CN107162583B - 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法 - Google Patents

基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法 Download PDF

Info

Publication number
CN107162583B
CN107162583B CN201710543997.9A CN201710543997A CN107162583B CN 107162583 B CN107162583 B CN 107162583B CN 201710543997 A CN201710543997 A CN 201710543997A CN 107162583 B CN107162583 B CN 107162583B
Authority
CN
China
Prior art keywords
gradient
barium titanate
ceramic
sample
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710543997.9A
Other languages
English (en)
Other versions
CN107162583A (zh
Inventor
王妍
何芷欣
刘泳斌
高景晖
钟力生
于钦学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710543997.9A priority Critical patent/CN107162583B/zh
Publication of CN107162583A publication Critical patent/CN107162583A/zh
Application granted granted Critical
Publication of CN107162583B publication Critical patent/CN107162583B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明公开了一种基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法。首先在TiO2、BaCO3的基料中掺入Sn4+离子,采用传统固相合成制备工艺,预烧后获得具有不同居里温度的钛酸钡基陶瓷粉料;其次以体系的三临界点(即三临界效应)对应成分为核心设计梯度材料成分及其顺序,然后将粉料逐层平铺并压制成块;最后经固相烧结获得钛酸钡基梯度陶瓷,再通过线锯切割机沿成分变化方向切割圆柱型陶瓷得到两个平整截面,从而通过并联的成分梯度实现铁电陶瓷介电温度稳定性的提高。本发明能够使钛酸钡基陶瓷在保持较高介电常数的基础上改善其温度稳定性,为多层陶瓷电容器(MLCC)性能的优化提供了新的思路,且操作简便。

Description

基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
技术领域
本发明属于电子陶瓷材料领域,具体涉及一种基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法。
背景技术
钛酸钡系列电子陶瓷是近几十年来发展起来的一类新型功能陶瓷,是应用最广泛的钙钛矿铁电体之一,被誉为“电子陶瓷工业的支柱”。钛酸钡陶瓷材料因具有优良的介电、压电、电致伸缩、电光性能以及长寿命的绝缘特性,可用于热敏电阻(PTCR)、压电器件、多层陶瓷电容器(MLCC)、电致伸缩装置、电光装置和DRAM器件。近年来,移动电子设备的小型化使得MLCC逐渐向低成本、小型化、大容量的方向发展。由于钛酸钡陶瓷具有高介电常数,能在较小的体积内储存较大的电能,且环保无污染,因而成为陶瓷电容器特别是MLCC的首选介质材料。
钛酸钡陶瓷虽然具有较高的介电常数,但介电常数在居里点(顺电-铁电相变点处)附近有较大突变,且随环境温度的变化较大,例如,纯的钛酸钡陶瓷在常温时介电常数约为1000,当温度升高到居里温度Tc=120℃左右时,电容率εr可达6000~10000。因此在保持钛酸钡基陶瓷高介电特性的基础上改善其温度稳定性是目前MLCC的研究热点之一。现阶段改善钛酸钡基陶瓷介电温度稳定性的方法主要有两种:一种是物理方法,通过居里温度不同的两相或多相进行复合,包括复相陶瓷(PMN-PZT、PNN-PZT等)和薄膜叠层技术(电极层和陶瓷层交错排布,共烧扩散)。另一种是化学法,也有两种方法——微量掺杂法(具有“展峰效应”的Mg2+、Ca2+、Sn4+、Zr4+)和“壳-芯”结构法(BaTiO3-Nb2O5-Co2O3、BaTiO3-MgO-Ho2O3等)。
对于现有的物理方法,复相陶瓷技术多应用于含铅陶瓷体系,无铅陶瓷的方面还未普及;叠层技术则是薄膜结构的改良手段,块体陶瓷并未有尝试。对于现有的化学方法,不论是微量掺杂还是“壳-芯”结构,都不能明确的预测改良后的陶瓷介电温谱,结果具有偶然性。
发明内容
本发明的目的在于提供一种基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,以克服上述现有技术存在的缺陷,本发明通过在钛酸钡基陶瓷三临界点附近构造成分梯度来提高其介电温度稳定性,在MLCC性能优化方面具有一定的应用前景。
为达到上述目的,本发明采用如下技术方案:
基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,包括以下步骤:
(1)对于掺杂了离子的钛酸钡陶瓷体系,确定该体系的三临界点成分;
(2)以钛酸钡陶瓷体系的三临界点成分为中心,在三临界点成分的两端对称选取若干个成分点;
(3)分别按照不同的成分比称量其所需的原料;
(4)分别将不同成分点所对应的原料进行一次球磨,得到混合均匀的一次球磨样品;
(5)将步骤(4)得到的球磨样品烘干,研磨至粉末状后,压紧并煅烧得到不同成分点对应的预烧样品;
(6)将预烧样品研磨成粉末状后,进行二次球磨,得到二次球磨样品;
(7)将二次球磨样品烘干并研磨至粉末状,然后加入PVA胶,再次研磨使其充分混合,然后过筛筛出粒径为0.15mm~0.28mm的样品颗粒;
(8)按照掺杂离子量的百分比从大到小或从小到大的顺序将不同成分点所对应的样品颗粒依次铺平成型,并进行压制得到梯度结构样品;
(9)将梯度结构样品进行烧结得到梯度陶瓷样品;
(10)将梯度陶瓷样品的表面打磨后,沿其成分变化方向切割,在梯度陶瓷样品两侧获得面积相同的梯度截面;
(11)对两个梯度截面进行喷金处理,即得到介电温度稳定的梯度陶瓷材料。
进一步地,步骤(1)中钛酸钡陶瓷体系为掺杂了Sn4+的钛酸钡陶瓷体系,即BaTiO3-xBaSnO3,x指BaSnO3占整个陶瓷体系的物质的量的百分比,该体系的三临界点对应成分是BaTiO3-10.5%BaSnO3
进一步地,步骤(2)中以三临界点x=10.5%的成分为中心,两边对称分别选取两个成分点,分别为BaTiO3-7%BaSnO3和BaTiO3-9%BaSnO3以及BaTiO3-12%BaSnO3和BaTiO3-14%BaSnO3
进一步地,步骤(4)中一次球磨介质为无水乙醇,转速为600r/min,时间为4h。
进一步地,步骤(5)中煅烧温度为1350℃,煅烧时间为180min。
进一步地,步骤(6)中二次球磨转速为600r/min,时间为8h。
进一步地,步骤(7)中PVA胶的加入量为二次球磨样品烘干后质量的10%。
进一步地,步骤(8)中压制的压力为20Mpa,时间为2~3min。
进一步地,步骤(9)中烧结温度为1450℃,烧结时间为180min。
进一步地,步骤(11)中对两个梯度截面喷金时,每个梯度截面溅射三次。
与现有技术相比,本发明具有以下有益的技术效果:
本发明通过在钛酸钡基陶瓷三临界点附近构造成分梯度来提高其介电温度稳定性,实现了钛酸钡基铁电陶瓷在保持良好介电性能的同时改善其温度稳定性,钛酸钡基陶瓷材料在三临界点处拥有异常高的介电常数,且随着远离三临界点介电常数迅速降低,在钛酸钡基材料的三临界点对应成分附近构造梯度材料,烧结过程中不同成分的层间扩散行为所导致的成分递变会对介电性能产生影响,使陶瓷材料在保持高介电常数的同时温度稳定性也得到改善,因而可将其应用于电容器等电子器件的介电性能优化中,特别是在MLCC的发展中有良好的前景,同时本发明步骤简单,易于操作,且在铁电陶瓷材料领域具有普遍性。
附图说明
图1为本发明的梯度材料的主视图;
图2为本发明的梯度材料的俯视图;
图3为本发明梯度陶瓷材料介电常数εr随温度T的变化关系。
具体实施方式
下面结合对本发明做进一步详细描述:
一种基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,包括以下步骤:
(1)确定需要改进的钛酸钡陶瓷目标体系,即掺杂的离子类型,并通过实验或调研确定该体系的三临界点成分。
(2)以三临界点成分为中心,两边对称选取2~3个成分点(为了避免介电性能的波动太大、不宜使成分间隔过大),确定好梯度材料的每层成分。为了使层间递变较为一致,一般按掺杂离子量百分比从大到小或从小到大设计。
(3)根据理论计算结果,称量钛酸钡陶瓷各成分所需的原料;
(4)将配好的原料放入球磨罐中,倒入适量无水乙醇直至浸没,在行星式球磨机中以600r/min的转速球磨4h,使原料粉末混合均匀。
(5)将球磨后的样品烘干,研磨至粉末状后,边放入坩埚中压紧使其易于烧结。在箱式炉中升温至1350℃煅烧180min,得到不同成分的预烧样品。
(6)将预烧陶瓷样品在研钵中砸碎并研磨成粉末状后,使用大小相同的研磨球进行第二次球磨。以600r/min的转速球磨8h,使粉末粒径更加均匀。
(7)将二次球磨后的样品烘干,研磨至粉末状。加入10%的PVA胶,再次研磨使二者充分混合,并使用分析筛筛出粒径为0.15mm~0.28mm的样品颗粒。
(8)取造粒后的第一层成分样品0.3g放入直径为10mm的模具中,并用模具轻触粉末表面使其平整即可,在此基础上,加入0.3g第二层不同的成分样品,进行同样的操作。以此类推,直至所有层成分在模具中依次铺平成型后,在压力为20Mpa下压制2至3分钟,得到梯度结构样品。
(9)将压制好的样品放入箱式炉中在1450℃下烧结180min,得到梯度陶瓷试样。
(10)将梯度陶瓷试样表面用细砂纸打磨,去除多余的粉末,使用线切仪沿成分变化方向平行切割圆形试样,如图1和图2所示,在试样两侧获得面积相同的梯度截面。
(11)使用离子溅射仪对两侧切割面进行喷金处理,每个切割面溅射3次,得到并联的梯度陶瓷材料。
(12)通过介电温谱测试系统测得梯度陶瓷材料介电常数εr随温度T的变化关系,实现钛酸钡材料介电特性和温度稳定性的改善。现有的介电温谱测试系统由Hikoi3532-50型LCR表、多功能Keithley2000表、Delta温箱和计算机组合搭建而成。
下面结合实施例对本发明做进一步详细描述:
以掺杂了Sn4+的钛酸钡体系为例。
(1)对于掺杂了Sn4+的钛酸钡体系,即BaTiO3-xBaSnO3(BT-xBS),x指的是BaSnO3所占BaTiO3-xBaSnO3整体的物质的量的百分比。已有研究表明该体系的三临界点对应成分是BaTiO3-10.5%BaSnO3
(2)以x=10.5%的成分为中心,两边对称分别选取2个成分点,按掺杂离子量百分比从小到大的顺序设计梯度材料,每次成分依次为BaTiO3-7%BaSnO3、BaTiO3-9%BaSnO3、BaTiO3-10.5%BaSnO3、BaTiO3-12%BaSnO3、BaTiO3-14%BaSnO3
(3)根据理论计算结果,如表1,称量钛酸钡陶瓷各成分所需的原料及掺杂氧化物。
表1各原料的质量配比
Figure BDA0001342591720000061
(4)将配好的原料放入球磨罐中,倒入适量无水乙醇直至浸没,在行星式球磨机中以600r/min的转速球磨4h,使原料粉末混合均匀。
(5)将球磨后的样品烘干,研磨至粉末状后,边放入坩埚中边压紧使其易于烧结。在箱式炉中升温至1350℃煅烧180min,得到不同成分的预烧样品。
(6)将预烧陶瓷样品在研钵中砸碎并研磨成粉末状后,使用大小相同的研磨球进行第二次球磨。以600r/min的转速球磨8h,使粉末粒径更加均匀。
(7)将二次球磨后的样品烘干,研磨至粉末状。加入10%的PVA胶,再次研磨使二者充分混合,并使用分析筛筛出粒径为0.15mm~0.28mm的样品颗粒。
(8)取0.3g造粒后的BaTiO3-7%BaSnO3放入直径为10mm的模具中,并用模具轻触粉末表面使其平整即可,在此基础上,加入0.3g BaTiO3-9%BaSnO3,进行同样的操作。以此类推,直至所有层成分在模具中依次铺平成型后,在压力为20Mpa下压制3分钟,得到梯度结构样品。
(9)将压制好的样品放入箱式炉中在1450℃下烧结180min,得到梯度陶瓷试样。
(10)将梯度陶瓷试样表面用细砂纸打磨,去除多余的粉末,使用线切仪沿成分变化方向平行切割圆形试样,如图1所示。在试样两侧获得面积相同的梯度截面。
(11)使用离子溅射仪对两侧切割面进行喷金处理,每个切割面溅射3次,得到并联的梯度陶瓷材料。
(12)通过介电温谱测试系统测得梯度陶瓷材料介电常数εr随温度T的变化关系,如图2所示。梯度材料的介电常数与纯钛酸钡相比,在室温附近提高了一个数量级;与三临界点成分BaTiO3-10.5%BaSnO3相比,虽然介电峰值有所下降,但室温附近的介电温度稳定性有了明显的改善,因而有效实现了该体系陶瓷在保持较高介电常数的基础上实现介电稳定稳定性的提高。
从图2中还可看出,所有介电极值对应的温度点依次代表一种梯度材料的成分对应的居里温度,因而在设计梯度材料时可依此通过调节每层的成分有目的的改善一定温度范围的介电性能,具有结果可预见性。除此而外,该方法与传统改善钛酸钡基陶瓷介电温度稳定性的方法相比还具有操作简便、易控制的优点。

Claims (8)

1.基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,其特征在于,由以下步骤组成:
(1)对于掺杂了离子的钛酸钡陶瓷体系,确定该体系的三临界点成分;
(2)以钛酸钡陶瓷体系的三临界点成分为中心,在三临界点成分的两端对称选取若干个成分点;
(3)分别按照不同的成分比称量其所需的原料;
(4)分别将不同成分点所对应的原料进行一次球磨,得到混合均匀的一次球磨样品;
(5)将步骤(4)得到的球磨样品烘干,研磨至粉末状后,压紧并煅烧得到不同成分点对应的预烧样品;
(6)将预烧样品研磨成粉末状后,进行二次球磨,得到二次球磨样品;
(7)将二次球磨样品烘干并研磨至粉末状,然后加入PVA胶,再次研磨使其充分混合,然后过筛筛出粒径为0.15mm~0.28mm的样品颗粒;
(8)按照掺杂离子量的百分比从大到小或从小到大的顺序将不同成分点所对应的样品颗粒依次铺平成型,并进行压制得到梯度结构样品;
(9)将梯度结构样品进行烧结得到梯度陶瓷样品;
(10)将梯度陶瓷样品的表面打磨后,沿其成分变化方向切割,在梯度陶瓷样品两侧获得面积相同的梯度截面;
(11)对两个梯度截面进行喷金处理,即得到介电温度稳定的梯度陶瓷材料;
步骤(1)中钛酸钡陶瓷体系为掺杂了Sn4+的钛酸钡陶瓷体系,即BaTiO3-xBaSnO3,x指BaSnO3占整个陶瓷体系的物质的量的百分比,该体系的三临界点对应成分是BaTiO3-10.5%BaSnO3;步骤(2)中以三临界点x=10.5%的成分为中心,两边对称分别选取两个成分点,分别为BaTiO3-7%BaSnO3和BaTiO3-9%BaSnO3以及BaTiO3-12%BaSnO3和BaTiO3-14%BaSnO3
2.根据权利要求1所述的基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,其特征在于,步骤(4)中一次球磨介质为无水乙醇,转速为600r/min,时间为4h。
3.根据权利要求1所述的基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,其特征在于,步骤(5)中煅烧温度为1350℃,煅烧时间为180min。
4.根据权利要求1所述的基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,其特征在于,步骤(6)中二次球磨转速为600r/min,时间为8h。
5.根据权利要求1所述的基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,其特征在于,步骤(7)中PVA胶的加入量为二次球磨样品烘干后质量的10%。
6.根据权利要求1所述的基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,其特征在于,步骤(8)中压制的压力为20Mpa,时间为2~3min。
7.根据权利要求1所述的基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,其特征在于,步骤(9)中烧结温度为1450℃,烧结时间为180min。
8.根据权利要求1所述的基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法,其特征在于,步骤(11)中对两个梯度截面喷金时,每个梯度截面溅射三次。
CN201710543997.9A 2017-07-05 2017-07-05 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法 Active CN107162583B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710543997.9A CN107162583B (zh) 2017-07-05 2017-07-05 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710543997.9A CN107162583B (zh) 2017-07-05 2017-07-05 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法

Publications (2)

Publication Number Publication Date
CN107162583A CN107162583A (zh) 2017-09-15
CN107162583B true CN107162583B (zh) 2020-05-22

Family

ID=59822834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710543997.9A Active CN107162583B (zh) 2017-07-05 2017-07-05 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法

Country Status (1)

Country Link
CN (1) CN107162583B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108558391B (zh) * 2018-06-26 2020-10-09 桂林电子科技大学 一种具有巨压电响应的无铅压电陶瓷及其制备方法
CN111747738B (zh) * 2020-06-19 2021-07-06 西安交通大学 梯度陶瓷压电材料的制备方法及压电材料、压电传感器
CN111792930A (zh) * 2020-06-24 2020-10-20 西安交通大学 一种获得宽温域高介电常数的三弛豫态铁电陶瓷的方法
CN113666744B (zh) * 2021-09-17 2022-07-01 四川大学 一种成分梯度铌酸钾钠基无铅压电陶瓷及其制备方法
CN114149258B (zh) * 2021-12-29 2023-03-24 全球能源互联网研究院有限公司 一种具有叠层结构的压电陶瓷及其制备方法和应用
CN114409400A (zh) * 2022-01-13 2022-04-29 清华大学 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN116082033B (zh) * 2022-04-26 2023-12-22 西安交通大学 基于钛酸钡基制冷陶瓷的制备方法及电卡材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560094A (zh) * 2009-05-27 2009-10-21 武汉理工大学 一种高温稳定型多层陶瓷电容器介质材料及其制备方法
CN101863154A (zh) * 2010-06-17 2010-10-20 天津大学 多层梯度钛酸锶钡介电陶瓷材料及制备方法
CN103208365A (zh) * 2013-01-25 2013-07-17 湖北大学 一种温度稳定型异质叠层电介质陶瓷电容器及其制备方法
CN106495687A (zh) * 2016-10-27 2017-03-15 西安交通大学 一种低电场、高能量密度的介电陶瓷及其制备方法
CN106495686A (zh) * 2016-10-27 2017-03-15 西安交通大学 一种基于三临界效应提高铁电陶瓷电容率的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560094A (zh) * 2009-05-27 2009-10-21 武汉理工大学 一种高温稳定型多层陶瓷电容器介质材料及其制备方法
CN101863154A (zh) * 2010-06-17 2010-10-20 天津大学 多层梯度钛酸锶钡介电陶瓷材料及制备方法
CN103208365A (zh) * 2013-01-25 2013-07-17 湖北大学 一种温度稳定型异质叠层电介质陶瓷电容器及其制备方法
CN106495687A (zh) * 2016-10-27 2017-03-15 西安交通大学 一种低电场、高能量密度的介电陶瓷及其制备方法
CN106495686A (zh) * 2016-10-27 2017-03-15 西安交通大学 一种基于三临界效应提高铁电陶瓷电容率的方法

Also Published As

Publication number Publication date
CN107162583A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107162583B (zh) 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
Li et al. Lead‐free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design
CN106673642B (zh) 一种巨介电低损耗ccto基陶瓷材料及其制备方法
CN102363579B (zh) 高性能多层陶瓷电容器介质及其制备方法
CN109231985A (zh) 一种低损耗x8r型电介质材料的制备方法
CN103922714B (zh) 一种低介电常数多层电容器瓷料及其制备方法
CN106631005A (zh) 中温烧结的无铅高压电容器介质瓷料及制备方法
CN101560094A (zh) 一种高温稳定型多层陶瓷电容器介质材料及其制备方法
CN110330332B (zh) 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法
CN106587986A (zh) 具备储能、应变与宽介电温区的多功能无铅陶瓷及制备方法
CN108610042A (zh) 具有巨介电常数高绝缘特性的介质材料及其制备方法
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
CN102515755B (zh) 一种具有高储能密度的锆酸铅基反铁电厚膜及制备方法
CN106478083A (zh) 一种硅酸锶铜系微波介质陶瓷低温烧结的制备方法
CN107445611B (zh) 一种无铅低损耗高储能密度陶瓷材料及其制备方法
CN105272192B (zh) 一种低介电常数ag特性多层瓷介电容器瓷料及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN101823876B (zh) 用于温度稳定型多层陶瓷电容器瓷料及其制备方法
CN104692800A (zh) 一种温度稳定型无铅巨介电常数陶瓷材料
CN103864416A (zh) 一种低烧结温度钛酸钡基陶瓷电容器介质的制备方法
CN108689703B (zh) 一种具有巨介电常数及电调特性的无铅铁电陶瓷材料及其制备方法
CN107459347B (zh) 一种具有高储能密度和高储能效率的无铅陶瓷材料及其制备方法
CN106565234B (zh) 一种超高介电常数介电材料及其制备方法
CN108285342A (zh) 一种x8r陶瓷电容器介质材料及其制备方法
CN108129145A (zh) 一种x7r陶瓷电容器介质材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant