CN113800901B - 低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法 - Google Patents

低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113800901B
CN113800901B CN202111157600.5A CN202111157600A CN113800901B CN 113800901 B CN113800901 B CN 113800901B CN 202111157600 A CN202111157600 A CN 202111157600A CN 113800901 B CN113800901 B CN 113800901B
Authority
CN
China
Prior art keywords
ceramic
low
clcto
nitrate
putting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111157600.5A
Other languages
English (en)
Other versions
CN113800901A (zh
Inventor
张建花
郭斯琪
卢文敏
陈子成
王大伟
郭向阳
郝嵘
雷志鹏
李媛媛
田慕琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202111157600.5A priority Critical patent/CN113800901B/zh
Publication of CN113800901A publication Critical patent/CN113800901A/zh
Application granted granted Critical
Publication of CN113800901B publication Critical patent/CN113800901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明公开一种低介电损耗钛酸铜镧钙介电陶瓷材料及其制备方法。本陶瓷材料的组成为Ca1‑xLaxCu3Ti4O12+0.5x(0<x<1)。该粉体用溶胶凝胶法合成。具体工艺为:以硝酸铜、硝酸钙、硝酸镧、钛酸四丁酯为原料,按照计量比进行称量配料;以无水乙醇为溶剂;将上述溶胶置于水浴锅中,不断搅拌至形成干凝胶;利用电炉和马弗炉除去干凝胶中的有机物,形成CLCTO前驱体粉末;之后进行加胶、研磨、压片,制成陶瓷胚体,再把胚体放入马弗炉内烧结;在炉内自然冷却至室温,得到CLCTO介电陶瓷。该陶瓷的介电损耗可在20℃降低至0.008,在低温环境下(‑100℃),50 Hz时介电损耗更是可以降低至0.003以下,在低温环境下具有广泛的应用前景。

Description

低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法
技术领域
本发明属于电介质陶瓷合成技术领域,具体涉及一种低温环境下低介电损耗钛酸铜镧钙介电陶瓷材料及其制备方法。
背景技术
CaCu3Ti4O12(简称CCTO)陶瓷材料是一种具有高介电常数以及高热稳定性的新型介电陶瓷,在科研领域中受到了广泛关注。CCTO陶瓷具有巨大的介电常数、良好的频率稳定性和温度稳定性,突出的非欧姆特性(J-E曲线非线性),这使得CCTO陶瓷在大容量电容器小型化方面充满了潜力。然而,CCTO陶瓷还伴随着相对较高的介电损耗,不利于其作为电子材料的应用,应用范围被限制。若可以保持CCTO的巨介电常数以及良好的温度稳定性,对其进行取代或掺杂改性,降低介电损耗,便可使其更好的在实际应用中发挥作用。针对于低温环境下介电陶瓷的研究还很少。
目前,国内外的许多研究结果表明:室温下,CCTO的介电损耗较高,普遍在0.05以上(王行行,蔡会武. (2018). CaCu3Ti4O12(CCTO)陶瓷的研究进展. Applied ChemicalIndustry, 47(9), 5.)。有报道,CCTO的介电常数达到5.9×104,同时1 kHz下,其介电损耗为0.06 (Zhao, J., Liu, J., & Ma, G. (2012). Preparation, characterization anddielectric properties of CaCu3Ti4O12 ceramics. Ceramics International, 38(2),1221-1225. )。另外,一种钛酸铜钠镉铋陶瓷Na1/3Cd1/3Bi1/3Cu3Ti4O12的介电常数达到了1.5×104,同时其介电损耗降低至0.04(Peng, Z., Wang, J., Liang, P., Zhu, J., Zhou,X., Chao, X., et al. (2020). A new perovskite-related ceramic with colossalpermittivity and low dielectric loss. Journal of the European CeramicSociety, 40(12), 4010-4015.)。而溶胶-凝胶法法制备的CaCu2.5Zn0.5Ti4O12陶瓷的介电损耗降低至0.017,但其击穿场强仅有1763 V/cm(Jakkree Boonlakhorn, P. K., BunditPutasaeng, Prasit Thongbai. (2020 ). Significantly improved non-Ohmic andgiant dielectric properties of CaCu3-xZnxTi4O12 ceramics by enhancing grainboundary response. Materials Research Express, 7(6), 066301-066312.)。从目前的研究可以看出,室温下,介电损耗的值可以降低至0.05以下,但关于低温环境下,CCTO陶瓷的介电性能研究还很少。
因此,若可以在低温环境下保持高介电常数的同时,降低介电损耗,就可以使CCTO陶瓷在更大范围得以应用,比如南北极以及太空等低温环境。
发明内容
针对上述CCTO产品在低温环境下介电常数、介电损耗等应用的技术问题,本发明提供了一种在低温环境下低介电损耗钛酸铜镧钙(CLCTO)介电陶瓷材料,并且提供了该CLCTO介电陶瓷的制备方法,可在保持介电常数仍处于较高水平时,再较宽温度范围内降低CCTO陶瓷的介电损耗。
为达到以上目的,本发明所述一种低温环境下低介电损耗钛酸铜镧钙介电陶瓷材料,其化学式为:Ca1-xLaxCu3Ti4O12+0.5x,其中0<x<1。
本发明所述的一种低温环境下低介电损耗钛酸铜镧钙介电陶瓷材料的制备方法是采取如下技术方案予以实现:
(1) CLCTO陶瓷前驱体粉末的制备。根据Ca1-xLaxCu3Ti4O12+0.5x(0<x<1)的化学计量比称取硝酸铜、硝酸钙、硝酸镧与柠檬酸原料,为得到最佳络合效果,柠檬酸物质的量为硝酸铜、硝酸钙、硝酸镧和钛酸四丁酯中金属阳离子(Ca2+、Cu2+、Ti4+,La3+)摩尔数之和的1.5倍。将称好的原料倒入无水乙醇中,不断搅拌使原料充分溶解后将称好的钛酸四丁酯倒入混合液中;加入少量PVA(聚乙二醇)增强分散性,搅拌得到溶胶。为获得大小均匀的陶瓷颗粒,对溶胶进行85 ℃恒温水浴且搅拌,且中途不断测试其pH值。为使得杂相最少,需加入少量氨水调节使其pH值保持稳定在2左右,直至形成凝胶。形成凝胶后, 继续85 ℃水浴保温12 h,确保酒精挥发完全以及凝胶足够干燥。将凝胶放入到蒸发皿中,用电炉对其进行去除有机物处理,进行此操作时不断翻搅,保证样品受热的均匀性。将产物放入研钵,均匀研磨10 min后,放入马弗炉中高温预烧,形成CLCTO陶瓷前驱体粉末。
(2) CLCTO陶瓷的制备。把前驱体粉末倒入玛瑙研钵中,并加入前驱体粉末5%质量的PVA粘合剂搅拌均匀后放入烧杯中,在烘箱中适度干燥后,称取制得的适量粉末放入磨具中压片,制得CLCTO陶瓷胚体。将胚体放入干燥箱中70 ℃完全干燥后放入马弗炉中,为得到最佳微观形貌,在1040 ℃保温烧结。烧结结束后,在炉内自然冷却至室温。
本发明采用溶胶凝胶法制备与CCTO结构及性能相近的CLCTO介电陶瓷,制备方法操作简单、重复性好、成品率高,实验制备得到的样品均匀性好,致密化程度高,所述组分以及步骤(1)中各个加料步骤、水浴步骤、步骤(2)中的干燥、烧结等步骤,都对最终产品性能起到了重要的作用,所制备的CLCTO陶瓷的介电损耗室温下可降低至0.008,同时介电常数在1 kHz时为5900~8900,具有低介电损耗与高介电常数的特点。特别是,CLCTO-06(即x=0.06)样品在低温环境下(-100 ℃)获得非常低的介电损耗(<0.003),证明这些材料有在低温环境下应用的潜能。
附图说明
图1为不同配比的CLCTO介电陶瓷试样的XRD图;
图2为不同配比的CLCTO介电陶瓷试样的介电常数频谱图;
图3为不同配比的CLCTO介电陶瓷试样的介电常数温谱图;
图4为不同配比的CLCTO介电陶瓷试样的介电损耗温谱图。
具体实施方式
下面结合具体实施方式对本发明进一步说明。下述说明仅仅是实例性的,而不限制本发明的范围。
实施例1
根据Ca1-xLaxCu3Ti4O12+0.5x中,x取值0.04,称取硝酸钙、硝酸镧、硝酸铜、柠檬酸分别为9.2054 g、0.6998 g、29.2848 g、76.0306 g,将其倒入装有300 ml无水乙醇的烧杯中,不断搅拌使其充分溶解,用烧杯称取55.5624 g钛酸四丁酯倒入混合液中,然后向此烧杯中加入100 ml的无水乙醇,最后加入1.5 ml的PVA增强分散性,使样品更加均匀,搅拌使其充分溶解,形成溶胶,然后把溶胶放到85 ℃的水浴锅中,保持搅拌棒200~250 rpm进行搅拌,搅拌过程中不断进行pH值矫正,保持pH值为2,不断搅拌形成凝胶。形成凝胶后,在水浴锅中85 ℃继续保温12 h,确保酒精挥发完全以及凝胶足够干燥。把凝胶倒入蒸发皿中再放到电炉上保持400~450 ℃除去凝胶中的有机物;然后再放入到马弗炉中800 ℃高温预烧,形成CLCTO陶瓷前驱体粉末。
把CLCTO陶瓷前驱体粉末放入玛瑙研钵中,并加入前驱体粉末5%质量的PVA粘合剂,在烘箱中干燥10 min;称取0.32 g粉体放入模具中,用100 MPa压强压制成圆片。把压好的圆片放入干燥箱中70 ℃干燥12 h再放入马弗炉中内,先以5 ℃/min的升温速率上升到200 ℃保温10 min进行除湿干燥,然后以相同的升温速率上升到700 ℃保温1 h进行排胶,最后以10 ℃/min的升温速率上升到1040 ℃保温12 h进行烧结。烧结结束后,取出样品在空气中自然冷却至室温,得到CLCTO陶瓷。
在烧结好的CLCTO陶瓷样品表面用十字交叉法均匀涂上银浆,在马弗炉内650 ℃保温0.5 h完成镀银,即可进行介电性能的测量。得到了低介电损耗CLCTO介电陶瓷材料,20℃时其介电损耗低至0.014,同时介电常数在1kHz时为8928。-100 ℃,50Hz时其介电损耗低至0.005。如表1所示。
实施例2
根据Ca1-xLaxCu3Ti4O12+0.5x中,x取值0.06,称取硝酸钙、硝酸镧、硝酸铜、柠檬酸分别为9.0316 g、1.0497 g、29.2848 g、76.0306 g,其他步骤与实施例1相同,得到了低介电损耗CLCTO介电陶瓷材料,20 ℃时其介电损耗低至0.008,同时介电常数在1kHz时为7122。-100 ℃,50Hz时其介电损耗低至0.002。如表1所示。
实施例3
根据Ca1-xLaxCu3Ti4O12+0.5x中,x取值0.08,称取硝酸钙、硝酸镧、硝酸铜、柠檬酸分别为8.8219 g、1.3996 g、29.2848 g、76.0306 g,其他步骤与实施例1相同,得到了低介电损耗CLCTO介电陶瓷材料,20 ℃时其介电损耗低至0.016,同时介电常数在1kHz时为5940。-100 ℃,50Hz时其介电损耗低至0.005。如表1所示。
实施例4
根据Ca1-xLaxCu3Ti4O12+0.5x中,x取值0.10,称取硝酸钙、硝酸镧、硝酸铜、柠檬酸分别为8.6309 g、1.7495 g、29.2848 g、76.0306 g,其他步骤与实施例1相同,得到了低介电损耗CLCTO介电陶瓷材料,20 ℃是其介电损耗低至0.010,同时介电常数在1kHz时为6148。-100 ℃,50Hz时其介电损耗低至0.004。如表1所示。
Figure DEST_PATH_IMAGE001

Claims (1)

1.一种低温环境下低介电损耗钛酸铜镧钙介电陶瓷材料的制备方法,其特征在于,所述制备方法具体包括以下步骤:
(1) CLCTO陶瓷前驱体粉末的制备;根据Ca1-xLaxCu3Ti4O12+0.5x的化学计量比称取硝酸铜、硝酸钙、硝酸镧与柠檬酸原料,柠檬酸物质的量为硝酸铜、硝酸钙、硝酸镧和钛酸四丁酯中金属阳离子摩尔数之和的1.5倍;将称好的原料倒入无水乙醇中,不断搅拌使原料充分溶解后将钛酸四丁酯倒入混合液中,将聚乙二醇加入到混合液中,搅拌至完全溶解形成溶胶;把溶胶放入恒温85℃的水浴锅中不断搅拌,搅拌过程中不断进行pH值矫正,保持pH值为2,使之形成凝胶;将凝胶放入到蒸发皿中,用电炉对其进行去除有机物处理,有机物处理后的凝胶再放入到马弗炉中高温预烧800℃,形成CLCTO陶瓷前驱体粉末;
(2) CLCTO陶瓷的制备;把前驱体粉末倒入玛瑙研钵中,并加入前驱体粉末5%质量的聚乙二醇粘合剂,用电炉适度干燥后,称取制得的适量粉末放入磨具中压片,制得CLCTO陶瓷胚体;把压好的陶瓷胚体放入干燥箱中70℃完全干燥12 h后放入马弗炉中,先以5℃/min的升温速率上升到200℃保温10 min进行除湿干燥,然后以相同的升温速率上升到700℃保温1 h进行排胶,最后以10℃/min的升温速率上升到1040℃保温12 h烧结;烧结结束后,在炉内自然冷却至室温,即可得到Ca1-xLaxCu3Ti4O12+0.5x,其中0.04≤x≤0.10的样品。
CN202111157600.5A 2021-09-30 2021-09-30 低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法 Active CN113800901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111157600.5A CN113800901B (zh) 2021-09-30 2021-09-30 低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111157600.5A CN113800901B (zh) 2021-09-30 2021-09-30 低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113800901A CN113800901A (zh) 2021-12-17
CN113800901B true CN113800901B (zh) 2022-10-28

Family

ID=78939133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111157600.5A Active CN113800901B (zh) 2021-09-30 2021-09-30 低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113800901B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687367B2 (ja) * 1984-11-27 1994-11-02 京セラ株式会社 誘電体磁器組成物
CN1331804C (zh) * 2006-02-24 2007-08-15 浙江大学 钙铜钛镧氧介电陶瓷的制备方法
CN100467421C (zh) * 2006-10-20 2009-03-11 宁波大学 一种钙铜钛镧氧介电陶瓷粉体的制备方法
CN101792308B (zh) * 2010-02-11 2012-06-27 哈尔滨工业大学 一种壳-芯结构CaCu3Ti4O12陶瓷材料及其制备方法
CN106673642B (zh) * 2017-01-11 2020-12-25 北京元六鸿远电子科技股份有限公司 一种巨介电低损耗ccto基陶瓷材料及其制备方法
CN107827451B (zh) * 2017-12-04 2020-12-11 太原理工大学 一种利用水淬火降低钛酸铜钙陶瓷损耗的方法
CN109553411B (zh) * 2019-01-31 2021-06-25 太原理工大学 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法
CN109776089A (zh) * 2019-03-28 2019-05-21 电子科技大学 一种钛酸铜钙基陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN113800901A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN109553411B (zh) 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法
CN107827452B (zh) 一种利用空气淬火降低钛酸铜钙陶瓷损耗的方法
CN110015894B (zh) 一种高温下介电稳定的钛酸铋钠基陶瓷及其制备方法和应用
CN110759728A (zh) 一种类线性无铅弛豫铁电陶瓷材料及其制备方法
CN109776089A (zh) 一种钛酸铜钙基陶瓷材料及其制备方法
CN102826847A (zh) 复合高介电常数微波介质陶瓷材料及其制备方法
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN107827451B (zh) 一种利用水淬火降低钛酸铜钙陶瓷损耗的方法
CN102976751B (zh) 低温烧结微波介质陶瓷材料及其制备方法
Wu et al. Synthesis of a low-firing BaSi2O5 microwave dielectric ceramics with low dielectric constant
CN109650878B (zh) 一种无铅宽频下巨介电低损耗高绝缘电阻陶瓷材料及其制备方法
CN103922725B (zh) 一种低温烧结温度稳定型微波介质陶瓷材料及其制备方法
CN113800901B (zh) 低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN106747435A (zh) 一种温度稳定的芯‑壳结构微波介质陶瓷的制备方法
CN111320471B (zh) 适用于超低温烧结的微波介质材料及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN104692800A (zh) 一种温度稳定型无铅巨介电常数陶瓷材料
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN103183510B (zh) 一种铌镁酸铋基锂钛共替换微波介电陶瓷材料及制备方法
CN107382314A (zh) 一种钡基复合钙钛矿结构的微波介质陶瓷
CN103922733A (zh) 一种低温烧结高调谐率钛酸锶钡陶瓷的制备方法
CN100467421C (zh) 一种钙铜钛镧氧介电陶瓷粉体的制备方法
CN102515745A (zh) 非均质微波调谐介电陶瓷(Ba,Sr)TiO3的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant