CN106187168A - 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法 - Google Patents

一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法 Download PDF

Info

Publication number
CN106187168A
CN106187168A CN201610550950.0A CN201610550950A CN106187168A CN 106187168 A CN106187168 A CN 106187168A CN 201610550950 A CN201610550950 A CN 201610550950A CN 106187168 A CN106187168 A CN 106187168A
Authority
CN
China
Prior art keywords
ball
energy storage
pottery
sodio
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610550950.0A
Other languages
English (en)
Inventor
时婧
田文超
刘霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Xian University of Science and Technology
Original Assignee
Xidian University
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University, Xian University of Science and Technology filed Critical Xidian University
Priority to CN201610550950.0A priority Critical patent/CN106187168A/zh
Publication of CN106187168A publication Critical patent/CN106187168A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法,包括:根据化学配比称量一定量的分析纯Bi2O3,Na2CO3、TiO2、BaCO3和SrCO3;按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨;将球磨好的料烘干,压成大块,预烧得到预烧粉;将预烧粉再次放入球磨罐中,研磨10‑12小时,烘干后过筛;将过筛后的粉压成型;将圆片在1100‑1200℃下烧结;将烧结成瓷的圆片,进行打磨和抛光,清洗后涂覆银浆,在550℃下烧成银电极。本发明通过优化陶瓷配方,使得BNT基陶瓷的储能密度和能量效率都提高。室温下电场为95kV/cm时,其能量密度达到1.22J/cm3,储能效率高达91%。

Description

一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法
技术领域
本发明属于介电储能材料技术领域,尤其涉及一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法。
背景技术
随着现代电子工业朝着微型化、高集成化方向发展以及新能源汽车的发展和使用,高储能密度电容器的发展需求逐渐显现。介电储能具有高功率密度、良好的温度稳定性以及优异的抗疲劳性能等优点。因此,介电材料是制备高功率大密度电容器最有前景的材料之一,但是目前介电材料的能量密度还远低于普通的电池储能,而高介电常数也常伴随着相对较大的损耗,难以满足新技术发展的需求。
“B.Y.Wang,L.H.Luo,X.J.Jiang,W.P.Li,and H.B.Chen,EnergyStorageProperties of(1-x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3Lead-Free Ceramics,J.Alloys.Comp.,14(8),2014,585”文章中采用固相合成法制备了BNT基三元陶瓷,其在100kV/cm电场下,能量密度达到0.89J/cm3,储能效率却仅为73%。“D.G.Zheng,R.Z.Zuo,D.S.Zhang,and Y.Li,Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3Lead-Free Relaxor Ferroelectric Ceramics forEnergy-Storage Capacitors,J.Am.Ceram.Soc.,98(9),2015,2692–2695”中则制备了钛酸钡基三元陶瓷,其在电场为125kV/cm下,能量密度高达1.56J/cm3,但储能效率也只有75%。
发明内容
本发明的目的在于提供一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法,旨在解决现有介电储能材料存在储能密度相对较小,损耗又过大的问题。
本发明是这样实现的,一种低损耗高储能密度钛酸铋钠基陶瓷,所述低损耗高储能密度钛酸铋钠基陶瓷的化学计量比为:
(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBi0.2Sr0.7TiO3(x=0.26-0.32)。
本发明的另一目的在于提供一种所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
步骤一,根据(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBi0.2Sr0.7TiO3化学配比称量一定量的分析纯Bi2O3,Na2CO3、TiO2、BaCO3和SrCO3
步骤二,将配好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;
步骤三,将球磨好的料烘干,然后压成大块,在800℃温度下预烧4-6小时得到预烧粉;
步骤四,将预烧粉再次放入球磨罐中,研磨10-12小时,烘干后过筛;
步骤五,将过筛后的粉压成直径为12mm,厚度为2mm左右的圆片,在250Mpa等静压下成型;
步骤六,将圆片在1100-1200℃下烧结2-4小时;
步骤七,将烧结成瓷的圆片,进行打磨和抛光,清洗后涂覆银浆,在550℃下烧成银电极。
进一步,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
根据化学计量比称量9.3145g的Bi2O3,1.9608g的Na2CO3、7.987g的TiO2、0.8762g的BaCO3和2.6869g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。
进一步,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
根据化学计量比称量9.1887g的Bi2O3,1.9078g的Na2CO3、7.987g的TiO2、0.8526g的BaCO3和2.8936g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。
进一步,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
根据化学计量比称量9.0629g的Bi2O3,1.8548g的Na2CO3、7.987g的TiO2、0.8289g的BaCO3和3.1002g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。
进一步,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
根据化学计量比称量8.9371g的Bi2O3,1.8018g的Na2CO3、7.987g的TiO2、0.8052g的BaCO3和3.3069g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。
本发明的另一目的在于提供一种包含所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法制备低损耗高储能密度钛酸铋钠基陶瓷的高储能密度电容器。
本发明提供的低损耗高储能密度钛酸铋钠基陶瓷的制备方法,通过优化Bi0.5Na0.5TiO3-BaTiO3-Bi0.2Sr0.7TiO3陶瓷配方,使得BNT基陶瓷的储能密度和能量效率都提高。室温下电场为95kV/cm时,其能量密度达到1.22J/cm3,储能效率高达91%。
附图说明
图1是本发明实施例提供的低损耗高储能密度钛酸铋钠基陶瓷的制备方法流程图。
图2是本发明实施例提供的实施例所得(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBi0.2Sr0.7TiO3陶瓷的X射线衍射图谱示意图。
图3是本发明实施例提供的实施例所得(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBi0.2Sr0.7TiO3陶瓷10kHz时的介电常数随温度的变化谱示意图。
图4是本发明实施例提供的室温下95kV/cm电场下Bi0.2Sr0.7TiO3含量在30%时陶瓷的电滞回线示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作详细的描述。
本发明实施例的低损耗高储能密度钛酸铋钠基陶瓷的化学计量比为:
(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBi0.2Sr0.7TiO3(x=0.26-0.32)。
如图1所示,本发明实施例的低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
S101:根据(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBi0.2Sr0.7TiO3化学配比称量一定量的分析纯Bi2O3,Na2CO3、TiO2、BaCO3和SrCO3
S102:将配好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;
S103:将球磨好的料烘干,然后压成大块,在800℃温度下预烧4-6小时得到预烧粉;
S104:将预烧粉再次放入球磨罐中,研磨10-12小时,烘干后过筛;
S105:将过筛后的粉压成直径为12mm,厚度为2mm左右的圆片,在250Mpa等静压下成型;
S106:将圆片在1100-1200℃下烧结2-4小时;
S107:将烧结成瓷的圆片,进行打磨和抛光,清洗后涂覆银浆,在550℃下烧成银电极。
下面结合具体实施例对本发明的应用原理作进一步的描述。
实施例1,根据化学计量比称量9.3145g的Bi2O3,1.9608g的Na2CO3、7.987g的TiO2、0.8762g的BaCO3和2.6869g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。从图2中BNT基材料的X射线衍射图谱看出,所制备的陶瓷为纯钙钛矿相,没有任何分峰则表明了其赝立方的结构。图3是10kHz下的介电温谱图。
实施例2,根据化学计量比称量9.1887g的Bi2O3,1.9078g的Na2CO3、7.987g的TiO2、0.8526g的BaCO3和2.8936g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。从图2中BNT基材料的X射线衍射图谱看出,所制备的陶瓷为纯钙钛矿相,没有任何分峰则表明了其赝立方的结构。图3是10kHz下的介电温谱图。
实施例3,根据化学计量比称量9.0629g的Bi2O3,1.8548g的Na2CO3、7.987g的TiO2、0.8289g的BaCO3和3.1002g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。从图2中BNT基材料的X射线衍射图谱看出,所制备的陶瓷为纯钙钛矿相,没有任何分峰则表明了其赝立方的结构。图3是10kHz下的介电温谱图,从图中可以看出x=0.30时,其介电常数达到最大值为2693。图4是x=0.30样品室温下,95kV/cm时的电滞回线,从中计算出其能量密度为1.22J/cm3,储能效率为91%。
实施例4,根据化学计量比称量8.9371g的Bi2O3,1.8018g的Na2CO3、7.987g的TiO2、0.8052g的BaCO3和3.3069g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。从图2中BNT基材料的X射线衍射图谱看出,所制备的陶瓷为纯钙钛矿相,没有任何分峰则表明了其赝立方的结构。图3是10kHz下的介电温谱图。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种低损耗高储能密度钛酸铋钠基陶瓷,其特征在于,所述低损耗高储能密度钛酸铋钠基陶瓷的化学计量比为:
(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBi0.2Sr0.7TiO3,x=0.26-0.32。
2.一种如权利要求1所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法,其特征在于,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
步骤一,根据(1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBi0.2Sr0.7TiO3化学配比称量分析纯Bi2O3,Na2CO3、TiO2、BaCO3和SrCO3
步骤二,将配好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;
步骤三,将球磨好的料烘干,然后压成大块,在800℃温度下预烧4-6小时得到预烧粉;
步骤四,将预烧粉再次放入球磨罐中,研磨10-12小时,烘干后过筛;
步骤五,将过筛后的粉压成直径为12mm,厚度为2mm左右的圆片,在250Mpa等静压下成型;
步骤六,将圆片在1100-1200℃下烧结2-4小时;
步骤七,将烧结成瓷的圆片,进行打磨和抛光,清洗后涂覆银浆,在550℃下烧成银电极。
3.如权利要求2所述的低损耗高储能密度钛酸铋钠基陶瓷的制备方法,其特征在于,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
根据化学计量比称量9.3145g的Bi2O3,1.9608g的Na2CO3、7.987g的TiO2、0.8762g的BaCO3和2.6869g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。
4.如权利要求2所述的低损耗高储能密度钛酸铋钠基陶瓷的制备方法,其特征在于,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
根据化学计量比称量9.1887g的Bi2O3,1.9078g的Na2CO3、7.987g的TiO2、0.8526g的BaCO3和2.8936g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。
5.如权利要求2所述的低损耗高储能密度钛酸铋钠基陶瓷的制备方法,其特征在于,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
根据化学计量比称量9.0629g的Bi2O3,1.8548g的Na2CO3、7.987g的TiO2、0.8289g的BaCO3和3.1002g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。
6.如权利要求2所述的低损耗高储能密度钛酸铋钠基陶瓷的制备方法,其特征在于,所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法包括以下步骤:
根据化学计量比称量8.9371g的Bi2O3,1.8018g的Na2CO3、7.987g的TiO2、0.8052g的BaCO3和3.3069g的SrCO3,将称好的料放入球磨罐中,按氧化锆球:料:酒精体积比为3:1:1的比例混料球磨,球磨时间为6-10小时;将球磨好的料烘干后压大块,在800℃温度下预烧4-6小时,取出煅烧好的料研磨后再次球磨10-12小时,烘干后过筛;将过筛后的粉料预压成直径为12mm,厚度为2mm的圆片,在250MPa的等静压压力下成型;圆片在1100-1200℃下保温2-4小时;烧结成瓷之后,打磨抛光,然后涂敷银浆,在550℃下,保温30分钟烧成银电极。
7.一种包含权利要求1-6任意一项所述低损耗高储能密度钛酸铋钠基陶瓷的制备方法制备低损耗高储能密度钛酸铋钠基陶瓷的高储能密度电容器。
CN201610550950.0A 2016-07-13 2016-07-13 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法 Pending CN106187168A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610550950.0A CN106187168A (zh) 2016-07-13 2016-07-13 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610550950.0A CN106187168A (zh) 2016-07-13 2016-07-13 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN106187168A true CN106187168A (zh) 2016-12-07

Family

ID=57477891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610550950.0A Pending CN106187168A (zh) 2016-07-13 2016-07-13 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106187168A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107814566A (zh) * 2017-10-14 2018-03-20 桂林理工大学 一种x8r型陶瓷电容器介质材料及其制备方法
CN108101384A (zh) * 2017-12-07 2018-06-01 陕西科技大学 一种用于储能的钛酸铋钠/聚偏氟乙烯三层结构复合材料及其制备方法
CN110436920A (zh) * 2019-08-26 2019-11-12 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN110642617A (zh) * 2019-10-31 2020-01-03 西南大学 一种耐高电场的高储能密度钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN110981469A (zh) * 2019-12-31 2020-04-10 西安理工大学 一种钛酸铋钠基高温压电陶瓷的制备方法
CN111217604A (zh) * 2020-01-14 2020-06-02 西安工业大学 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN112430084A (zh) * 2020-12-03 2021-03-02 西南大学 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法
CN115196960A (zh) * 2022-06-29 2022-10-18 北京科技大学 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1636931A (zh) * 2004-11-29 2005-07-13 武汉理工大学 储能介质陶瓷及其制备方法
CN103159474A (zh) * 2013-02-25 2013-06-19 中国科学院上海硅酸盐研究所 反铁电储能陶瓷材料及陶瓷元件和制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1636931A (zh) * 2004-11-29 2005-07-13 武汉理工大学 储能介质陶瓷及其制备方法
CN103159474A (zh) * 2013-02-25 2013-06-19 中国科学院上海硅酸盐研究所 反铁电储能陶瓷材料及陶瓷元件和制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JING SHI.ER AL.: "Large Electrostrictive Strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 Solid Solutions", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107814566A (zh) * 2017-10-14 2018-03-20 桂林理工大学 一种x8r型陶瓷电容器介质材料及其制备方法
CN107814566B (zh) * 2017-10-14 2021-02-09 桂林理工大学 一种x8r型陶瓷电容器介质材料及其制备方法
CN108101384A (zh) * 2017-12-07 2018-06-01 陕西科技大学 一种用于储能的钛酸铋钠/聚偏氟乙烯三层结构复合材料及其制备方法
CN110436920B (zh) * 2019-08-26 2020-06-16 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN110436920A (zh) * 2019-08-26 2019-11-12 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN110642617A (zh) * 2019-10-31 2020-01-03 西南大学 一种耐高电场的高储能密度钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN110642617B (zh) * 2019-10-31 2022-01-28 西南大学 一种耐高电场的高储能密度钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN110981469A (zh) * 2019-12-31 2020-04-10 西安理工大学 一种钛酸铋钠基高温压电陶瓷的制备方法
CN111217604A (zh) * 2020-01-14 2020-06-02 西安工业大学 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN111217604B (zh) * 2020-01-14 2022-06-24 西安工业大学 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN112430084A (zh) * 2020-12-03 2021-03-02 西南大学 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法
CN112430084B (zh) * 2020-12-03 2022-07-08 西南大学 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法
CN115196960A (zh) * 2022-06-29 2022-10-18 北京科技大学 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN106187168A (zh) 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法
CN104529435B (zh) 铋层状结构压电陶瓷材料及其制备方法
CN101805185B (zh) 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
KR101268487B1 (ko) 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
CN107162583B (zh) 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
CN106587986A (zh) 具备储能、应变与宽介电温区的多功能无铅陶瓷及制备方法
CN102757232A (zh) 铌镁酸铅-钛酸铅陶瓷的制备方法
CN106810235A (zh) 铁酸铋‑钛酸铅‑钛酸钡三元体系高温压电陶瓷及其制备方法
CN104183342A (zh) 一种钛酸铜钙(CaCu3Ti4O12)的新用途及其制备方法
CN107602115A (zh) 一种无铅高储能密度和宽温稳定陶瓷材料及其制备方法
CN101625268B (zh) 多孔场致热释电陶瓷材料的制备方法
CN105272222A (zh) 一种镁掺杂新型钛酸铋钠基无铅介电陶瓷材料及其制备方法
CN104557022B (zh) 一种高非线性低损耗双钙钛矿复相陶瓷及其制备方法
Mahmud et al. Effect of high-energy milling process on microstructure and piezoelectric/dielectric properties of 0.99 Pb (Zr 0.53 Ti 0.47) O 3-0.01 BiYO 3 ceramic for piezoelectric energy harvesting devices
CN105693238A (zh) 一种具有低介电性能和低损耗的钛酸铋钠基无铅压电铁电材料
CN108101537A (zh) 一种纳米压电陶瓷能量收集材料及其制备方法
CN107445611A (zh) 一种无铅低损耗高储能密度陶瓷材料及其制备方法
CN101823876B (zh) 用于温度稳定型多层陶瓷电容器瓷料及其制备方法
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
CN104926301A (zh) 压电器件
CN102757231A (zh) 钛掺杂铌镁酸铅陶瓷的制备方法
CN108864621A (zh) 一种陶瓷/聚合物柔性高介电复合材料及其制备方法
CN107311643A (zh) 宽工作温区高介电性能的无铅电子陶瓷材料及制备方法
CN104557038A (zh) 一种复合体系热释电陶瓷材料及其制备方法
CN105378869B (zh) 固体离子电容器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207

RJ01 Rejection of invention patent application after publication