CN109180180B - 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法 - Google Patents

一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法 Download PDF

Info

Publication number
CN109180180B
CN109180180B CN201811251004.1A CN201811251004A CN109180180B CN 109180180 B CN109180180 B CN 109180180B CN 201811251004 A CN201811251004 A CN 201811251004A CN 109180180 B CN109180180 B CN 109180180B
Authority
CN
China
Prior art keywords
pressureless sintering
ceramic material
ball milling
piezoelectric ceramic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811251004.1A
Other languages
English (en)
Other versions
CN109180180A (zh
Inventor
侯育冬
岳云鸽
郑木鹏
赵海燕
付靖
朱满康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201811251004.1A priority Critical patent/CN109180180B/zh
Publication of CN109180180A publication Critical patent/CN109180180A/zh
Application granted granted Critical
Publication of CN109180180B publication Critical patent/CN109180180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法,属于压电陶瓷材料制备技术领域。该陶瓷材料的基体化学组成为0.36BiScO3–0.64PbTiO3。以Pb3O4、TiO2、Bi2O3和Sc2O3为原料,采用湿磨、烘干、高能球磨、压制成型、烧结步骤。选择高能球磨法得到的部分非晶化纳米尺度的粉体作为前驱粉体,并进行致密化无压烧结工艺调控,得到陶瓷的晶粒尺寸为170nm,相对密度为95%,实现了一步无压烧结合成具有致密结构的细晶压电陶瓷。设计这一关键工艺对于推进低成本无压烧结合成细晶压电陶瓷的制备具有重大的意义。

Description

一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
技术领域
本发明属于压电陶瓷材料制备技术领域,具体涉及一种新的通过一步无压烧结合成具有亚微米晶尺度的细晶压电陶瓷材料的制备方法。
背景技术
随着电子元器件小型化、叠层化的发展趋势,需要其核心压电陶瓷材料降低晶粒尺寸,即制备细晶压电陶瓷(晶粒尺寸在亚微米尺度及以下的陶瓷),以便实现器件的轻薄化。但是,前人的研究工作发现,压电陶瓷通常是采用完全结晶的粉体作为前驱粉体,在其无压烧结过程中,致密化的同时往往伴随着晶粒尺寸的快速长大(大于微米级),不利于获得致密的细晶压电陶瓷。目前,制备细晶压电陶瓷最常用的方法是热压烧结或放电等离子烧结,在这些方法中,引入压力或电场可以有效地降低烧结温度和减少烧结时间,从而有助于获得高密度的细晶陶瓷。然而,由于此类方法工艺复杂、设备昂贵,阻碍了细晶压电陶瓷的低成本生产。
综上所述,为了满足通过低成本的无压烧结工艺制备细晶压电陶瓷的要求,在本专利中,以BS–PT为目标体系,采用高能球磨法制备部分非晶化纳米级前驱粉体(特指由结晶相与非晶相组成的粉体),并进行致密化无压烧结工艺调控,通过一步无压烧结实现陶瓷在致密化的同时保持亚微米晶尺度。设计这一关键工艺对于推进低成本无压烧结合成细晶压电陶瓷的制备具有重大的意义。
发明内容
本发明的目的在于为克服已有制备细晶陶瓷技术的不足之处,提供一种新的低成本的合成细晶压电陶瓷材料的制备方法,即通过一步无压烧结部分非晶化纳米级前驱粉体,实现陶瓷在致密化的同时保持亚微米晶尺度。
为实现上述目的,本发明采取以下技术方案。
本发明提供一种通过一步无压烧结合成细晶压电陶瓷材料的制备方法,其特征在于,选择高能球磨法制备的部分非晶化纳米尺度的粉体作为前驱粉体,并进行致密化无压烧结工艺调控,实现一步无压烧结合成具有致密结构的细晶压电陶瓷材料。陶瓷的基体化学组成为:0.36BiScO3–0.64PbTiO3。进一步优选晶粒尺寸主要为170nm,相对密度为95%。在满足陶瓷致密化的同时,晶粒尺寸在亚微米级。具体包括以下步骤:
(1)将Pb3O4、TiO2、Bi2O3和Sc2O3按化学摩尔计量比称量,将称量好的原料放入球磨罐中,以无水乙醇为介质置于行星球磨机中球磨12h,然后100℃条件下烘干;
(2)将干燥后的粉体采用直径为3mm的碳化钨磨球,球料比20:1,转速800rpm,转速比(自转速度/公转速度)-2,进行高能球磨120min;
(3)不需要添加粘结剂,将粉体直接在800MPa的压力下成型,然后在900℃烧结,保温120min,即得到目标陶瓷材料。
烧结后的陶瓷片,经过抛光处理之后进行微结构观测,然后被上银电极,在120℃的硅油中,于35kV·cm-1的直流高压下极化30min。然后对样品进行电性能的测试。
其中,得到的0.36BiScO3–0.64PbTiO3陶瓷,其晶粒尺寸为170nm,相对密度为95%。性能可达到:压电应变常数d33=220pC/N,压电电压常数g33=40×10-3Vm/N,可以实现一步无压烧结细晶压电陶瓷材料的制备。
与现有技术相比较,本发明具有以下优点:
本发明提出的方法可用于构建实现致密化的同时保持亚微米晶尺度的细晶压电陶瓷。现有常规技术制备细晶陶瓷的方法是热压烧结或放电等离子烧结,由于此类方法工艺复杂,设备昂贵,阻碍了细晶陶瓷的低成本生产。本发明技术上通过高能球磨法免煅烧制备得到部分非晶化纳米级前驱粉体,结合一步无压烧结技术工艺优化,从而实现了陶瓷致密化(相对密度为95%)的同时,晶粒尺寸维持在亚微米级(基本为100-200nm,主要为170nm)。研究发现,低温致密化机理主要来源于两点:一方面,非晶相形成的低温液相有助于加速物质的输运;另一方面,在BiScO3和PbTiO3晶界上沉积有纳米颗粒,能够起到填充气孔的作用,从而提高陶瓷的致密性。设计这一关键工艺对于推进低成本无压烧结合成细晶压电陶瓷的制备具有重大的意义。
附图说明
图1(a)为混合粉末进行碳化钨磨球处理不同时间后的X射线衍射(XRD)图谱,(b)为碳化钨磨球处理120min后纳米粉末高倍数透射电镜(HRTEM)图,内插图是选区电子衍射(SAED)图。
图2为本发明成分在900℃下烧结2h的BS–PT陶瓷样品附图,(a)为陶瓷的断面扫描电镜(SEM)照片及晶粒尺寸分布图,(b)为陶瓷的高倍数透射电镜图。
具体实施方式
以下将通过实施例对本发明进行详细描述,这些实施例只是出于示例性说明的目的,而非用于限定本发明。
本发明提供一种一步无压烧结合成亚微米晶尺度的细晶压电陶瓷材料的制备方法,其特征在于,该陶瓷材料通过一步无压烧结部分非晶化纳米级前驱粉体制备获得,具有致密结构的同时,保持亚微米尺度的晶粒尺寸,其化学组成通式为:0.36BiScO3–0.64PbTiO3。组成原料为:Pb3O4、TiO2、Bi2O3和Sc2O3。具体制备方法为,首先,将称量好的原料放入球磨罐中,以无水乙醇为介质置于行星球磨机中球磨12h。球磨后所得浆料在100℃下烘干,然后将干燥后的粉体采用直径为3mm的碳化钨磨球,球料比20:1,转速800rpm,转速比-2,高能球磨120min;将得到的粉体不需要添加粘结剂,直接在800MPa的压力下成型,然后在900℃烧结,保温2h,得到陶瓷材料。烧结后的陶瓷片,印刷并烧渗银电极,在120℃的硅油中,在35kV·cm-1的电压下极化30min。然后对样品进行电性能的测试。
下面通过实施例进一步阐明本发明的实质性特点和显著优点。应该指出,本发明决非仅局限于所陈述的实施例。
实施例1:
按化学式0.36BiScO3–0.64PbTiO3。组成原料为:Pb3O4、TiO2、Bi2O3和Sc2O3,并在乙醇中球磨12h。混合物经烘干后,干燥后的粉体采用高能球磨120min,将高能球磨得到的粉体直接在800MPa下压制成型,并在900℃下烧结2h得到陶瓷。
混合粉末经过机械化学处理后的XRD及TEM分析数据见图1(a)和(b),结果表明高能球磨120min得到的粉体为部分非晶化纳米前驱粉体。我们推测这些非晶相在烧结过程中形成低温液相,从而有助于加速物质的输运,促进陶瓷的低温致密化。
本发明成分在900℃下烧结2h的BS–PT陶瓷的断面SEM照片及晶粒尺寸分布数据见图2(a),结果显示陶瓷为致密的微观结构,相对密度达95%,平均晶粒尺寸为170nm。此样品的高倍数透射电镜图见图2(b),从图中可以看出,有许多纳米颗粒沉积在晶界区域,我们推测这些沉积在晶界上的纳米颗粒能够起到填充气孔的作用,从而提高陶瓷的致密性。
对比例1:
按化学式0.36BiScO3–0.64PbTiO3称量Pb3O4、TiO2、Bi2O3和Sc2O3,烧结温度为800℃。其它同实施例1。
对比例2:
按化学式0.36BiScO3–0.64PbTiO3称量Pb3O4、TiO2、Bi2O3和Sc2O3,烧结温度为850℃。其它同实施例1。
对比例3:
按化学式0.36BiScO3–0.64PbTiO3称量Pb3O4、TiO2、Bi2O3和Sc2O3,烧结温度为950℃。其它同实施例1。
对比例4:
按化学式0.36BiScO3–0.64PbTiO3称量Pb3O4、TiO2、Bi2O3和Sc2O3,烧结温度为1050℃。其它同实施例1。
对比例5:
按化学式0.36BiScO3–0.64PbTiO3称量Pb3O4、TiO2、Bi2O3和Sc2O3,烧结温度为1100℃。其它同实施例1。
表1上述实施例性能对比表
Figure BDA0001841689930000051

Claims (4)

1.一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法,陶瓷材料化学组成为:0.36BiScO3–0.64PbTiO3,其特征在于,选择高能球磨法制备的部分非晶化纳米尺度的粉体作为前驱粉体,并进行致密化无压烧结工艺调控,实现一步无压烧结合成具有致密结构的细晶压电陶瓷材料;具体包括以下步骤:
(1)将Pb3O4、TiO2、Bi2O3和Sc2O3按化学摩尔计量比称量,将称量好的原料放入球磨罐中,以无水乙醇为介质置于行星球磨机中球磨12h,然后100℃条件下烘干;
(2)将干燥后的粉体采用直径为3mm的碳化钨磨球,球料比20:1,转速800rpm,转速比-2,进行高能球磨120min;
(3)不需要添加粘结剂,将粉体直接在800MPa的压力下成型,然后在900℃烧结,保温120min,即得到目标陶瓷材料。
2.按照权利要求1所述的方法,其特征在于,晶粒尺寸为170nm,相对密度为95%。
3.按照权利要求1所述的方法,其特征在于,在陶瓷的晶界上沉积有纳米颗粒。
4.按照权利要求1-3任一项所述的方法制备得到的亚微米晶尺度压电陶瓷材料。
CN201811251004.1A 2018-10-25 2018-10-25 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法 Active CN109180180B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811251004.1A CN109180180B (zh) 2018-10-25 2018-10-25 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811251004.1A CN109180180B (zh) 2018-10-25 2018-10-25 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN109180180A CN109180180A (zh) 2019-01-11
CN109180180B true CN109180180B (zh) 2021-07-02

Family

ID=64943399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811251004.1A Active CN109180180B (zh) 2018-10-25 2018-10-25 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN109180180B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330332B (zh) * 2019-06-19 2022-04-08 南京航空航天大学 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法
CN110272277B (zh) * 2019-07-26 2022-01-21 南方科技大学 一种压电材料及其制备方法以及一种多层致动器及其制备方法
CN113402273B (zh) * 2021-05-31 2022-05-10 中国科学院上海硅酸盐研究所 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
CN113999006B (zh) * 2021-11-07 2022-09-30 北京工业大学 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备
CN114988866B (zh) * 2022-04-18 2023-10-13 浙江钛迩赛新材料有限公司 一种5g陶瓷滤波器材料、其低温烧结方法及应用
CN114853466B (zh) * 2022-04-27 2023-06-23 苏州思萃电子功能材料技术研究所有限公司 一种具有低高温损耗性的钪酸铋-钛酸铅基高温压电陶瓷及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837143A (zh) * 2006-04-25 2006-09-27 清华大学 一种亚微米晶压电陶瓷材料的制备方法
CN101717251A (zh) * 2009-12-04 2010-06-02 北京工业大学 一种改性钛酸铅压电陶瓷材料及其制备方法
CN102180665A (zh) * 2011-03-07 2011-09-14 广州金升阳科技有限公司 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN102311266A (zh) * 2011-08-09 2012-01-11 同济大学 一种铌酸钾钠无铅压电陶瓷材料的制备方法
CN105645955A (zh) * 2014-11-18 2016-06-08 中国科学院上海硅酸盐研究所 四方相钛镁酸铋-钛酸铅基压电陶瓷的制备方法
CN105732024A (zh) * 2016-01-19 2016-07-06 北京工业大学 新型二元系K0.5Bi0.5TiO3–BiMg0.5Zr0.5O3无铅压电陶瓷材料及制备
CN107056291A (zh) * 2017-04-14 2017-08-18 北京工业大学 一种亚微米晶尺度压电能量收集材料及其制备方法
CN107698252A (zh) * 2017-10-13 2018-02-16 北京工业大学 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN108470824A (zh) * 2018-03-15 2018-08-31 南方科技大学 一种耐高温的多层压电陶瓷致动器及其制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518291B2 (en) * 2011-07-24 2013-08-27 Case Western Reserve University High temperature piezoelectric ceramics

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1837143A (zh) * 2006-04-25 2006-09-27 清华大学 一种亚微米晶压电陶瓷材料的制备方法
CN101717251A (zh) * 2009-12-04 2010-06-02 北京工业大学 一种改性钛酸铅压电陶瓷材料及其制备方法
CN102180665A (zh) * 2011-03-07 2011-09-14 广州金升阳科技有限公司 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN102311266A (zh) * 2011-08-09 2012-01-11 同济大学 一种铌酸钾钠无铅压电陶瓷材料的制备方法
CN105645955A (zh) * 2014-11-18 2016-06-08 中国科学院上海硅酸盐研究所 四方相钛镁酸铋-钛酸铅基压电陶瓷的制备方法
CN105732024A (zh) * 2016-01-19 2016-07-06 北京工业大学 新型二元系K0.5Bi0.5TiO3–BiMg0.5Zr0.5O3无铅压电陶瓷材料及制备
CN107056291A (zh) * 2017-04-14 2017-08-18 北京工业大学 一种亚微米晶尺度压电能量收集材料及其制备方法
CN107698252A (zh) * 2017-10-13 2018-02-16 北京工业大学 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN108470824A (zh) * 2018-03-15 2018-08-31 南方科技大学 一种耐高温的多层压电陶瓷致动器及其制备方法和用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Building submicron crystalline piezoceramics: one-step pressureless sintering partially amorphized nanopowder;Yunge Yue等;《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》;20190531;第102卷;第2658-2665页 *
Preparation and characterization of high Tc (1−x)BiScO3-xPbTiO3 ceramics from high energy ball milling process;Lin Zhang等;《Journal of Electroceramics》;20070818;第605页左栏第3段和右栏倒数第1段、第606页左栏第1段、第607页右栏第1段、第608页左栏第3段和右栏第3段、图2 *
高温细晶压电陶瓷钪酸铋钛酸铅的制备及尺寸效应研究;邹婷婷;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20100315;第B015-19页 *

Also Published As

Publication number Publication date
CN109180180A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109180180B (zh) 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
Lee et al. Crystallization and densification of nano‐size amorphous cordierite powder prepared by a PVA solution‐polymerization route
CN107056291B (zh) 一种亚微米晶尺度压电能量收集材料及其制备方法
DE112015001562B4 (de) Verfahren zur Herstellung eines Siliciumnitrid-Substrates
CN115180950B (zh) 一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法
CN109851367B (zh) 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法
Das et al. Synthesis and flash sintering of zirconium nitride powder
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
Chen et al. Synthesis of highly sinterable YAG nanopowders by a modified co-precipitation method
US8022001B2 (en) Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same
CN113548891B (zh) 一种两相钽酸钴陶瓷块体及其制备方法
Zhao et al. Nanopowders preparation and dielectric properties of low-fired Li 3 Mg 2 NbO 6 ceramics
CN112723877B (zh) 一种具有微米内晶型结构的陶瓷-金属无铅压电复合材料及制备方法
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
Liu et al. A duplex grain structure of dense (K, Na) NbO3 ceramics constructed by using microcrystalline as seed
CN113999006B (zh) 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备
Yunus et al. Formation of Bio-based Derived Dicalcium Silicate Ceramics via Mechanochemical Treatment: Physical, XRD, SEM and FTIR Analyses.
Thanaboonsombut et al. Effect of attrition milling on the piezoelectric properties of Bi 0.5 Na 0.5 TiO 3-based ceramics
Zhang et al. Effect of thermal annealing on dielectric property and thermal conductivity of Si3N4–BaTiO3 composite ceramics
CN116789450B (zh) 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用
CN115073173B (zh) 一种具备超高压电常数的弛豫铁电体pnn-pht材料的制备方法
JP2009286675A (ja) アルミニウムケイ素炭化物粉末およびその製造方法
Li Fabrication of transparent yttrium aluminum garnet ceramic
JP3112286B2 (ja) 緻密なマシナブルセラミックスの製造方法
Smith et al. A novel room-temperature synthesis technique for producing high-density Ba1-xSrxTiO3 and PbZryTi1-yO3 composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant