元高熵陶瓷及其制备方法和应用
KR20110077154A (ko) 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN111410536A (zh) 一种常压烧结制备致密(HfZrTaNbTi)C高熵陶瓷烧结体的方法
CN110436928A (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN112028635A (zh) 一种超高温陶瓷复合材料及制备方法
CN114507074A (zh) 一种高熵过渡-稀土金属二硼化物陶瓷材料及其制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN111848170A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN101734920A (zh) 一种氮化钛多孔陶瓷及其制备方法
Tiwari et al. Influence of SiC content to control morphology of in-situ synthesized ZrB2–SiC composite through single-step reduction process
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
CN113416077A (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
Yu et al. Synthesis and densification of ultra-fine ZrC powders-effects of C/Zr ratio
CN111943682B (zh) 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用
CN113416078B (zh) 一种非化学计量比硼化钛及利用该非化学计量比硼化钛制备的高熵硼化物陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination