CN114436643A - 一种巨介电常数、低介电损耗陶瓷及其制备方法 - Google Patents

一种巨介电常数、低介电损耗陶瓷及其制备方法 Download PDF

Info

Publication number
CN114436643A
CN114436643A CN202210081121.8A CN202210081121A CN114436643A CN 114436643 A CN114436643 A CN 114436643A CN 202210081121 A CN202210081121 A CN 202210081121A CN 114436643 A CN114436643 A CN 114436643A
Authority
CN
China
Prior art keywords
powder
sintering
dielectric constant
cacu
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210081121.8A
Other languages
English (en)
Inventor
成鹏飞
王丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Publication of CN114436643A publication Critical patent/CN114436643A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种利用固相烧结法制备巨介电常数、低介电损耗的钛酸铜钙(CaCu3Ti4O12,以下简写为CCTO)陶瓷材料的方法,属于电子陶瓷材料制备的技术领域。本发明的巨介电常数、低损耗CCTO陶瓷材料,其特征在于:由主料(CaCu3Ti4O12)及添加剂(Nb2O5)组成,化学组成为CaCu3Ti4‑xNbxO12,其中0≤x≤0.08;在空气气氛下,将CaCO3、CuO、TiO2以及Nb2O5按比例混合后预烧,然后干压成型,压制成形的生坯升温进行排胶处理,然后继续烧结,最后随炉冷却至室温,获得巨介电常数、低介电损耗陶瓷材料。本发明所用方法工艺简单,易操作,重复性高,样品性能稳定性高,易于实现规模化生产。

Description

一种巨介电常数、低介电损耗陶瓷及其制备方法
技术领域
本发明涉及化学技术领域,具体是一种巨介电常数、低介电损耗陶瓷及其制备方法。
背景技术
CaCu3Ti4O12(简写为CCTO)是一种新型的电子陶瓷材料,在室温条件下单晶样品的介电常数接近100000,块状多晶样品的介电常数在10000左右,在较宽的频率范围内材料的介电损耗在0.15左右。同时,在100K到400K范围内,材料的晶体结构不会发生改变。CaCu3Ti4O12材料具有的优异的介电性能使得其在集成电路小型化领域、能量存储和传感器领域内具有非常大的应用前景。但是,CCTO自身的介电损耗大是阻碍其实用化的主要因素,因此,保证CCTO陶瓷巨介电常数的同时合理降低介电损耗是保证对此材料在工程上得以应用具有重大意义。
李洁等人在中国专利200710009111.9中采用冷等静压成型工艺,将CCTO陶瓷介电损耗在室温1KHz条件下降至0.026,但介电常数也降至3000左右;赵艳会(赵艳会.共沉淀法制备钛酸铜钙及介电性能研究[D].中国海洋大学,2013,39-48)采用共沉淀法制备CCTO陶瓷,常温下较宽的频率范围内介电损耗相较纯CCTO降低,且介电常数仍可达9775,但共沉淀法工艺复杂,可靠性差,不易实现大规模工业生产。
泰国孔敬大学的Thongbai及其团队在CCTO样品中的Ca位掺入Ba离子,把损耗降低到了0.02左右(10kHz),但其样品Ca0.975Ba0.025Ti4O12的介电常数与纯的CCTO相比有大幅度下降(Thongbai P,Vangchangyia S,Swatsitang E,et al.Non-Ohmic and dielectricproperties of Ba-doped CaCu3Ti4O12 ceramics[J],Journal ofMaterials Science:Materials in Electronics,2012,24(3):875-883)。除此之外,还有很多研究者采用与之相似的掺杂方法在CCTO中掺入了各种各样的元素,比如La离子(Feng L X,Tang X M,Yan YY,et al.Decrease of dielectric loss in CaCu3Ti4O12 ceramics by La doping[J],Physics Status Solidi A-Applications and Materials Science,2006,203(4):22-24),Mn离子(Li M,Feteira A,Sinclair D C,et al.Influence ofMn doping on thesemiconducting properties of CaCu3Ti4O12 ceramics[J],Applied Physics Letters,2006,88(23):232903)等,这些改进方法结果都是在降低CCTO陶瓷样品介电损耗的同时牺牲了一部分介电常数来实现的。
以上实验在抑制介电损耗的同时导致介电常数大幅减小,或由于工艺过于复杂而难以实现工业化大生产。本发明通过传统的固相法制备的CCTO陶瓷,不仅保持了其巨介电常数,同时显著降低了介电损耗,且制备工艺简单,易于大规模生产。
发明内容
本发明的目的在于提供巨介电常数、低介电损耗陶瓷及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种巨介电常数、低介电损耗陶瓷材料,由CaCu3Ti4O12和Nb2O5组成,化学组成为CaCu3Ti4-xNbxO12,其中0≤x≤0.08,预烧条件为950℃保温15h,排胶条件为600℃保温1h,烧结条件为1120℃保温20h。
一种巨介电常数、低介电损耗陶瓷的制备方法,具体步骤为:在空气气氛下,以CaCO3、CuO、TiO2为原料,以Nb2O5作为添加剂,采用固相反应工艺,通过混料、预烧、成型、排胶、烧结工艺流程,即可获得巨介电常数、低介电损耗陶瓷材料CaCu3Ti4-xNbxO12
作为本发明的进一步技术方案,预烧条件为以200℃/h的升温速率从室温升至950℃后保温15h。
作为本发明的进一步技术方案,排胶条件为600℃保温1h。
作为本发明的进一步技术方案,烧结条件为以200℃/h升温速率从室温升至1000℃,以600℃/h的升温速率升至1100~1120℃,保温20h,然后随炉冷却。
作为本发明的进一步技术方案,具体步骤为:用固相反应法在1120℃保温20h制备组分和质量百分比含量为CaCu3Ti3.99Nb0.01O12的陶瓷材料,将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,使用行星球磨机以360r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧,预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨,将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯,将生坯置于烧结炉内于600℃进行排胶处理,排胶处理后的生坯再置入烧结炉内于1120℃烧结20h,获得CCTO陶瓷体。
作为本发明的进一步技术方案,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。
与现有技术相比,本发明的有益效果是:本发明在保持CCTO陶瓷材料巨介电常数的基础上提供了一种降低介电损耗的方法,即配方上通过添加Nb2O5,工艺上通过固相烧结,得到了巨介电常数、低介电损耗的陶瓷材料,其在测试频率为16700Hz时,εr=15471,tanδ=0.08。因此本发明制备出巨介电常数低介电损耗的CCTO陶瓷材料,改善了CCTO陶瓷材料的介电性能。本发明充分运用了固相法,工艺简单,易操作,重复性高,样品性能稳定性高,易于实现规模化生产。
附图说明
图1为实施例1的实验结果图。
图2为实施例2的实验结果图。
图3为实施例3的实验结果图。
图4为实施例4的实验结果图。
图5为实施例5的实验结果图。
图6为实施例6的实验结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
用固相反应法在1100℃保温20h制备组分和质量百分比含量为CaCu3Ti3.99Nb0.01O12的陶瓷材料。将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。使用行星球磨机以360r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧。预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨。将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。将生坯置于烧结炉内于600℃进行排胶处理。排胶处理后的生坯再置入烧结炉内于1100℃烧结20h,获得CCTO陶瓷体。将CCTO陶瓷体表面打磨,溅射金电极,进行介电性能测试。室温下,当测试频率为16732Hz时,εr=60288,tanδ=0.15。如附图1曲线所示。
实施例2:
用固相反应法在1120℃保温20h制备组分和质量百分比含量为CaCu3Ti3.99Nb0.01O12的陶瓷材料。将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。使用行星球磨机以360r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧。预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨。将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。将生坯置于烧结炉内于600℃进行排胶处理。排胶处理后的生坯再置入烧结炉内于1120℃烧结20h,获得CCTO陶瓷体。将CCTO陶瓷体表面打磨,溅射金电极,进行介电性能测试。室温下,当测试频率为32796Hz时,εr=50160,tanδ=0.13。如附图2曲线所示。
实施例3:
用固相反应法在1100℃保温20h制备组分和质量百分比含量为CaCu3Ti3.96Nb0.04O12的陶瓷材料。将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。使用行星球磨机以360r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧。预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨。将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。将生坯置于烧结炉内于600℃进行排胶处理。排胶处理后的生坯再置入烧结炉内于1100℃烧结20h,获得CCTO陶瓷体。将CCTO陶瓷体表面打磨,溅射金电极,进行介电性能测试。室温下,当测试频率为64280Hz时,εr=46902,tanδ=0.29。如附图3曲线所示。
实施例4:
用固相反应法在1120℃保温20h制备组分和质量百分比含量为CaCu3Ti3.96Nb0.04O12的陶瓷材料。将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。使用行星球磨机以360r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧。预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨。将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。将生坯置于烧结炉内于600℃进行排胶处理。排胶处理后的生坯再置入烧结炉内于1120℃烧结20h,获得CCTO陶瓷体。将CCTO陶瓷体表面打磨,溅射金电极,进行介电性能测试。室温下,当测试频率为16732Hz时,εr=22388,tanδ=0.087。如附图4曲线所示。
实施例5:
用固相反应法在1100℃保温20h制备组分和质量百分比含量为CaCu3Ti3.92Nb0.08O12的陶瓷材料。将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。使用行星球磨机以360r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧。预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨。将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。将生坯置于烧结炉内于600℃进行排胶处理。排胶处理后的生坯再置入烧结炉内于1100℃烧结20h,获得CCTO陶瓷体。将CCTO陶瓷体表面打磨,溅射金电极,进行介电性能测试。室温下,当测试频率为89992Hz时,εr=44135,tanδ=0.51。如附图5曲线所示。
实施例6:
用固相反应法在1120℃保温20h制备组分和质量百分比含量为CaCu3Ti3.92Nb0.08O12的陶瓷材料。将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。使用行星球磨机以360r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧。预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨。将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。将生坯置于烧结炉内于600℃进行排胶处理。排胶处理后的生坯再置入烧结炉内于1120℃烧结20h,获得CCTO陶瓷体。室温下,当测试频率从1K~90KHz时,εr=16000~19000,tanδ≤0.1;且当测试频率为16732Hz时,εr=15471,tanδ=0.08。如附图6曲线所示。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (7)

1.一种巨介电常数、低介电损耗陶瓷材料,其特征在于,由CaCu3Ti4O12和Nb2O5组成,化学组成为CaCu3Ti4-xNbxO12,其中0≤x≤0.08,预烧条件为950℃保温15h,排胶条件为600℃保温1h,烧结条件为1120℃保温20h。
2.一种巨介电常数、低介电损耗陶瓷的制备方法,其特征在于,具体步骤为:在空气气氛下,以CaCO3、CuO、TiO2为原料,以Nb2O5作为添加剂,采用固相反应工艺,通过混料、预烧、成型、排胶、烧结工艺流程,即可获得巨介电常数、低介电损耗陶瓷材料CaCu3Ti4-xNbxO12
3.根据权利要求2所述的巨介电常数、低介电损耗陶瓷的制备方法,其特征在于,预烧条件为以200℃/h的升温速率从室温升至950℃后保温15h。
4.根据权利要求1所述的巨介电常数、低介电损耗陶瓷的制备方法,其特征在于,排胶条件为600℃保温1h。
5.根据权利要求2所述的巨介电常数、低介电损耗陶瓷的制备方法,其特征在于,其特征在于,烧结条件为以200℃/h升温速率从室温升至1000℃,以600℃/h的升温速率升至1100~1120℃,保温20h,然后随炉冷却。
6.根据权利要求2所述的巨介电常数、低介电损耗陶瓷的制备方法,其特征在于,其特征在于,具体步骤为:用固相反应法在1120℃保温20h制备组分和质量百分比含量为CaCu3Ti3.99Nb0.01O12的陶瓷材料,将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,使用行星球磨机以360r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧,预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨,将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯,将生坯置于烧结炉内于600℃进行排胶处理,排胶处理后的生坯再置入烧结炉内于1120℃烧结20h,获得CCTO陶瓷体。
7.根据权利要求6所述的巨介电常数、低介电损耗陶瓷的制备方法,其特征在于,其特征在于,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。
CN202210081121.8A 2021-07-19 2022-01-24 一种巨介电常数、低介电损耗陶瓷及其制备方法 Pending CN114436643A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110811666.5A CN113620702A (zh) 2021-07-19 2021-07-19 一种Yb3+掺杂的巨介电常数低损耗陶瓷及其制备方法
CN2021108116665 2021-07-19

Publications (1)

Publication Number Publication Date
CN114436643A true CN114436643A (zh) 2022-05-06

Family

ID=78380079

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110811666.5A Pending CN113620702A (zh) 2021-07-19 2021-07-19 一种Yb3+掺杂的巨介电常数低损耗陶瓷及其制备方法
CN202210081121.8A Pending CN114436643A (zh) 2021-07-19 2022-01-24 一种巨介电常数、低介电损耗陶瓷及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110811666.5A Pending CN113620702A (zh) 2021-07-19 2021-07-19 一种Yb3+掺杂的巨介电常数低损耗陶瓷及其制备方法

Country Status (1)

Country Link
CN (2) CN113620702A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956805A (zh) * 2022-07-11 2022-08-30 合肥学院 一种巨介电ccto陶瓷的还原-再氧化制备方法
CN116063067A (zh) * 2023-01-16 2023-05-05 南昌航空大学 一种多主元素巨介电陶瓷材料及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956805A (zh) * 2022-07-11 2022-08-30 合肥学院 一种巨介电ccto陶瓷的还原-再氧化制备方法
CN116063067A (zh) * 2023-01-16 2023-05-05 南昌航空大学 一种多主元素巨介电陶瓷材料及其制备方法和应用
CN116063067B (zh) * 2023-01-16 2023-10-27 南昌航空大学 一种多主元素巨介电陶瓷材料及其制备方法和应用

Also Published As

Publication number Publication date
CN113620702A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN109942292B (zh) 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN110436920B (zh) 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN111320468B (zh) 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN103739283A (zh) 一种钛酸锶钡陶瓷的制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN110498681B (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
CN112919907A (zh) 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN107244912B (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN108530056B (zh) 一种巨介电低损耗钛酸锶钡陶瓷及其制备方法
CN105753471A (zh) 一种高电卡效应铌酸锶钡陶瓷的制备方法
CN102976748A (zh) 高致密钛酸锶钡陶瓷及其制备方法
CN107285760B (zh) 一种低损耗巨介电常数陶瓷材料的制备方法
CN112552048B (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN105198409B (zh) 一种高储能密度钛酸锶钡基玻璃复相陶瓷的制备方法
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN115321976B (zh) 一种巨介电常数、低介电损耗ccto陶瓷材料及其制备方法
CN112142466A (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN116063067A (zh) 一种多主元素巨介电陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination