CN107056291A - 一种亚微米晶尺度压电能量收集材料及其制备方法 - Google Patents

一种亚微米晶尺度压电能量收集材料及其制备方法 Download PDF

Info

Publication number
CN107056291A
CN107056291A CN201710245372.4A CN201710245372A CN107056291A CN 107056291 A CN107056291 A CN 107056291A CN 201710245372 A CN201710245372 A CN 201710245372A CN 107056291 A CN107056291 A CN 107056291A
Authority
CN
China
Prior art keywords
piezoelectric
energy
ball milling
sub
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710245372.4A
Other languages
English (en)
Other versions
CN107056291B (zh
Inventor
侯育冬
岳云鸽
郑木鹏
晏晓东
朱满康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710245372.4A priority Critical patent/CN107056291B/zh
Publication of CN107056291A publication Critical patent/CN107056291A/zh
Application granted granted Critical
Publication of CN107056291B publication Critical patent/CN107056291B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种亚微米晶尺度压电能量收集材料及其制备方法,属于压电陶瓷材料领域。该陶瓷材料的基体化学组成为0.2Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3,晶粒尺寸在亚微米级。以Pb3O4、ZnO、Nb2O5、ZrO2和TiO2为原料,采用湿磨、烘干、高能球磨、压制成型、烧结步骤。本发明应用于压电能量收集器件,可以在实现器件小型化的同时,有效地回收再利用环境中废弃的振动能,具有显著的经济和社会价值。

Description

一种亚微米晶尺度压电能量收集材料及其制备方法
技术领域
本发明属于压电陶瓷材料领域,具体涉及一种可应用于小型化压电能量收集器件的具有亚微米晶粒尺寸、高压电应变常数和低介电常数的压电陶瓷材料及其制备方法。
背景技术
近年来,随着能源问题的日益严重,如何将环境中废弃的振动能回收再利用成为各国研究的重点。将振动能转化为可以使用的电能无疑是最好的选择,压电能量收集器件基于压电材料的正压电效应可以实现这一功能。
为了满足压电能量收集器件的要求,压电陶瓷必须具有高的能量密度:
能量密度u可用如下公式表示:
d:压电应变常数 g:压电电场常数
F:作用力 A:面积
通过公式可以看出,高的能量密度主要由大的换能系数(d×g)来决定。又因为g=d/(ε0×εr),所以具有高的换能系数(d×g)的材料可以通过高的压电应变常数d和低的介电常数εr获得。
此外,压电能量收集器件的微型化发展趋势需要其核心压电陶瓷材料在保持高换能系数的同时,还应具有亚微米尺度的晶粒结构,以便实现器件的轻薄化。但是,前人的研究工作发现,许多压电陶瓷的晶粒尺寸由微米级减小到亚微米级时,材料压电应变常数的下降幅度远大于介电常数的下降幅度,不利于获得高的换能系数。
综上所述,为了满足压电能量收集器件微型化的要求,在本专利中,以PZN-PZT为目标体系,通过高能球磨法免煅烧制备纳米级前驱粉体并进行致密化烧结工艺调控,在获得亚微米晶粒尺寸实现微型化的同时,陶瓷材料具有高的换能系数。设计并制备这一关键亚微米晶材料对于推进压电能量收集器件的微型化及相关小型高效电源制造具有重大的意义。
发明内容
本发明的目的在于提供一种可应用于微型压电能量收集器件的压电陶瓷材料及其制备方法,在降低晶粒尺寸实现微型化的同时,陶瓷材料具有高的换能系数。
本发明的压电陶瓷特征在于具有亚微米尺度的晶粒尺寸和高的换能系数。
为实现上述目的,本发明采取以下技术方案。
本发明提供一种应用于微型压电能量收集器件的压电陶瓷材料,其特征在于,晶粒尺寸在亚微米级,基体化学组成为:0.2Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3。进一步优选晶粒尺寸为0.33μm。
本发明上述具有亚微米晶粒尺寸的压电能量收集材料的制备方法,其特征在于,选择高能球磨法免煅烧制备纳米尺度的PZN-PZT前驱粉体,并通过优化烧结工艺制备得到亚微米晶粒尺度的高换能系数压电陶瓷,具体包括以下步骤:
(1)将Pb3O4、ZnO、Nb2O5、ZrO2和TiO2按化学摩尔计量比称量,将称量好的原料放入球磨罐中,以无水乙醇为介质置于行星球磨机中球磨12h,然后100℃条件下烘干;
(2)将干燥后的粉体采用直径为3mm的碳化钨磨球,球料比20:1,进行高能球磨90min;
(3)不需要添加粘结剂,将粉体直接在800MPa的压力下成型,然后在850-1050℃烧结,保温120min,即得到目标陶瓷材料。
烧结后的陶瓷片,经过抛光处理之后进行微结构观测,然后被上银电极,在120℃的硅油中,于30kV·cm-1的直流高压下极化30min。然后对样品进行电性能的测试。
其中,最佳样品为:通过高能球磨90min得到的纳米级前驱粉体,在烧结温度为950℃、保温120min时得到的0.2Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3陶瓷,其晶粒尺寸为0.33μm,性能可达到:d33=315pC/N,εr=1405,d33×g33=7980×10-15m2/N,可以满足微型压电能量收集器件的要求。
在本发明中,选择高能球磨法得到的纳米尺度的粉体作为PZN-PZT前驱粉体,制备得到亚微米尺度的PZN-PZT陶瓷。
与现有技术相比较,本发明具有以下优点:
本发明提出的方法可用于构建满足微型化压电能量收集器件要求的具有高换能系数的亚微米晶压电陶瓷。现有常规技术采用普通高温煅烧工艺合成前驱粉体,制备出的粉体不仅由于高温下PbO等物质的挥发造成环境污染与材料计量比失配,而且合成产物粉体颗粒粗大,无法进一步用于烧结制备亚微米晶压电陶瓷。本发明技术上通过高能球磨法免煅烧制备得到纳米级前驱粉体,结合烧结工艺优化,从而实现了将陶瓷的晶粒尺寸从微米级降低到亚微米级(0.33μm),在满足能量收集器件微型化的同时,也具有高的换能系数(d33×g33)。
附图说明
图1为混合粉末在机械化学处理90min后的微观结构细节,(a)纳米粉末TEM形貌图,(b)HRTEM图,(c)选区电子衍射(SAED)图和(d)EDS能谱;
图2为本发明成分在(a)850℃,(b)900℃,(c)950℃,(d)1000℃,(e)1050℃下烧结2h的XRD图谱;
图3为本发明成分在(a)850℃,(b)900℃,(c)950℃,(d)1000℃,(e)1050℃下烧结2h的PZN-PZT样品抛光和热蚀后的断面SEM照片及(f)陶瓷的相对密度随烧结温度的变化曲线。
具体实施方式
以下将通过实施例对本发明进行详细描述,这些实施例只是出于示例性说明的目的,而非用于限定本发明。
本发明提供一种具有亚微米尺寸可应用于微型压电能量收集器件的压电陶瓷材料,其特征在于,该陶瓷材料具有亚微米尺度的晶粒尺寸,其化学组成通式为:0.2Pb(Zn1/ 3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3。组成原料为:Pb3O4、ZnO、Nb2O5、ZrO2和TiO2。具体制备方法为,首先,将称量好的原料放入球磨罐中,以无水乙醇为介质置于行星球磨机中球磨12h。球磨后所得浆料在100℃下烘干,然后将干燥后的粉体采用直径为3mm的碳化钨磨球,球料比20:1,高能球磨90min;将得到的粉体不需要添加粘结剂,直接在800MPa的压力下成型,然后在850-1050℃烧结,保温2h,得到陶瓷材料。烧结后的陶瓷片,印刷并烧渗银电极,在120℃的硅油中,在30kV·cm-1的电压下极化30min。然后对样品进行电性能的测试。本发明通过测定的压电常数d33和介电常数εr,经过简单计算就可以得出机电转换系数d33×g33
下面通过实施例进一步阐明本发明的实质性特点和显著优点。应该指出,本发明决非仅局限于所陈述的实施例。
实施例1:
按化学式0.2Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3称量Pb3O4、ZnO、Nb2O5、ZrO2和TiO2,并在乙醇中球磨12h。混合物经烘干后,干燥后的粉体采用高能球磨90min,将高能球磨得到的粉体直接在800MPa下压制成型,并在850℃下烧结2h得到陶瓷。
实施例2:
按化学式0.2Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3称量Pb3O4、ZnO、Nb2O5、ZrO2和TiO2,烧结温度为900℃。其它同实施例1。
实施例3:
按化学式0.2Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3称量Pb3O4、ZnO、Nb2O5、ZrO2和TiO2,烧结温度为950℃。其它同实施例1。
实施例4:
按化学式0.2Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3称量Pb3O4、ZnO、Nb2O5、ZrO2和TiO2,烧结温度为1000℃。其它同实施例1。
实施例5:
按化学式0.2Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3称量Pb3O4、ZnO、Nb2O5、ZrO2和TiO2,烧结温度为1050℃。其它同实施例1。
表1上述实施例性能对比表

Claims (4)

1.一种应用于小型化压电能量收集器件的亚微米晶压电陶瓷材料,其特征在于,压电陶瓷材料的化学组成为:0.2Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr1/2Ti1/2)O3,晶粒尺寸在亚微米级。
2.按照权利要求1所述的一种应用于小型化压电能量收集器件的亚微米压电陶瓷材料,其特征在于,晶粒尺寸为0.33μm。
3.制备权利要求1所述的压电陶瓷材料的方法,其特征在于,通过采用高能球磨法得到的纳米级前驱粉体,通过普通烧结工艺制备得到亚微米晶粒尺度的压电陶瓷,具体包括以下步骤:
(1)将Pb3O4、ZnO、Nb2O5、ZrO2和TiO2按化学摩尔计量比称量,将称量好的原料放入球磨罐中,以无水乙醇为介质置于行星球磨机中球磨12h,然后100℃条件下烘干;
(2)将干燥后的粉体采用直径为3mm的碳化钨磨球,球料比20:1,进行高能球磨90min;
(3)不需要添加粘结剂,将粉体直接在800MPa的压力下成型,然后在850-1050℃烧结,保温120min,即得到目标陶瓷材料。
4.按照权利要求1或2所述的压电陶瓷材料用于小型化压电能量收集器件。
CN201710245372.4A 2017-04-14 2017-04-14 一种亚微米晶尺度压电能量收集材料及其制备方法 Expired - Fee Related CN107056291B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710245372.4A CN107056291B (zh) 2017-04-14 2017-04-14 一种亚微米晶尺度压电能量收集材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710245372.4A CN107056291B (zh) 2017-04-14 2017-04-14 一种亚微米晶尺度压电能量收集材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107056291A true CN107056291A (zh) 2017-08-18
CN107056291B CN107056291B (zh) 2020-09-25

Family

ID=59600318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710245372.4A Expired - Fee Related CN107056291B (zh) 2017-04-14 2017-04-14 一种亚微米晶尺度压电能量收集材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107056291B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746277A (zh) * 2017-10-16 2018-03-02 北京工业大学 一种靶向掺杂构建高机电性能能量收集复相陶瓷材料及制备方法
CN108101537A (zh) * 2017-12-22 2018-06-01 北京工业大学 一种纳米压电陶瓷能量收集材料及其制备方法
CN109180180A (zh) * 2018-10-25 2019-01-11 北京工业大学 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
CN113651614A (zh) * 2021-07-15 2021-11-16 北京工业大学 一种压电能量收集用兼具高和热稳定压电性能的陶瓷材料及制备
CN113999006A (zh) * 2021-11-07 2022-02-01 北京工业大学 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311266A (zh) * 2011-08-09 2012-01-11 同济大学 一种铌酸钾钠无铅压电陶瓷材料的制备方法
CN102863215A (zh) * 2012-09-21 2013-01-09 北京工业大学 一种应用于能量收集器件的压电陶瓷材料及制备方法
CN103693960A (zh) * 2013-12-11 2014-04-02 上海师范大学 一种具有高电致应变的铌锌酸铅-锆钛酸铅基压电陶瓷材料及其制备方法和应用
CN105523760A (zh) * 2015-11-27 2016-04-27 北京工业大学 一种稳定反铁电性的低介电损耗的铌酸钠陶瓷材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311266A (zh) * 2011-08-09 2012-01-11 同济大学 一种铌酸钾钠无铅压电陶瓷材料的制备方法
CN102863215A (zh) * 2012-09-21 2013-01-09 北京工业大学 一种应用于能量收集器件的压电陶瓷材料及制备方法
CN103693960A (zh) * 2013-12-11 2014-04-02 上海师范大学 一种具有高电致应变的铌锌酸铅-锆钛酸铅基压电陶瓷材料及其制备方法和应用
CN105523760A (zh) * 2015-11-27 2016-04-27 北京工业大学 一种稳定反铁电性的低介电损耗的铌酸钠陶瓷材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUPENGZHENG等: "Shift of morphotropic phase boundary in high-performance fine-grained PZN–PZT ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746277A (zh) * 2017-10-16 2018-03-02 北京工业大学 一种靶向掺杂构建高机电性能能量收集复相陶瓷材料及制备方法
CN107746277B (zh) * 2017-10-16 2021-01-05 北京工业大学 一种靶向掺杂构建高机电性能能量收集复相陶瓷材料及制备方法
CN108101537A (zh) * 2017-12-22 2018-06-01 北京工业大学 一种纳米压电陶瓷能量收集材料及其制备方法
CN109180180A (zh) * 2018-10-25 2019-01-11 北京工业大学 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
CN109180180B (zh) * 2018-10-25 2021-07-02 北京工业大学 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
CN113651614A (zh) * 2021-07-15 2021-11-16 北京工业大学 一种压电能量收集用兼具高和热稳定压电性能的陶瓷材料及制备
CN113999006A (zh) * 2021-11-07 2022-02-01 北京工业大学 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备

Also Published As

Publication number Publication date
CN107056291B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN107056291A (zh) 一种亚微米晶尺度压电能量收集材料及其制备方法
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
Parashar et al. Ferroelectric phase transition in Pb 0.92 Gd 0.08 (Zr 0.53 Ti 0.47) 0.98 O 3 nanoceramic synthesized by high-energy ball milling
CN109180180A (zh) 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
CN107759219A (zh) 一种高居里温度无铅压电陶瓷及其制备方法
CN106187168A (zh) 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法
CN107954712A (zh) 一种低损耗、巨介电ccto陶瓷材料及其制备方法
CN108178626A (zh) 一种低损耗高介电常数x9r陶瓷电容器介质材料及其制备方法
CN107162583A (zh) 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN108101537A (zh) 一种纳米压电陶瓷能量收集材料及其制备方法
CN109650875B (zh) 一种巨介电钛酸铜钙复合陶瓷材料及其制备方法和应用
CN104926301B (zh) 压电器件
Xiao et al. Sintering and electrical properties of commercial PZT powders modified through mechanochemical activation
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN102992761A (zh) 一种应用于能量收集器件的压电陶瓷材料及制备方法
CN104505146B (zh) 一种具有纳米核壳及内晶型结构的介电复合材料及制备方法
CN105198409B (zh) 一种高储能密度钛酸锶钡基玻璃复相陶瓷的制备方法
Wan et al. Green gelcasting of CaCu 3 Ti 4 O 12 ceramics
CN107540373A (zh) 一种La离子掺杂PZT基压电陶瓷材料及其制备方法
CN105314977A (zh) 一种制备钛酸铜钙的方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN106565239A (zh) 一种低烧结温度功率型压电陶瓷材料及其制备方法
CN108727021B (zh) 一种压电能量收集用兼具宽组分窗口与高换能系数陶瓷材料及制备
CN106554203A (zh) 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200925

CF01 Termination of patent right due to non-payment of annual fee