CN106554203A - 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法 - Google Patents

一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106554203A
CN106554203A CN201611001050.7A CN201611001050A CN106554203A CN 106554203 A CN106554203 A CN 106554203A CN 201611001050 A CN201611001050 A CN 201611001050A CN 106554203 A CN106554203 A CN 106554203A
Authority
CN
China
Prior art keywords
bismuth
high temperature
powder
ball milling
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611001050.7A
Other languages
English (en)
Other versions
CN106554203B (zh
Inventor
王春明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201611001050.7A priority Critical patent/CN106554203B/zh
Publication of CN106554203A publication Critical patent/CN106554203A/zh
Application granted granted Critical
Publication of CN106554203B publication Critical patent/CN106554203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种铋层状结构铌酸铋钙高温压电陶瓷材料,其特征在于,该压电陶瓷材料的通式为Ca0.9(LiGd)0.05Bi2Nb2‑xCrxO9,其中0<x≤0.20。本发明还公开了该压电陶瓷材料的制备方法,采用CaBi2Nb2O9体系压电材料为基体,以一定的摩尔比(LiGd)取代钙钛矿层中的A位Ca离子,并且按照一定的摩尔比掺入Cr取代钙钛矿层中的B位Nb离子,采用传统的固相合成方法,制备得到此类新型铋层状结构压电陶瓷材料,主要性能参数为:d33=18pC/N,ε=150,tanδ=0.22%,kp=11.2%,Qm=10690,Tc=915℃,在高温领域具有良好的应用前景。利用这种材料制得的各种形状的陶瓷元件,组装成各种压电传感器,在高温测量、探测以及自动控制等方面得到了广泛应用。

Description

一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法
技术领域
本发明涉及一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法,具体涉及一种掺杂Li、Gd、Cr的铋层状结构Ca0.9(LiGd)0.05Bi2Nb2-xCrxO9压电陶瓷材料及其制备方法,属于压电陶瓷材料领域。
背景技术
压电陶瓷作为传感器、制动器和变频器广泛应用于工业控制、环境监控、通讯、信息系统及医疗器械等领域。在压电陶瓷领域中,目前广泛应用的压电材料主要是具有钙钛矿结构的PZT(PbZrO3-PbTiO3)材料。
然而,PZT(PbZrO3-PbTiO3)材料是含铅陶瓷,其中氧化铅(或四氧化三铅)约占原料总质量的70%左右。含铅压电铁电陶瓷在加工、烧结过程和使用过程中,都会给环境和人类带来危害。因此,开发无铅基的环境协调性压电陶瓷材料是一项紧迫而具有重要科学意义的课题。
目前,国内外研究的无铅压电陶瓷体系主要有:钛酸钡系、钛酸铋钠系、碱金属铌酸盐系、铋层状结构、钨青铜结构无铅压电陶瓷。其中,铋层状结构无铅压电陶瓷材料作为一种铁电材料,具有光电效应、非线性光学效应、反常光生伏特效应、光折变效应等特点,同时还有高的居里温度,极化强度较高,良好的抗疲劳特性以及漏电流小等优点而受到研究者的重视。但是铋层状结构无铅压电陶瓷的压电性能还不太理想,现从工艺改进和配方改良的角度对其进行研究,大大提高铋层状结构无铅压电陶瓷材料的压电性能。
铋层状结构的陶瓷材料是由(Bi2O2)2+层和钙钛矿结构的晶格层相互交替叠加而成的,其化学通式为(Bi2O2)2+(Am-1BmO3m+1)2-,上式中A为适合12配位的离子,如Na+、K+、Ca2+等,B为适合8配位的离子,如Ti4+、Nb5+等,m为整数,取值为1~5。铌酸铋钙(CaBi2Nb2O9)是m=2的铋层状结构材料,其居里温度达900-940℃,压电常数d33约为6pC/N,介电损耗tanδ<2%,与实际应用相比,虽然居里温度满足高温下使用的要求,但是其压电性能还达不到应用要求。因此,如何在不降低居里温度的同时提高压电常数以获得高温范围内稳定使用的铋层状压电陶瓷材料成为本领域研究的一个重要课题。目前,还未见以Li、Gd、Cr掺杂来提高铋层状结构铌酸铋钙高温压电陶瓷材料性能的相关报道,因此,研发性能优异的高温压电陶瓷材料具有重大的实用价值。
发明内容
针对上述现有技术,本发明的目的是提供一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法,利用Li、Gd、Cr元素对铋层状结构压电陶瓷材料进行掺杂改性,在不降低其居里温度的同时,提高其压电性能,制备出一种新型的、环境友好型的压电陶瓷材料。
为实现上述目的,本发明采用下述技术方案:
一种铋层状结构铌酸铋钙高温压电陶瓷材料,该压电陶瓷材料的通式为Ca0.9(LiGd)0.05Bi2Nb2-xCrxO9,其中0<x≤0.20;
通式中,下标数字代表元素的摩尔比。
优选的,所述铋层状结构铌酸铋钙高温压电陶瓷材料具有下列之一所示的化学组成:
Ca0.9(LiGd)0.05Bi2Nb1.95Cr0.05O9
Ca0.9(LiGd)0.05Bi2Nb1.90Cr0.10O9
Ca0.9(LiGd)0.05Bi2Nb1.85Cr0.15O9
Ca0.9(LiGd)0.05Bi2Nb1.80Cr0.20O9
所述铋层状结构铌酸铋钙高温压电陶瓷材料具有13-18pC/N的压电常数d33
该铋层状结构铌酸铋钙高温压电陶瓷材料的制备方法,步骤如下:
以CaCO3粉体、Li2CO3粉体、Gd2O3粉体、Bi2O3粉体、Nb2O5粉体和Cr2O3粉体为原料,按通式中Ca、Li、Gd、Bi、Nb和Cr的化学计量比进行配料,预球磨,得混合粉料;
将所述混合粉料进行烘干,烘干后再进行预烧结,得到经过预烧结的粉料;
将所述经过预烧结的粉料进行二次球磨,得到经过二次球磨的粉料;
向所述经过二次球磨的粉料中加入粘合剂压制成陶瓷坯片,并进行排塑(粘合剂)处理;
将排塑处理后的陶瓷坯片进行烧结,冷却;
将冷却后的陶瓷坯片进行抛光、被银电极和极化处理,即得Li、Gd、Cr元素掺杂的铋层状结构Ca0.9(LiGd)0.05Bi2Nb2-xCrxO9高温压电陶瓷材料。
优选的,所述预球磨和二次球磨的球磨介质为去离子水,去离子水的用量为所述原料总重量的60-80%。本发明中,去离子水作为原料CaCO3、Li2CO3、Gd2O3、Bi2O3、Nb2O5和Cr2O3的溶剂,并对去离子水的加入量进行了优化,在本发明的用量下可以满足对原料的充分球磨。
优选的,所述预球磨和二次球磨的球磨速率为200-300r/min,球磨的时间为8-12h。该球磨速率和球磨时间可以将原料充分球磨到一定的细度,有利于后续陶瓷坯片的压制。
优选的,预球磨后的混合粉料的烘干温度为80-100℃;在该温度下烘干混合粉料,主要目的是去除预球磨中添加的去离子水。
预烧结温度为800-900℃,预烧结的保温时间为2-4h。本发明对预烧结温度和保温时间进行了优化,在该条件下,可以使得碳化物和氧化物中的碳元素和部分氧元素烧蚀掉,以便制得具有上述通式组成的高温压电陶瓷材料,并且通过预烧结,还可以进一步改善铌酸铋钙高温压电陶瓷材料的压电性能的温度稳定性。
所述粘合剂为重量百分含量为5%的聚乙烯醇水溶液;粘合剂的用量为二次球磨后粉料总重量的6-8%。采用该用量的粘合剂可以使混合粉料充分粘合。
优选的,所述排塑温度为600-800℃。
优选的,所述烧结温度为1100-1200℃,烧结保温时间为2-4h。在本发明中,控制该烧结温度,可以有利于铌酸铋钙高温压电陶瓷材料形成单相结构。
优选的,所述烧结升温速率为4-6℃/min;在本发明中,有效控制烧结的升温速率,可以保证陶瓷坯片的完整性,如果升温过快可能会导致陶瓷坯片的破裂。
优选的,所述极化处理的温度为150-200℃,极化的电压为10-12kV/mm,极化的时间为20-40min。在该极化处理条件下,Li、Gd、Cr共掺杂的铋层状结构铌酸铋钙高温压电陶瓷材料,能充分极化,提高了其压电性能。
本发明的设计构思为:在本发明的铌酸铋钙高温压电陶瓷材料中,通过掺杂Li、Gd和Cr元素,并优化掺杂元素的加入量,有效提高了铌酸铋钙高温压电陶瓷材料的压电性能。需要说明的是,现有技术中虽然有许多关于对压电陶瓷材料进行元素掺杂的报道,但是不同的掺杂元素,掺杂元素不同的加入量,都会对压电陶瓷材料的整体性能产生较大影响,这需要在试验过程中不断摸索,反复试验才能得到,发明人在前期研究中也尝试了多种不同元素对铌酸铋钙高温压电陶瓷材料的掺杂,但相对于其他元素掺杂,采用本发明的Li、Gd和Cr元素掺杂,制备得到的铋层状结构铌酸铋钙高温压电陶瓷材料表现出更为优异的压电性能。
本发明的有益效果:
本发明的铋层状结构铌酸铋钙高温压电陶瓷材料,在不降低其居里温度的同时,提高了其压电性能,是一种新型的、环境友好型的压电陶瓷材料。而且制备方法工艺简单,操作方便,适于大规模工业生产。
附图说明
图1为本发明实施例1中制得的铌酸铋钙压电陶瓷材料的SEM扫描电镜图片;
图2为本发明实施例1中制得的铌酸铋钙压电陶瓷材料的XRD衍射图谱;
图3为本发明实施例1中制得的铌酸铋钙压电陶瓷材料的介电常数随温度变化的曲线。
具体实施方式
下面结合实施例对本发明作进一步的说明,应该说明的是,下述说明仅是为了解释本发明,并不对其内容进行限定。
实施例1:
制备符合化学组成Ca0.9(LiGd)0.05Bi2Nb2-xCrxO9,x=0.05的掺杂改性的铌酸铋钙无铅压电陶瓷。
将分析纯的粉体原料CaCO3、Li2CO3、Gd2O3、Bi2O3、Nb2O5和Cr2O3按照以上化学配比配料,将称量好的原料与去离子水混合后球磨18h、在800℃预烧3h,粉碎后二次球磨18h,烘干研磨后将其压制成直径12mm的薄圆片,经650℃排塑后在1100℃下烧结保温3h即得到掺杂改性的铌酸铋钙无铅压电陶瓷。将所得的陶瓷样品表面抛光后在其上下表面被上Ag电极,在180℃硅油中,12kV/mm的直流电压下极化30min,测试其压电性能。所得陶瓷样品的压电常数d33=18pC/N,介电常数ε=150,介电损耗tanδ=0.22%,机电耦合系数kp=11.2%,机械品质因数Qm=10690。
本实施例制备的Li、Gd和Cr掺杂改性的铌酸铋钙无铅压电陶瓷的SEM扫描电镜图片见图1,其XRD衍射图谱见图2,介电常数随温度变化的曲线见图3。由图3可以看出,本实施例制备的Li、Gd和Cr掺杂改性的钛酸铋钠无铅压电陶瓷的居里温度为915℃。
实施例2:
制备符合化学组成Ca0.9(LiGd)0.05Bi2Nb2-xCrxO9,x=0.10的掺杂改性的铌酸铋钙无铅压电陶瓷。
将分析纯的粉体原料CaCO3、Li2CO3、Gd2O3、Bi2O3、Nb2O5和Cr2O3按照以上化学配比配料,将称量好的原料与去离子水混合后球磨18h、在800℃预烧3h,粉碎后二次球磨18h,烘干研磨后将其压制成直径12mm的薄圆片,经650℃排塑后在1100℃下烧结保温3h即得到掺杂改性的铌酸铋钙无铅压电陶瓷。将所得的陶瓷样品表面抛光后在其上下表面被上Ag电极,在180℃硅油中,12kV/mm的直流电压下极化30min,测试其压电性能。所得陶瓷样品的压电常数d33=16pC/N,介电常数ε=163,介电损耗tanδ=0.26%,机电耦合系数kp=9.6%,机械品质因数Qm=9680。
实施例3:
制备符合化学组成Ca0.9(LiGd)0.05Bi2Nb2-xCrxO9,x=0.15的掺杂改性的铌酸铋钙无铅压电陶瓷。
将分析纯的粉体原料CaCO3、Li2CO3、Gd2O3、Bi2O3、Nb2O5和Cr2O3按照以上化学配比配料,将称量好的原料与去离子水混合后球磨18h、在800℃预烧3h,粉碎后二次球磨18h,烘干研磨后将其压制成直径12mm的薄圆片,经650℃排塑后在1100℃下烧结保温3h即得到掺杂改性的铌酸铋钙无铅压电陶瓷。将所得的陶瓷样品表面抛光后在其上下表面被上Ag电极,在180℃硅油中,12kV/mm的直流电压下极化30min,测试其压电性能。所得陶瓷样品的压电常数d33=13pC/N,介电常数ε=176,介电损耗tanδ=0.32%,机电耦合系数kp=8.2%,机械品质因数Qm=10320。
实施例4:
制备符合化学组成Ca0.9(LiGd)0.05Bi2Nb2-xCrxO9,x=0.20的掺杂改性的铌酸铋钙无铅压电陶瓷。
将分析纯的粉体原料CaCO3、Li2CO3、Gd2O3、Bi2O3、Nb2O5和Cr2O3按照以上化学配比配料,将称量好的原料与去离子水混合后球磨18h、在800℃预烧3h,粉碎后二次球磨18h,烘干研磨后将其压制成直径12mm的薄圆片,经650℃排塑后在1100℃下烧结保温3h即得到掺杂改性的铌酸铋钙无铅压电陶瓷。将所得的陶瓷样品表面抛光后在其上下表面被上Ag电极,在180℃硅油中,12kV/mm的直流电压下极化30min,测试其压电性能。所得陶瓷样品的压电常数d33=11pC/N,介电常数ε=185,介电损耗tanδ=0.34%,机电耦合系数kp=6.6%,机械品质因数Qm=9760。
实施例1-4的掺杂改性的铌酸铋钙无铅压电陶瓷的配方组成及性能测试结果具体见表1。
表1实施例1-4的掺杂改性的铌酸铋钙无铅压电陶瓷的配方组成及性能测试结果
对比例1:
将掺杂元素调整为Li和Cr,其化学组成Ca0.9(Li)0.05Bi2Nb2-xCrxO9,x=0.05,制备方法同实施例1,制备得到掺杂改性的铌酸铋钙无铅压电陶瓷。测试其压电性能。所得陶瓷样品的压电常数d33=12pC/N,介电损耗tanδ=0.28%,居里温度为850℃。
对比例2:
将掺杂元素调整为La、Ce和Cr,其化学组成Ca0.9(LaCe)0.05Bi2Nb2-xCrxO9,x=0.05,制备方法同实施例1,区别在于:La以La2O3粉体的形式加入,Ce以CeO2粉体的形式加入,制备得到掺杂改性的铌酸铋钙无铅压电陶瓷。测试其压电性能。所得陶瓷样品的压电常数d33=9pC/N,介电损耗tanδ=0.31%,居里温度为800℃。

Claims (10)

1.一种铋层状结构铌酸铋钙高温压电陶瓷材料,其特征在于,该高温压电陶瓷材料的通式为Ca0.9(LiGd)0.05Bi2Nb2-xCrxO9,其中0<x≤0.20。
2.如权利要求1所述的铋层状结构铌酸铋钙高温压电陶瓷材料,其特征在于,所述高温压电陶瓷材料具有下列之一所示的化学组成:
Ca0.9(LiGd)0.05Bi2Nb1.95Cr0.05O9
Ca0.9(LiGd)0.05Bi2Nb1.90Cr0.10O9
Ca0.9(LiGd)0.05Bi2Nb1.85Cr0.15O9
Ca0.9(LiGd)0.05Bi2Nb1.80Cr0.20O9
所述铋层状结构铌酸铋钙高温压电陶瓷材料具有13-18pC/N的压电常数d33
3.权利要求1或2所述的铋层状结构铌酸铋钙高温压电陶瓷材料的制备方法,其特征在于,步骤如下:
以CaCO3粉体、Li2CO3粉体、Gd2O3粉体、Bi2O3粉体、Nb2O5粉体和Cr2O3粉体为原料,按通式中Ca、Li、Gd、Bi、Cr和Nb的化学计量比进行配料,预球磨,得混合粉料;
将所述混合粉料进行烘干,烘干后再进行预烧结,得到经过预烧结的粉料;
将所述经过预烧结的粉料进行二次球磨,得到经过二次球磨的粉料;
向所述经过二次球磨的粉料中加入粘合剂压制成陶瓷坯片,并进行排塑处理;
将排塑处理后的陶瓷坯片进行烧结,冷却;
将冷却后的陶瓷坯片进行抛光、被银电极和极化处理,即得铋层状结构铌酸铋钙高温压电陶瓷材料。
4.如权利要求3所述的铋层状结构铌酸铋钙高温压电陶瓷材料的制备方法,其特征在于,所述预球磨和二次球磨的球磨介质为去离子水,去离子水的用量为所述原料总重量的60-80%。
5.如权利要求3所述的铋层状结构铌酸铋钙高温压电陶瓷材料的制备方法,其特征在于,所述预球磨和二次球磨的球磨速率为200-300r/min,球磨的时间为8-12h。
6.如权利要求3所述的铋层状结构铌酸铋钙高温压电陶瓷材料的制备方法,其特征在于,预烧结温度为800-900℃,预烧结的保温时间为2-4h。
7.如权利要求3所述的铋层状结构铌酸铋钙高温压电陶瓷材料的制备方法,其特征在于,所述粘合剂为重量百分含量为5%的聚乙烯醇水溶液;粘合剂的用量为二次球磨后粉料总重量的6-8%。
8.如权利要求3所述的铋层状结构铌酸铋钙高温压电陶瓷材料的制备方法,其特征在于,所述排塑温度为600-800℃。
9.如权利要求3所述的铋层状结构铌酸铋钙高温压电陶瓷材料的制备方法,其特征在于,所述烧结温度为1100-1200℃,烧结保温时间为2-4h。
10.如权利要求3所述的铋层状结构铌酸铋钙高温压电陶瓷材料的制备方法,其特征在于,所述极化处理的温度为为150-200℃,极化的电压为10-12kV/mm,极化的时间为20-40min。
CN201611001050.7A 2016-11-14 2016-11-14 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法 Active CN106554203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611001050.7A CN106554203B (zh) 2016-11-14 2016-11-14 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611001050.7A CN106554203B (zh) 2016-11-14 2016-11-14 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106554203A true CN106554203A (zh) 2017-04-05
CN106554203B CN106554203B (zh) 2020-08-18

Family

ID=58444747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611001050.7A Active CN106554203B (zh) 2016-11-14 2016-11-14 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106554203B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115215647A (zh) * 2022-08-02 2022-10-21 浙江元集新材料有限公司 一种用于加工覆铜板的陶瓷粉料及其制备方法
CN115433008A (zh) * 2021-06-04 2022-12-06 中国科学院上海硅酸盐研究所 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181033A (ja) * 1999-12-28 2001-07-03 Tdk Corp 圧電セラミック組成物
CN101941841A (zh) * 2010-09-09 2011-01-12 同济大学 一种掺杂改性的铌酸铋钙陶瓷材料及其制备方法
CN103922722A (zh) * 2014-04-01 2014-07-16 四川大学 一种锂、铈、钽共掺铌酸铋钙基压电陶瓷材料及其制备方法
CN103936418A (zh) * 2014-04-01 2014-07-23 四川大学 一种锂、铈、钨共掺铌酸铋钙基压电陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181033A (ja) * 1999-12-28 2001-07-03 Tdk Corp 圧電セラミック組成物
CN101941841A (zh) * 2010-09-09 2011-01-12 同济大学 一种掺杂改性的铌酸铋钙陶瓷材料及其制备方法
CN103922722A (zh) * 2014-04-01 2014-07-16 四川大学 一种锂、铈、钽共掺铌酸铋钙基压电陶瓷材料及其制备方法
CN103936418A (zh) * 2014-04-01 2014-07-23 四川大学 一种锂、铈、钨共掺铌酸铋钙基压电陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宗立超等: "含铋层状结构陶瓷CaBi2Nb2O9的A位掺杂改性研究", 《无机材料学报》 *
尹娜等: "稀土元素Pr替位改性的高温CaBi2Nb2O9压电陶瓷", 《电子元件与材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433008A (zh) * 2021-06-04 2022-12-06 中国科学院上海硅酸盐研究所 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法
CN115215647A (zh) * 2022-08-02 2022-10-21 浙江元集新材料有限公司 一种用于加工覆铜板的陶瓷粉料及其制备方法

Also Published As

Publication number Publication date
CN106554203B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN106554202B (zh) 一种铋层状结构钛酸铋钠高温压电陶瓷材料及其制备方法
CN110713383B (zh) 一种压电陶瓷材料及制备方法
CN111302797B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN102815938B (zh) 一种钛酸钡基无铅电致伸缩陶瓷及其制备方法
CN109796205B (zh) 一种铋层状结构钛钽酸铋高温压电陶瓷材料及其制备方法
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN105272244A (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN105198417B (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN116573936B (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN102503409A (zh) 一种锡钛酸钡钙无铅压电陶瓷及其制备工艺
CN115093216A (zh) 一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法
CN106554203A (zh) 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN113213918A (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN105036736A (zh) 一种钛酸铋钠基无铅电致伸缩陶瓷材料及其制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN102285794A (zh) B位复合钙钛矿结构化合物组成的无铅压电陶瓷
CN108727021B (zh) 一种压电能量收集用兼具宽组分窗口与高换能系数陶瓷材料及制备
CN107540373B (zh) 一种La离子掺杂PZT基压电陶瓷材料及其制备方法
CN112851336A (zh) 一种钛酸铋钠铋层状压电陶瓷的制备方法
CN111592352A (zh) 一种高性能铌酸钾钠系无铅电致伸缩陶瓷及其制备与应用
CN116986895B (zh) 一种阴离子改性的高压电性能无铅压电陶瓷及其制备方法
CN105859283B (zh) K0.5Bi0.5TiO3–BiNi0.5Zr0.5O3电致伸缩陶瓷材料及制备
CN115286380B (zh) 一种具有高退极化温度的bnkt-bt基复合陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant