CN115093216A - 一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法 - Google Patents

一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法 Download PDF

Info

Publication number
CN115093216A
CN115093216A CN202210392520.6A CN202210392520A CN115093216A CN 115093216 A CN115093216 A CN 115093216A CN 202210392520 A CN202210392520 A CN 202210392520A CN 115093216 A CN115093216 A CN 115093216A
Authority
CN
China
Prior art keywords
ceramic
bati
strain
barium titanate
low hysteresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210392520.6A
Other languages
English (en)
Inventor
李彩霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202210392520.6A priority Critical patent/CN115093216A/zh
Publication of CN115093216A publication Critical patent/CN115093216A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高电致应变和低滞后的掺杂钛酸钡无铅压电陶瓷及其制备方法,属于无机非金属材料技术领域。本发明采用传统的固相反应法制备得到具有高电致应变和低滞后的掺杂钛酸钡无铅压电陶瓷,化学式为BaTi1‑xSnxO3,简写为BTSx,其中x为Sn4+的摩尔数,x的范围为0.02≤x≤0.04,该材料的合成工艺简单、成本低廉、烧结温度低(Ts=1250~1290℃)、室温1Hz下双边电致应变bipolar Smax高达0.50%,单边电致应变unipolar Smax高达0.55%,应变滞后hys%(hys%=△S/Smax,其中△S为交流电场强度增大或减小过程中达到最大电场一半Emax/2处的单边电致应变的变化量)低至2%,相对于BaTiO3陶瓷,该方法制备的BaTi1‑xSnxO3陶瓷的单边电致应变提高了58%,应变滞后降低了89%,居里温度TC(101℃≤TC≤125℃),其在压电驱动器和致动器的制备中具有很大的应用潜力。

Description

一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制 备方法
技术领域
本发明涉及无机非金属材料制备领域,具体涉及无铅压电陶瓷材料技术领域,提供一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法,采用传统的固相反应法制备一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷,具体是一种低温烧结的BaTi1-x Sn x O3陶瓷,该材料具有无铅无毒、不含挥发性元素、绿色环保、制备方法简单、成本低廉、适合进行工业化大规模推广的优点,在压电驱动器和致动器的制备中具有较高的工业应用价值。
背景技术
压电陶瓷以其优异的机电耦合性能,作为压电传感器、谐振器、驱动器、致动器和换能器的核心元器件,被广泛用于医疗检测、能源勘探、航空航天、汽车和消费电子等领域。半个多世纪以来,以锆钛酸铅(PZT)为代表的铅基陶瓷以其优异的压电性能和温度稳定性占据了90%以上的压电材料市场份额,但铅基陶瓷的使用和废弃带来严重的环境污染和健康危害,为保护环境和维持可持续发展,压电陶瓷材料的无铅化迫在眉睫。目前,钙钛矿结构的钛酸钡(BaTiO3,简写为BT)基无铅压电陶瓷以其丰富的多晶相变、较高的化学稳定性、高介电性能和压电可调性成为无铅领域的研究热点之一,但其烧结温度偏高(T s > 1350℃)、室温电致应变性能一般、应变滞后大和压电性能的热稳定性差,限制了其作为压电陶瓷材料的工业应用范围。而电致应变性能是压电陶瓷用于压电驱动器的关键参数,低温烧结、高电致应变和低滞后的BaTiO3基无铅陶瓷的研究是实现其在压电驱动器中应用的一个技术瓶颈。
发明内容
针对上述BaTiO3基无铅陶瓷的烧结温度偏高、电致应变性能一般和应变滞后较大的技术问题,本发明提供一种具有高电致应变和低滞后的掺杂钛酸钡陶瓷及其制备方法,利用该方法制备的BaTi1-x Sn x O3陶瓷的烧结温度低于1300℃,在1Hz、50kV/cm交流电场下的室温双边电致应变bipolar S max高达0.50%,单边电致应变unipolar S max高达0.55%,与BaTiO3陶瓷相比,BaTi1-x Sn x O3陶瓷的单边应变增大了58%,应变滞后hys%(hys% = △S/S max,其中△S为交流电场强度增大或减小过程中达到最大电场一半E max/2处的单边应变变化量)低至2%,应变滞后降低了89%,居里温度T C(101℃≤T C≤ 125℃),在压电驱动器中具有较高的工业应用价值。
本发明提供一种具有高电致应变和低滞后的掺杂钛酸钡陶瓷,其化学式为:BaTi1-x Sn x O3,简写为BTSx,其中所述x为化合物中Sn4+的摩尔数,0.02 ≤x≤ 0.04。
上述一种具有高电致应变和低滞后的掺杂钛酸钡陶瓷的制备方法,具体是按以下步骤完成的:
(1)配料、球磨和预烧:按BaTi1-x Sn x O3的化学计量比称量分析纯级别的BaCO3、TiO2和SnO2粉料,其中0.02 ≤x≤ 0.04;将粉料放入玛瑙球磨罐中,采用湿法球磨工艺混合均匀,即加入无水乙醇以160 ~ 180转/min的转速球磨22 ~ 24h,其中无水乙醇与粉料的质量比为(1.1 ~ 1.5):1,所用磨球由直径为20mm、10mm和6mm的玛瑙球按个数比1:11:16组成,将球磨后的浆料置于干燥箱中烘干至恒重得到球磨混合料,将干燥的球磨混合料研磨至粒径60 ~100目,放入内腔直径为60mm的模具中,用压片机在15 ~ 25MPa保压1 ~ 3min压块得到待预烧压块,将待预烧压块以2 ~ 4℃/min的速度升温至1050 ~ 1100℃时保温3 ~ 4h预烧,随炉冷却至室温得到预烧结胚体;
(2)排塑、过筛和造粒:将预烧结胚体在玛瑙研钵中研磨至粒径为80 ~100目的粉末,放入玛瑙球磨罐中加入无水乙醇媒质采用湿法球磨工艺,以160 ~ 180转/min的转速球磨22 ~ 24h混合均匀,用干燥箱烘干球磨浆料,加入质量浓度为5 ~ 7%的聚乙烯醇溶液粘合剂,所述粘合剂的加入量为BaTi1-x Sn x O3粉体质量的4 ~ 6%,置于空气中陈化24 ~ 26h,造粒,过100目和150目筛,取150目粒径的粉末在6 ~ 8MPa保持1 ~ 3min压成薄圆片胚体,叠放并埋入相同组分的粉料中,在600 ℃保温2h排塑,自然冷却至室温得到待烧结BaTi1- x Sn x O3胚体;
(3)制备BaTi1-x Sn x O3陶瓷胚体:将待烧结BaTi1-x Sn x O3胚体叠放并埋入相同组分粉料中,采用阶梯升温法在空气中烧结:首先,以2 ~ 4 ℃/min的速度升温至600℃保温2h,其次,以1.5 ~ 3℃/min速度升温至900℃保温2h,最后,以1 ~ 2℃/min的速度升温至1250 ~1290℃保温3 ~ 4h,自然冷却至室温得到BaTi1-x Sn x O3陶瓷胚体;
(4)被银电极和极化处理:将得到的BaTi1-x Sn x O3陶瓷胚体的上下表面磨平,在其上下表面涂覆高温银浆,被银厚度为10~20μm,用热台在120~150℃烘干,置于马弗炉中在500~600 ℃保温20 ~ 30 min烧制银电极,自然冷却至室温,得到三明治结构的被覆银电极BaTi1-x Sn x O3陶瓷样品,利用极化装置将BaTi1-x Sn x O3陶瓷样品在硅油中极化处理,极化条件为:室温、20 ~ 35kV/cm的直流电场下保持10 ~ 30 min,撤去电场后将样品静置24 ~28 h,得到所述的具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷。
本发明的优点:
1. 本发明在BaTiO3陶瓷中通过引入微量B位Sn4+部分取代Ti4+使其烧结温度降低至1300 ℃以下,节约了制备成本,使其T C随着Sn4+掺杂量的增大单调减小,正交-四方相变温度T O-T升高至室温附近,制备的BaTi1-x Sn x O3陶瓷组分在四方-正交相界附近,致密度均高于93%;
2. 本发明制备的BaTi1-x Sn x O3陶瓷在x = 0.02组分处具有最佳的室温电致应变性能和铁电性能:1Hz、50kV/cm交流电场下的室温双边电致应变bipolar S max高达0.50%,单边电致应变unipolar S max高达0.55%,hys%低至2%,T s = 1290 ℃,T C = 101 ℃,P max = 20.8 μC/cm2P r = 10.3 μC/cm2E C = 3.8 kV/cm,与BaTiO3陶瓷相比,其单边应变增大了58%,应变滞后hys%降低了89%;
3. 本发明获得的具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的制备工艺简单,无铅无毒且不含挥发性元素,绿色环保,烧结温度低于1300℃,成本低廉,易于实现工业化批量生产,兼具高电致应变和低滞后,101℃≤T C≤ 125℃,在压电驱动器和致动器应用方面具有巨大应用潜力。
附图说明
图1为具体实施方式六在1100℃预烧3h制备的BaTi1-x Sn x O3预烧胚体的粉末X射线衍射图谱(XRD图谱);图2为具体实施方式六制备的BaTi1-x Sn x O3陶瓷(0 ≤x ≤ 0.04)的粉末XRD图;图3为具体实施方式六制备的1kHz下BaTi1-x Sn x O3陶瓷样品(x = 0, 0.02和0.04)的相对介电常数ε r随温度的变化关系曲线;图4为具体实施方式六制备的BaTi1-x Sn x O3陶瓷样品(x = 0, 0.02和0.04)在1Hz、50kV/cm交流电场下的室温铁电电滞回线(P-E);图5为具体实施方式六制备的BaTi1-x Sn x O3陶瓷样品(x = 0, 0.02和0.04)在1Hz、50kV/cm交流电场下的室温双边电致应变曲线;图6为具体实施方式六制备的BaTi1-x Sn x O3陶瓷样品(x = 0,0.02和0.04)在1Hz、50kV/cm交流电场下的室温单边电致应变曲线;图7为具体实施方式六制备的BaTi1-x Sn x O3陶瓷样品(x = 0, 0.02和0.04)的单边电致应变unipolar S max%、交流电场强度增大或减小过程中达到最大电场一半E max/2处的单边应变变化量△S和应变滞后hys%(hys% = △S/S max)随Sn4+掺杂量的变化关系曲线。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的化学式为BaTi1-x Sn x O3,简写为BTSx,其中x为化合物中Sn4+的摩尔数,0.02 ≤ x ≤0.04。
具体实施方式二:本实施方式一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的制备方法,按以下步骤进行:
(1)按化学组成BaTi1-x Sn x O3的化学计量比称量分析纯级别的BaCO3、TiO2和SnO2粉料,其中0.02 ≤x≤ 0.04,将粉料放入玛瑙球磨罐中加入无水乙醇采用湿法球磨工艺混合均匀,即以160 ~ 180转/min的转速湿法球磨22 ~ 24h,其中无水乙醇媒质的质量与粉料总质量的配比为(1.1 ~ 1.5):1;所用磨球由直径为20mm、10mm和6mm的玛瑙球按个数比1:11:16组成,将球磨混合料置于干燥箱中烘干;将烘干后的球磨混合料放入内径为60mm的模具在15 ~ 25MPa保压1 ~ 3min压块得到待预烧压块,将待预烧压块以2 ~ 4℃/min的升温速率升至1050 ~ 1100℃时保温3 ~ 4h预烧,自然冷却至室温,得到预烧结胚体;
(2)将预烧结胚体在玛瑙研磨中研磨至粒径为80 ~100目的粉末,用湿法球磨工艺混合均匀,即用行星式球磨机以160 ~ 180转/min的转速球磨22 ~ 24h,在烘干的球磨粉料中加入质量浓度为5 ~ 7%的聚乙烯醇溶液粘合剂,所述粘合剂的加入量为BaTi1-x Sn x O3粉体质量的4 ~ 6%,置于空气中陈化24 ~ 26h,过筛、造粒,取150目粒径的BaTi1-x Sn x O3粉体放入内径为10mm的模具,在6 ~ 8MPa保持1 ~ 3min压成薄圆片胚体,叠放埋入同组分粉料,在600 ℃保温2h排塑,随炉冷却至室温得到待烧结BaTi1-x Sn x O3胚体;
(3)将所得的待烧结BaTi1-x Sn x O3胚体叠放并埋入相同组分粉料中,采用阶梯升温法在空气中烧结:先以2 ~ 4 ℃/min的速度升温至600℃保温2h,再以1.5 ~ 3℃/min速度升温至900℃保温2h,最后,以1 ~ 2℃/min的速度升温至1250 ~ 1290℃保温3 ~ 4h,自然冷却至室温得到BaTi1-x Sn x O3陶瓷胚体,步骤(3)中所述阶梯升温法的温度节点分别是600℃、900℃和1250 ~ 1290℃。
(4)被银电极和极化处理:将所得BaTi1-x Sn x O3陶瓷胚体的上下表面磨平,在其上下表面涂覆高温银浆,被银厚度为10~20μm,用热台在120~150℃烘干,置于马弗炉中在500 ~600 ℃保温20 ~ 30 min烧制银电极,自然冷却至室温,得到三明治结构的被覆银电极BaTi1-x Sn x O3陶瓷样品,利用极化装置将BaTi1-x Sn x O3陶瓷样品在硅油中极化处理,极化条件为:室温、20 ~ 35kV/cm的直流电场保持10 ~ 30 min,撤去电场后将样品静置24 ~28 h,制得所述具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷。
具体实施方式三:本实施方式与具体实施方式二不同的是:步骤(1)中x = 0。其它与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二或三不同的是:步骤(2)中预烧结胚体的升温速率为1 ~ 3 ℃/min,预烧条件为1100 ℃保温3h。其它与具体实施方式二或三相同。
具体实施方式五:本实施方式与具体实施方式三至四之一不同的是:步骤(3)中烧结参数为1290 ℃保温4h,其它与具体实施方式三至四之一相同。
具体实施方式六:本实施方式的一种具有高电致应变和低滞后的掺杂钛酸钡陶瓷的制备方法,按以下步骤进行:
(1)按化学组成BaTi0.98Sn0.02O3的化学计量比称量分析纯级别的BaCO3、TiO2和SnO2粉料,将粉料放入玛瑙球磨罐加入无水乙醇媒质,用湿法球磨工艺混合均匀,即以160转/min的转速球磨24h,烘干球磨浆料,其中无水乙醇与粉料的质量配比为(1.1 ~ 1.5):1;所用磨球由直径为20mm、10mm和6mm的玛瑙球按个数比1:11:16组成,将烘干后的球磨混合料在玛瑙研钵中研磨至粒径60 ~100目,放入内腔直径为60mm的模具中在20MPa保持2min压块得到待预烧压块,将待预烧压块以2℃/min的速度升温至1100℃时保温3h预烧,随炉冷却至室温得到预烧结胚体;
(2)将步骤(1)制备的预烧结胚体研磨至粒径为80 ~100目的粉体,用湿法球磨工艺球磨24h混合均匀,球磨转速为160 ~ 180转/min,烘干后加入质量浓度为5 ~ 7%的聚乙烯醇溶液粘合剂,所述粘合剂的加入量为BaTi1-x Sn x O3粉体质量的4 ~ 6%,置于空气中陈化24 ~ 26h,过筛,造粒,取150目粒径粉体放入内径为10mm的模具,在7MPa保持1 min压成薄圆片胚体,叠放埋入同组分粉料,600 ℃保温2h排塑,自然冷却至室温得到待烧结BaTi0.98Sn0.02O3胚体;
(3)将步骤(2)制备的待烧结BaTi0.98Sn0.02O3胚体叠放埋入相同组分粉料中,采用阶梯升温法在空气中烧结:以2 ~ 4 ℃/min的速度升温至600℃保温2h,再以1.5 ~ 3℃/min速度升温至900℃保温2h,最后以1 ~ 2℃/min的速度升温至1290℃保温4h,自然冷却至室温得到BaTi0.98Sn0.02O3陶瓷胚体,步骤(3)中所述阶梯升温法的温度节点分别是600℃、900℃和1290℃。
(4)将所得BaTi0.98Sn0.02O3陶瓷胚体上下表面被覆银电极,即将其上下表面磨平后均匀涂覆厚度为10~20μm的高温银浆,在120~150℃烘干,置于马弗炉在600℃保温30 min烧制银电极,自然冷却至室温,得到三明治结构的被覆银电极BaTi0.98Sn0.02O3陶瓷样品,利用极化装置将BaTi0.98Sn0.02O3陶瓷样品在硅油中极化:室温、20 ~ 35kV/cm的直流电场下保持10 ~ 30 min,撤去电场后将样品静置24 ~28 h,制得所述具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷。
另外,化学式BaTi1-x Sn x O3x分别取0、0.02和0.04,按照本实施方式的方法进行实验。
本实施方式制备的一种具有高电致应变和低滞后的掺杂钛酸钡预烧胚体的粉末XRD图谱如图1所示,所有预烧样品的杂相非常少,说明本试验步骤制备得到的BaTi1-x Sn x O3预烧胚体的纯度较高;
本实施方式制备的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的粉末XRD图谱如图2所示,2θ= 45°附近的(002)/(200)劈裂峰表明BaTiO3陶瓷在室温呈四方相(T)钙钛矿结构,Sn4+掺杂量x的增大使(200)衍射峰向低角度方向移动且无杂相生成表明Sn4+离子已进入BaTiO3陶瓷的晶格结构中,较大离子半径的Sn4+(0.69 Å)取代B位Ti4+(0.605 Å)导致BaTi1-x Sn x O3陶瓷的晶胞体积膨胀。
将被覆满电极的BaTi1-x Sn x O3(0 £ x £ 0.04)陶瓷样品用安捷伦4284A型号阻抗分析仪和温控装置在-90 ~ 170 ℃温度区间采集本实施方式制备的未极化BaTi1-x Sn x O3(0£ x £ 0.04)陶瓷样品在1kHz下的相对介电常数ε r随温度的变化关系如图3所示,从图中可以看出,在-90 ~ 170 ℃温度范围随着温度的升高所有BaTi1-x Sn x O3陶瓷均存在三个介电反常峰,分别对应三方-正交相变温度T R-O、正交-四方相变温度T O-T和四方-立方相变温度即居里点T C,测试结果发现所有样品均无频率色散和弥散相变现象,表明BaTi1-x Sn x O3陶瓷(0 £ x £ 0.04)均为正常铁电体,随着Sn4+掺杂量x的增大,T C降低至BaTi0.96Sn0.04O3的101℃,T R-OT O-T提升,T O-T增大至室温附近,表明本实施方式制备得到的BaTi1-x Sn x O3陶瓷(0.02 £ x £0.04)在其正交-四方相界附近,这有利于其室温铁电性能和电致应变性能的增强;
采用TD-88A铁电综合测试仪在1Hz、50kV/cm的交流电场作用下测得本实施方式制备得到的BaTi1-x Sn x O3陶瓷样品(0 £ x £ 0.04)的室温电滞回线如图4所示,从图中可以看出,所有陶瓷样品均具有典型的饱和铁电电滞回线,表明BaTi1-x Sn x O3陶瓷(0 £ x £0.04)在室温下均为正常铁电体,BaTi0.98Sn0.02O3陶瓷具有最强的铁电性能:极化强度最大值P max = 20.8 μC/cm2,剩余极化强度P r = 10.3 μC/cm2,矫顽场E C = 3.8 kV/cm,相对于BaTiO3陶瓷(P max = 20.7 μC/cm2P r = 8.9 μC/cm2E C = 5.2 kV/cm),BaTi0.98Sn0.02O3陶瓷和BaTi0.96Sn0.04O3陶瓷(P max = 19.2 μC/cm2P r = 11.1 μC/cm2E C = 5.3 kV/cm)的铁电性能明显提升,矫顽场E C降低有利于其在较低电场下充分极化和压电性能的释放。
本实施方式制备的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷在1Hz、50kV/cm交流电场下的室温双边电致应变曲线如图5所示,由图可知,所有样品均呈现典型的蝴蝶形状电致应变曲线,随着Sn4+掺杂量增大,其负应变S neg和双边应变最大值bipolarS max先增大后减小,表明BaTi1-x Sn x O3陶瓷样品(0 £ x £ 0.04)均为正常铁电体,铁电性在BaTi0.98Sn0.02O3处最强。
本实施方式制备的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷在1Hz、50kV/cm交流电场下的室温单边电致应变曲线如图6所示,BaTi1-x Sn x O3陶瓷(x = 0, 0.02和0.04)的单边电致应变unipolar S max%、交流电场强度增大或减小过程中达到最大电场一半E max/2处的单边应变变化量△S和应变滞后hys%(hys% = △S/S max)随Sn4+掺杂量的变化关系如图7所示,由图6和图7可知,本实施方式制备的BaTi1-x Sn x O3陶瓷(0.02 ≤x≤ 0.04)具有较高的单边室温电致应变(0.46% ≤ unipolar S max% ≤ 0.55%)和低滞后(2% ≤ hys% ≤6%),本实施方式制备得到的BaTi0.98Sn0.02O3陶瓷在1Hz、50kV/cm电场下的室温双边电致应变bipolar S max高达0.50%,单变电致应变unipolar S max高达0.55%,与BaTiO3陶瓷相比,BaTi0.98Sn0.02O3陶瓷的单边电致应变增大了58%,应变滞后hys%降低了89%(hys% ~ 2%)。
由图1至图7可知,本实施方式制备的BaTi0.98Sn0.02O3陶瓷具有烧结温度低(T s =1290℃)、制备工艺简单、成本低廉、无铅无毒且不含挥发性元素,高电致应变和低滞后等优点,其综合电性能参数为:T C = 101 ℃,P max = 20.8 μC/cm2P r = 10.3 μC/cm2E C = 3.8kV/cm,单边电致应变unipolar S max% = 0.55%,双边电致应变bipolar S max%= 0.50%,hys%= 2%,其室温电致应变性能甚至可媲美于商用铅基压电陶瓷,表明其在压电驱动器制备中具有较高的商业应用价值。

Claims (7)

1.一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法,其特征在于其化学组成为BaTi1-x Sn x O3,简写为BTSx,其中x为Sn4+的摩尔数,0.02 ≤x≤ 0.04。根据权利要求1所述的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷,其特征在于,所述高电致应变和低滞后的掺杂钛酸钡陶瓷在1Hz、50kV/cm交流电场下的室温双边电致应变bipolar S max高达0.50%,单边电致应变unipolar S max高达0.55%,与BaTiO3陶瓷相比,BaTi1-x Sn x O3陶瓷的单边电致应变增大了58%,应变滞后hys%(hys% = △S/S max,其中△S为交流电场强度增大或减小过程中达到最大电场一半E max/2处的单边电致应变的变化量)低至2%,应变滞后降低了89%,居里温度T C(101℃≤T C≤ 125℃),其在压电驱动器和致动器的制备中具有很大的应用潜力。
2.一种根据权利要求1或2所述的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的制备方法,其特征在于,采用固相反应法按以下步骤进行:
(1)按照BaTi1-x Sn x O3(0.02 ≤x≤ 0.04)的化学计量比称量分析纯级别的BaCO3、TiO2和SnO2粉料,将粉料放入玛瑙球磨罐,采用湿法球磨工艺混合均匀,置于干燥箱中将球磨混合粉料烘干;
(2)将烘干所得的球磨混合粉料用压片机在15 ~ 25MPa保压1 ~ 3min压块得到待预烧压块,将待预烧压块以2 ~ 4℃/min的速度升温至1050 ~ 1100℃时保温3 ~ 4h预烧,自然冷却至室温得到预烧结胚体;
(3)在玛瑙研钵中将预烧结胚体粉碎,采用湿法球磨工艺混合均匀,用干燥箱烘干球磨混合料,然后加入规定量的聚乙烯醇粘合剂,置于空气中陈化24 ~ 26h,造粒,过筛,用压片机在6 ~ 8MPa保持1 ~ 3min压成薄圆片胚体,上下叠放并埋入相同组分的粉料中,在600℃保温2h排塑,自然冷却至室温,将排塑后的薄圆片胚体上下叠放埋入相同组分粉料中,采用阶梯升温法在空气中1250 ~ 1290℃保温3 ~ 4h烧结,自然冷却至室温,得到BaTi1-x Sn x O3陶瓷胚体;
(4)被银电极和极化处理:将得到的BaTi1-x Sn x O3陶瓷胚体的上下表面磨平,在其上下表面涂覆高温银浆,被银厚度为10~20μm,用热台在120~150℃烘干,置于马弗炉中在500 ~600℃保温20 ~ 30 min烧制银电极,自然冷却至室温,得到三明治结构的被覆银电极BaTi1- x Sn x O3陶瓷样品,然后利用极化装置将样品浸入硅油中进行极化,撤去电场后将样品静置24~28 h,得到所述的具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷。
3.根据权利要求2所述的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的制备方法,其特征在于步骤(1)中,湿法球磨工艺条件:以无水乙醇为媒质、以玛瑙磨球为球磨介质用行星式球磨机以160 ~ 180转/min的转速球磨22 ~ 24h,其中无水乙醇媒质与原料的质量比为(1.1 ~ 1.5):1,所用磨球由直径为20mm、10mm和6mm的玛瑙球按个数比1:11:16组成。
4.根据权利要求2或3所述的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的制备方法,其特征在于,在步骤(3)中过150目筛得到BaTi1-x Sn x O3粉体。
5.根据权利要求2 ~ 4中任一项所述的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的制备方法,其特征在于,在步骤(3)中所述粘合剂为质量浓度为5 ~ 7%的聚乙烯醇溶液,所述粘合剂的加入量为BaTi1-x Sn x O3粉体质量的4 ~ 6%。
6.根据权利要求2 ~ 5中任一项所述的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的制备方法,其特征在于,在步骤(3)中,所述烧结工艺参数为:阶梯升温法,以2 ~ 4℃/min的速度升温至600℃保温2h,再以1.5 ~ 3℃/min速度升温至900℃保温2h,最后以1~ 2℃/min的速度升温至1250 ~ 1290℃时,保温3 ~ 4h,自然冷却至室温得到所述BaTi1- x Sn x O3陶瓷样品。
7.根据权利要求2 ~ 6中任一项所述的一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷的制备方法,其特征在于,在步骤(4)中,所述BaTi1-x Sn x O3陶瓷的极化条件为:将陶瓷浸入硅油中、室温、20 ~ 35kV/cm直流电场、极化时间为10 ~ 30 min。
CN202210392520.6A 2022-04-15 2022-04-15 一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法 Pending CN115093216A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210392520.6A CN115093216A (zh) 2022-04-15 2022-04-15 一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210392520.6A CN115093216A (zh) 2022-04-15 2022-04-15 一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN115093216A true CN115093216A (zh) 2022-09-23

Family

ID=83287792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210392520.6A Pending CN115093216A (zh) 2022-04-15 2022-04-15 一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115093216A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466112A (zh) * 2022-10-09 2022-12-13 四川大学 钛酸钡基无铅铁电陶瓷及其制备方法
CN116986895A (zh) * 2023-09-25 2023-11-03 西南民族大学 一种阴离子改性的高压电性能无铅压电陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007910A (ko) * 2009-07-17 2011-01-25 한국세라믹기술원 무연 압전 세라믹스 및 그 제조 방법
CN105236960A (zh) * 2015-09-15 2016-01-13 奈申(上海)智能科技有限公司 基于钛酸钡的巨电卡效应片式叠层陶瓷的电卡制冷器件
CN107459346A (zh) * 2017-08-11 2017-12-12 哈尔滨工业大学 高电学性能的无铅压电钛酸钡基织构陶瓷及其制备方法和应用
CN113999004A (zh) * 2021-11-08 2022-02-01 西安电子科技大学 一种无铅高储能密度陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110007910A (ko) * 2009-07-17 2011-01-25 한국세라믹기술원 무연 압전 세라믹스 및 그 제조 방법
CN105236960A (zh) * 2015-09-15 2016-01-13 奈申(上海)智能科技有限公司 基于钛酸钡的巨电卡效应片式叠层陶瓷的电卡制冷器件
CN107459346A (zh) * 2017-08-11 2017-12-12 哈尔滨工业大学 高电学性能的无铅压电钛酸钡基织构陶瓷及其制备方法和应用
CN113999004A (zh) * 2021-11-08 2022-02-01 西安电子科技大学 一种无铅高储能密度陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
侯育冬: "《电子陶瓷化学法构建与物性分析》", 31 August 2018, 冶金工业出版社 , pages: 33 *
黄 广: ""Ba(Ti-xSnx)O3陶瓷的高温介电弛豫现象与阻抗研究",黄 广, 《广东工业大学学报》,第34卷,第6期,第88-92页", 《广东工业大学学报》, vol. 34, no. 6, 30 November 2017 (2017-11-30), pages 88 - 92 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466112A (zh) * 2022-10-09 2022-12-13 四川大学 钛酸钡基无铅铁电陶瓷及其制备方法
CN116986895A (zh) * 2023-09-25 2023-11-03 西南民族大学 一种阴离子改性的高压电性能无铅压电陶瓷及其制备方法
CN116986895B (zh) * 2023-09-25 2023-12-01 西南民族大学 一种阴离子改性的高压电性能无铅压电陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
Yang et al. A novel lead-free ceramic with layered structure for high energy storage applications
CN102815938B (zh) 一种钛酸钡基无铅电致伸缩陶瓷及其制备方法
CN115093216A (zh) 一种具有高电致应变和低滞后的掺杂钛酸钡无铅陶瓷及其制备方法
CN111302797B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN109734447B (zh) 具有优异温度稳定性的无铅织构化陶瓷及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN109704762B (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
CN116573936B (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN114436654B (zh) 具有高相变温度、优异抗疲劳性和高机电性能的弛豫铁电铅基陶瓷材料及制备方法和应用
CN110498681B (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN113024250B (zh) 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法
CN104529447A (zh) 铋层状复合结构压电陶瓷材料及其制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN111333413B (zh) 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN111875378A (zh) 一种pzt基高居里温度压电陶瓷及制备方法
CN110981480A (zh) 一种高Tr-t和Tc的铅基<001>C织构压电陶瓷材料及其制备方法
CN103613379A (zh) 一种高性能无铅压电陶瓷及其制备工艺
CN106554203A (zh) 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法
CN112851336A (zh) 一种钛酸铋钠铋层状压电陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination