CN106673642B - 一种巨介电低损耗ccto基陶瓷材料及其制备方法 - Google Patents

一种巨介电低损耗ccto基陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN106673642B
CN106673642B CN201710020462.3A CN201710020462A CN106673642B CN 106673642 B CN106673642 B CN 106673642B CN 201710020462 A CN201710020462 A CN 201710020462A CN 106673642 B CN106673642 B CN 106673642B
Authority
CN
China
Prior art keywords
powder
parts
less
hours
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710020462.3A
Other languages
English (en)
Other versions
CN106673642A (zh
Inventor
齐世顺
程华容
杨魁勇
宋蓓蓓
孙淑英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING YUANLIU HONGYUAN ELECTRONIC TECHNOLOGY CO LTD
Original Assignee
BEIJING YUANLIU HONGYUAN ELECTRONIC TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING YUANLIU HONGYUAN ELECTRONIC TECHNOLOGY CO LTD filed Critical BEIJING YUANLIU HONGYUAN ELECTRONIC TECHNOLOGY CO LTD
Priority to CN201710020462.3A priority Critical patent/CN106673642B/zh
Publication of CN106673642A publication Critical patent/CN106673642A/zh
Application granted granted Critical
Publication of CN106673642B publication Critical patent/CN106673642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种具有巨介电常数、低介电损耗的CaCu3Ti4O12基陶瓷介质材料,由主料和晶界层改性剂M组成;主料化学组成为Ca1‑xAxCuyTi4‑ zBzO12,其中A位掺杂元素为Mg、La、Cr、Ni中的一种或多种,替代Ca;B位掺杂元素为Al、Zr、Nb、Ta中的一种或多种,替代Ti;其中0≤x≤0.2、2.9≤y≤3.1、0≤z≤0.3;按质量份计,晶界层改性剂M中SiO2为0~10份、Bi2O3为0~5份、ZnO为0~6份、CaTiO3为0~5份、MgTiO3为0~5份中的一种或多种的组合。通过A位和B位共同掺杂及晶界层改性提高了材料的介电常数、降低了介电损耗。

Description

一种巨介电低损耗CCTO基陶瓷材料及其制备方法
技术领域
本发明涉及电介质材料技术领域,具体涉及一种具有巨介电常数、低介电损耗的CaCu3Ti4O12基陶瓷材料及其制备方法。
背景技术
近年来,随着电子信息产业的发展,对电子元件的小型化、高性能化和集成化提出了越来越高的要求。开发和研究超高介电常数材料对实现电容器、谐振器、滤波器和存储器的微型化具有重要意义。钛酸铜钙(CaCu3Ti4O12,简称CCTO)具有类钙钛矿结构,是一种具有超高介电常数(>104)的电介质材料,而且高的介电常数具有极小的温度依赖性,从室温至400K其介电常数近乎于常数。CCTO优异的高介电特性自2000年被发现以后,便受到了众多研究者的广泛关注。但是,CCTO材料介电常数非常高同时介电损耗也很高,同时其超高的介电常数也存在着明显的原料和工艺敏感性,这成为阻碍CCTO材料应用于电子元件领域的瓶颈。因而在保证CCTO材料超高介电常数的前提下,降低其介电损耗是实现其在电子元件材料领域应用的重要前提。目前,针对CCTO陶瓷较高介电损耗的改性研究方面还存在很多不足,难以达到商用的要求,阻碍了该材料的发展。
迄今为止,很多研究者都开展了CCTO陶瓷的掺杂改性研究,不同掺杂元素、不同掺杂量都会直接影响CCTO的介电性能。在诸多报道中,研究者都对CCTO陶瓷超高介电常数的物理起源和掺杂物对CCTO材料的介电性能的影响机制提出了自己的看法,但是目前还没有形成一个令学界公认的说法。目前,大多数研究者都认为CCTO陶瓷超高的介电常数是由其半导体化的晶粒和绝缘晶界的共同作用产生的,而晶界层的绝缘性与陶瓷的介电损耗存在直接的联系,降低晶界层的电导率也可以有效降低介电损耗。对CCTO的改性研究大致可分为提升晶粒的半导性和提高晶界层绝缘性两个方向。一些学者在降低CCTO陶瓷材料介电损耗方面做了很多尝试,这些尝试大致可以分为A位离子掺杂(掺杂离子取代Ca2+和Cu2+)和B位离子掺杂(掺杂离子取代Ti4+)两类。从结果来看,单独的A位或者B位掺杂要么没有达到足够程度降低介电损耗的目的,要么明显损害了CCTO陶瓷原有的超高的介电常数特性,致使改性后材料的介电常数很低。例如Hu等(Hu Y,Jeng T S,Liu J S,Effect of the MgOsubstitution for CuO on the properties of CaCu3Ti4O12ceramics,CeramicsInternational,vol38,p3459-3464,2012)使用Mg进行A位掺杂在提高介电常数的同时,介电损耗明显增大。Patterson等(Patterson E A,Kwon S,Huang C C,Cann D P,Effects ofZrO2 additions on the dielectric properties of CaCu3Ti4O12,Applied PhysicsLetters,vol87,p182911,2005)等用Zr进行B位掺杂,在介电损耗降低的同时,介电常数也明显下降。单一元素或化合物的改性可能会同时引起介电常数和介电损耗的变化,要实现CCTO介电性能的提高,需对掺杂元素进行系统的分析和尝试。此外晶界层的电性能会直接影响CCTO材料的介电性能,在保证CCTO材料巨介电性能的同时保持较低介电损耗,是当前亟待解决的技术难题,需要进一步改进。
发明内容
针对上述问题中存在的不足之处,本发明提供一种具有巨介电常数、低介电损耗的CaCu3Ti4O12基陶瓷材料及其制备方法。
为实现上述目的,本发明提供一种具有巨介电常数、低介电损耗的CaCu3Ti4O12基陶瓷材料,由主料和晶界层改性剂M组成;
所述主料为Ca1-xAxCuyTi4-zBzO12,A位掺杂元素为Mg、La、Cr、Ni中的一种或多种的组合,部分替代Ca;B位掺杂元素为Al、Zr、Nb、Ta中的一种或多种的组合,部分替代Ti,其中0<x<0.2、2.9<y<3或3<y<3.1、0<z<0.3;
按质量份计,所述晶界层改性剂M为SiO2 2~5份、Bi2O3 2~5份、ZnO 0~6份、CaTiO3 0~5份、MgTiO3 0~5份中的一种或多种的组合,添加改性剂总质量分数为m,m为0<m≤10。
本发明还提供一种具有巨介电常数、低介电损耗的CaCu3Ti4O12基陶瓷材料的制备方法,该方法包括以下步骤;
步骤1:将CaCO3、CuO、TiO2、MgO、La2O3、Cr2O3、Ni2O3、Al2O3、ZrO2、Nb2O5、Ta2O5按照主料的化学计量比Ca1-xAxCuyTi4-zBzO12配料;A为Mg、La、Cr、Ni中的一种或多种的组合,B为Al、Zr、Nb、Ta中的一种或多种的组合,0<x<0.2、2.9<y<3或3<y<3.1、0<z<0.3;将配好的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,球磨结束后将粉料放入烘箱中于120℃烘干,粉体过100目筛,然后将粉体在900~1020℃预烧2~6小时,煅烧后的粉料研磨过100目筛,得到主料Ca1- xAxCuyTi4-zBzO12
步骤2:按质量份数称取100份的所述Ca1-xAxCuyTi4-zBzO12,然后加入m份的晶界改性剂,其中SiO2为2~5份、Bi2O3为2~5份、ZnO为0~6份、CaTiO3为0~5份、MgTiO3为0~5份,称取好的粉料放入球磨机中再次球磨,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,球磨结束后将粉料放入烘箱中于120℃烘干,粉体过100目筛。
作为本发明的进一步改进,还包括以下步骤:
取3克上述粉体,加入15~18滴PVA水溶液,进行粘合造粒,然后在100~300MPa下压制出圆片,将成型的圆片放入烧结炉中,按升温速率2℃/分升至550℃、保温2小时进行坯体排胶;然后按5℃/分的升温速率升至1060~1120℃、保温2~10小时进行烧结,随炉自然冷却。
有益效果为:主料通过A-B位元素共掺,掺杂离子进入CCTO的晶格,可以通过调节离子极化率和晶格畸变提高材料的介电常数,同时可以明显影响晶界析出物(主要为Cu的化合物)的绝缘性能。通过晶界层改性剂的添加,可以与晶界处析出物进行化学反应或者形成固溶体,从而可以明显提高晶界层的绝缘性能,进而在不影响晶粒结构的基础上降低其介电损耗,同时微量的晶界层改性剂渗入晶格中也能起到调节介电常数的作用。采用本发明的CaCu3Ti4O12基陶瓷材料,能够在较高温度(1050~1120℃)下烧结,陶瓷粉成分均一、粒度分布窄、分散性好、成型性工艺好,烧结后的圆片致密度高、少气孔等缺陷,其相对介电常数大于104、室温介电损耗最低可至0.019(1kHz)。该CaCu3Ti4O12基陶瓷材料不含铅、镉、汞等有毒元素,符合环保要求。
附图说明:
图1为本发明中主料配方1、2、3中主料CaCu3.1Ti4O12、CaCu3.01Ti4O12、CaCu3Ti4O12的XRD图谱。
具体实施方式
下面结合具体实施方式对本发明做进一步说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
本发明所选原料如无特殊说明,均可通过商业渠道采购。
主料Ca1-xAxCuyTi4-zBzO12陶瓷粉体的制备方法:配方如表1所示,用分析纯的CaCO3、CuO、TiO2、MgO、La2O3、Cr2O3、Ni2O3、Al2O3、ZrO2、Nb2O5、Ta2O5按照主料的化学计量比Ca1- xAxCuyTi4-zBzO12(A为Mg、La、Cr、Ni中的一种或多种的组合,B为Al、Zr、Nb、Ta中的一种或多种的组合,0<x<0.2,2.9<y<3.1,0<z<0.3)配料。将配好的料放入球磨机中,按氧化锆球:料为3:1的比例、球磨6小时、转速为300转/分,混合好的料经120℃干燥、过100目筛,在950℃煅烧4小时。煅烧后粉料经过粉碎、过100目筛,加入6.5质量份的PVA水溶液进行造粒,然后在250MPa压力下制得直径10mm、厚度1.2mm的圆片。将成型的圆片放入烧结炉中,按升温速率2℃/分升至550℃、保温2小时进行坯体排胶;然后按5℃/分的升温速率升至1080~1100℃、保温6小时进行烧结,随炉自然冷却,制得陶瓷圆片样品。主料粉体的配方及陶瓷圆片的介电性能(测试频率1kHz)如表1所示。图1中包含配方1~3的主料的XRD图谱,主料和标准谱图完全吻合,合成主料保持了CCTO的晶体结构。
表1主料Ca1-xAxCuyTi4-zBzO12配方及陶瓷圆片的介电性能
Figure GDA0002411129320000051
选择主料配方17制备A-B位元素共掺的CaCu3Ti4O12基陶瓷材料作为掺杂改性主料。取质量为100份的主料Ca0.8Mg0.05Cr0.15Cu3.01Ti3.8Al0.2Nb0.1O12,然后加入m份的晶界层改性剂M中(包括SiO2为2~5份、Bi2O3为2~5份、ZnO为0~6份、CaTiO3为0~5份、MgTiO3为0~5份)中的一种或多种的组合,0<m≤10、m为质量份数。将配好的料放入球磨机中,按氧化锆球:料为3:1的比例、球磨6小时、转速为300转/分,混合好的料经120℃干燥、过100目筛。加入6.5质量份的PVA水溶液进行造粒,然后在250MPa压力下制得直径10mm、厚度1.2mm的圆片。将成型的圆片放入烧结炉中,按升温速率2℃/分升至550℃、保温2小时进行坯体排胶;然后按5℃/分的升温速率升至1060~1100℃、保温6小时进行烧结,随炉自然冷却,制得陶瓷圆片样品。实施例的配方、烧结温度和陶瓷圆片的介电性能(测试频率1kHz)如表2所示。
表2晶界层改性剂组份、陶瓷材料烧结温度及圆片介电性能
Figure GDA0002411129320000061
本发明所述实施例介电常数均大于104,实施例4、实施例10~13中CaCu3Ti4O12基陶瓷圆片的介电损耗均较低,实施例30中样品的介电损耗可降至0.019、介电常数高达22380(测试频率1kHz),综合介电性能很好。
对试验评价用样品的处理和评价方法:
用于电学性能测试的陶瓷圆片样品,烧结成瓷后经过表面抛光后被银并在750℃烧制,使被测陶瓷样品具有类似于平行板电容器的功能。利用Agilent4284A型LCR测试仪,在常温、测试频率1kHz和电压1V的条件下,测量表面被银电极的陶瓷圆片样品的电容值和介电损耗,根据陶瓷样品厚度和直径来计算介电常数ε值。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种具有巨介电常数、低介电损耗的CaCu3Ti4O12基陶瓷材料的制备方法,其特征在于,
该陶瓷材料由主料和晶界层改性剂M组成;
所述主料为Ca1-xAxCuyTi4-zBzO12,A位掺杂元素为Mg和Cr、B位掺杂元素为Al和Nb,其中0<x<0.2、3<y<3.1、0<z<0.3;
按质量份计,所述晶界层改性剂M为SiO2 2~5份、Bi2O3 2~5份、MgTiO3 0~5份的组合,添加晶界层改性剂总质量份数 为m,m为0<m≤10;
该方法包括以下步骤;
步骤1:将CaCO3、CuO、TiO2、MgO、Cr2O3、Al2O3、Nb2O5按照主料的化学计量比Ca1-xAxCuyTi4- zBzO12配料;将配好的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,球磨结束后将粉料放入烘箱中于120℃烘干,粉体过100目筛,然后将粉体在900~1020℃预烧2~6小时,煅烧后的粉料研磨过100目筛,得到主料Ca1-xAxCuyTi4-zBzO12
步骤2:按质量份数称取100份的所述Ca1-xAxCuyTi4-zBzO12,然后加入m份的晶界层改性剂,称取好的粉料放入球磨机中再次球磨,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,球磨结束后将粉料放入烘箱中于120℃烘干,粉体过100目筛。
2.一种具有巨介电常数、低介电损耗的CaCu3Ti4O12基陶瓷材料的制备方法,其特征在于,
该陶瓷材料由主料组成;
所述主料为Ca1-xAxCuyTi4-zBzO12,A位掺杂元素为Mg和Cr、B位掺杂元素为Al和Ta,其中0<x<0.2、3<y<3.1、0<z<0.3;
该方法包括以下步骤;
将CaCO3、CuO、TiO2、MgO、Cr2O3、Al2O3、Ta2O5按照主料的化学计量比Ca1-xAxCuyTi4-zBzO12配料;将配好的粉料放入球磨机中混料,球/料质量比为2~10,研磨球为氧化锆球,球磨时间为4~8小时,转速为250~450转/分钟,球磨结束后将粉料放入烘箱中于120℃烘干,粉体过100目筛,然后将粉体在900~1020℃预烧2~6小时,煅烧后的粉料研磨过100目筛,得到主料Ca1-xAxCuyTi4-zBzO12
3.根据权利要求1或2所述的具有巨介电常数、低介电损耗的CaCu3Ti4O12基陶瓷材料的制备方法,其特征在于,还包括以下步骤:
取3克上述粉体,加入15~18滴PVA水溶液,进行粘合造粒,然后在100~300MPa下压制出圆片,将成型的圆片放入烧结炉中,按升温速率2℃/分升至550℃、保温2小时进行坯体排胶;然后按5℃/分的升温速率升至1060~1120℃、保温2~10小时进行烧结,随炉自然冷却。
CN201710020462.3A 2017-01-11 2017-01-11 一种巨介电低损耗ccto基陶瓷材料及其制备方法 Active CN106673642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710020462.3A CN106673642B (zh) 2017-01-11 2017-01-11 一种巨介电低损耗ccto基陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710020462.3A CN106673642B (zh) 2017-01-11 2017-01-11 一种巨介电低损耗ccto基陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106673642A CN106673642A (zh) 2017-05-17
CN106673642B true CN106673642B (zh) 2020-12-25

Family

ID=58849551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710020462.3A Active CN106673642B (zh) 2017-01-11 2017-01-11 一种巨介电低损耗ccto基陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106673642B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107954712B (zh) * 2017-12-01 2020-12-29 电子科技大学 一种低损耗、巨介电ccto陶瓷材料及其制备方法
CN108727013B (zh) * 2018-06-26 2020-05-29 陕西科技大学 一种超低介电损耗高介电常数陶瓷介电材料及其制备方法
CN109912305B (zh) * 2019-04-25 2022-03-04 重庆大学 一种高电位梯度、低介电损耗CaCu3Ti4O12压敏陶瓷及其制备方法
CN110550947A (zh) * 2019-10-16 2019-12-10 中国科学院新疆理化技术研究所 一种钇和锆共掺杂的宽温区高温热敏电阻材料及其制备方法
CN112457026B (zh) * 2020-12-14 2023-03-24 江西科技学院 一种基于还原-氧化气氛协同烧结钛酸铜钙CaCu3Ti4O12陶瓷的方法
CN112661507A (zh) * 2021-01-11 2021-04-16 湖南省美程陶瓷科技有限公司 一种双功能压力传感器氧化铝陶瓷材料及其制备方法
CN113563064A (zh) * 2021-07-16 2021-10-29 天津理工大学 一种二氧化钛基巨介电陶瓷材料及其制备方法
CN113800901B (zh) * 2021-09-30 2022-10-28 太原理工大学 低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法
CN115321976B (zh) * 2022-03-25 2023-09-01 西安工程大学 一种巨介电常数、低介电损耗ccto陶瓷材料及其制备方法
CN115341201A (zh) * 2022-08-19 2022-11-15 郑州轻工业大学 一种高储能密度铬和镉掺杂钛酸铜钙薄膜及其制备方法
CN115594405B (zh) * 2022-09-28 2023-12-26 深圳顺络电子股份有限公司 一种低介高温度稳定性ltcc材料及其制备方法
CN116063849B (zh) * 2023-02-15 2023-08-15 哈尔滨理工大学 一种高介电复合材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880158A (zh) * 2010-07-08 2010-11-10 桂林理工大学 IVB族元素改性CaCu3Ti4O12基压敏材料及制备方法
CN101880159B (zh) * 2010-07-08 2012-12-26 桂林理工大学 VB族元素掺杂CaCu3Ti4O12基压敏材料及制备方法
CN105314977A (zh) * 2014-07-30 2016-02-10 上海帛汉新材料科技有限公司 一种制备钛酸铜钙的方法

Also Published As

Publication number Publication date
CN106673642A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN106673642B (zh) 一种巨介电低损耗ccto基陶瓷材料及其制备方法
CN1117708C (zh) 可低温烧结的低损耗介质陶瓷组合物及其制备方法
KR101607353B1 (ko) 개선된 육방정계 페라이트 재료 및 그 제조 방법 및 용도
CN1117707C (zh) 可低温烧结的低损耗介质陶瓷组合物及其制备方法
CN107162583B (zh) 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
Cheng et al. Preparation and microwave dielectric properties of low-loss MgZrNb2O8 ceramics
CN108002832B (zh) 一种低温共烧压电陶瓷材料及其制备方法
CN113248253A (zh) 一种巨介电常数钛酸锶介质陶瓷及其制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN107954712A (zh) 一种低损耗、巨介电ccto陶瓷材料及其制备方法
CN108249914B (zh) 一种石榴石结构铝酸盐微波介质陶瓷及其制备方法
JP2015195342A (ja) 誘電体組成物および電子部品
CN113264763A (zh) 一种宽温度稳定型钛酸钡基介质陶瓷材料及其制备方法
CN103539446B (zh) 一种巨介陶瓷电容器介质及其制备方法
CN105693235A (zh) 高介微波介质陶瓷材料及其制备方法
CN102320827A (zh) 单层电容器晶界层材料、基片的制作方法、以及单层电容器的方法
CN107459347B (zh) 一种具有高储能密度和高储能效率的无铅陶瓷材料及其制备方法
CN113307622B (zh) 高性能抗还原钛酸钡基介质陶瓷及其制备方法
CN112266238B (zh) 一种微波器件用的低介电常数陶瓷材料及其制备方法
CN112851336A (zh) 一种钛酸铋钠铋层状压电陶瓷的制备方法
US9481606B2 (en) Dielectric composition, dielectric film, and electronic component
Jiayu et al. Optimization on dielectric properties of Y2Ti2O7 ceramics with Bi2O3-Nd2O3-Nb2O5 co-doping
CN115286386B (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
CN108610040A (zh) 一种降低钛锡酸钡体系在还原气氛下介电损耗的方法
CN106866144A (zh) 一种低温烧结超低温宽温稳定性电容器陶瓷及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant