CN115368132B - 一种钛酸钡基陶瓷材料及制备方法 - Google Patents

一种钛酸钡基陶瓷材料及制备方法 Download PDF

Info

Publication number
CN115368132B
CN115368132B CN202210863256.XA CN202210863256A CN115368132B CN 115368132 B CN115368132 B CN 115368132B CN 202210863256 A CN202210863256 A CN 202210863256A CN 115368132 B CN115368132 B CN 115368132B
Authority
CN
China
Prior art keywords
barium titanate
based ceramic
product
ceramic material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210863256.XA
Other languages
English (en)
Other versions
CN115368132A (zh
Inventor
张海林
陈秀丽
李青
戴正立
曾大福
周焕福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guiyang Sunlord Xunda Electronic Component Co ltd
Guilin University of Technology
Original Assignee
Guiyang Sunlord Xunda Electronic Component Co ltd
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guiyang Sunlord Xunda Electronic Component Co ltd, Guilin University of Technology filed Critical Guiyang Sunlord Xunda Electronic Component Co ltd
Priority to CN202210863256.XA priority Critical patent/CN115368132B/zh
Publication of CN115368132A publication Critical patent/CN115368132A/zh
Application granted granted Critical
Publication of CN115368132B publication Critical patent/CN115368132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明涉及电介质陶瓷材料的储能技术领域,具体涉及一种钛酸钡基陶瓷材料及制备方法,包括对BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3进行预烧保温,得到钛酸钡基陶瓷粉体;将钛酸钡基陶瓷粉料放入球磨罐中进行预处理后,得到第一产物;将第一产物倒入球磨罐中进行混合后分离,得到粉体,用模具对粉体进行压制,得到圆片;将圆片在马弗炉中按烧结条件进行烧结,得到钛酸钡基陶瓷材料,通过引入强铁电体Bi(Mg1/2Ti1/2)O3和(Bi0.5Na0.5)0.7Sr0.3TiO3与BaTiO3反铁电体形成均匀固溶体,以提高陶瓷材料最大极化强度和击穿场强,提升了介电陶瓷材料的储能密度,从而解决现有的介电陶瓷材料储能密度较低的问题。

Description

一种钛酸钡基陶瓷材料及制备方法
技术领域
本发明涉及电介质陶瓷材料的储能技术领域,尤其涉及一种钛酸钡基陶瓷材料及制备方法。
背景技术
近年来,与燃料电池和锂离子电池相比,用于电能存储的电介质电容器由于其超快的充电/放电速率而具有超高功率密度,因此已被广泛研究。通常,大饱和极化、高击穿强度和低剩余极化对于实现高能量存储密度是至关重要的。
目前,存在四种用于能量存储应用的代表性介电材料:线性电介质、铁电体、弛豫铁电体和反铁电体。线性电介质材料通常具有高击穿强度和小低剩余极化,且低的大饱和极化限制了它们在高能量存储中的应用。
但是,现有的电介电陶瓷材料的储能密度较低,不能满足市场的需求。
发明内容
本发明的目的在于提供一种钛酸钡基陶瓷材料及制备方法,旨在解决现有的介电陶瓷材料储能密度较低的问题。
为实现上述目的,第一方面本发明提供了一种钛酸钡基陶瓷材料的制备方法,包括以下步骤:
对BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3进行预烧保温,得到钛酸钡基陶瓷粉体;
将所述钛酸钡基陶瓷粉料放入球磨罐中进行预处理后,得到第一产物;
将所述第一产物倒入球磨罐中进行混合后分离,得到粉体,用模具对所述粉体进行压制,得到圆片;
将所述圆片在马弗炉中按烧结条件进行烧结,得到钛酸钡基陶瓷材料;
所述对BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3进行预烧保温,得到钛酸钡基陶瓷粉体的具体方式为:
将BaCO3、TiO2进行混合,预烧保温后,得到BaTiO3主晶相;
将Bi2O3、MgO、TiO2进行混合,预烧保温后,得到Bi(Mg1/2Ti1/2)O3主晶相;
将Bi2O3、Na2CO3、SrCO3、TiO2进行混合,预烧保温后,得到(Bi0.5Na0.5)0.7Sr0.3TiO3主晶相;
将BaTiO3、Bi(Mg1/2Ti1/2)O3进行混合,预烧保温后,得到0.9BaTiO3-0.1Bi(Mg1/ 2Ti1/2)O3主晶相;
将0.9所述BaTiO3、-0.1所述Bi(Mg1/2Ti1/2)O3和所述(Bi0.5Na0.5)0.7Sr0.3TiO3进行混合,预烧保温后,得到钛酸钡基陶瓷粉体。
其中,所述将所述钛酸钡基陶瓷粉料放入球磨罐中进行预处理后,得到第一产物的具体方式为:
将所述钛酸钡基陶瓷粉体、氧化锆球与无水乙醇按质量比1:2:1的比例混合得到混合产物;
将所述混合产物球磨4h,混合磨细后在100~130℃下快速烘干以得到干燥产物;
将所述干燥产物通过筛网将氧化锆球分离开来,得到第一产物。
其中,所述将所述第一产物倒入球磨罐中进行混合后分离,得到粉体,用模具对所述粉体进行压制,得到圆片的具体方式为:
在所述第一产物中加入聚乙烯醇进行造粒,得到细粒径的第一产物;
将所述细粒径的第一产物进行压制,得到圆片。
其中,所述预烧保温的预烧温度为720~850℃,保温时间为4~6h。
其中,所述烧结条件为温度为1200~1300℃,保温时间为2h。
第二方面,本发明提供了一种钛酸钡基陶瓷材料,由第一方面所述的一种钛酸钡基陶瓷材料的制备方法制备得到,
包括括BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3
本发明的一种钛酸钡基陶瓷材料及制备方法,对BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3进行预烧保温,得到钛酸钡基陶瓷粉体;将钛酸钡基陶瓷粉料放入球磨罐中进行预处理后,得到第一产物;将所述第一产物倒入球磨罐中进行混合后分离,得到粉体,用模具对所述粉体进行压制,得到圆片;将所述圆片在马弗炉中按烧结条件进行烧结,得到钛酸钡基陶瓷材料,通过引入强铁电体Bi(Mg1/2Ti1/2)O3和(Bi0.5Na0.5)0.7Sr0.3TiO3与BaTiO3反铁电体形成均匀固溶体,以提高陶瓷材料最大极化强度和击穿场强,提升了介电陶瓷材料的储能密度,从而解决现有的介电陶瓷材料储能密度较低的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的一种钛酸钡基陶瓷材料的制备方法的流程图。
图2是对BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3进行预烧保温,得到钛酸钡基陶瓷粉体的流程图。
图3是将所述钛酸钡基陶瓷粉料放入球磨罐中进行预处理后,得到第一产物的流程图。
图4是将所述第一产物倒入球磨罐中进行混合后分离,得到粉体,用模具对所述粉体进行压制的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
请参阅图1至图4,第一方面,本发明提供一种钛酸钡基陶瓷材料的制备方法,包括以下步骤:
S1对BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3进行预烧保温,得到钛酸钡基陶瓷粉体;
所述烧结条件为温度为1200~1300℃,保温时间为2h。
S11将按化学计量比称量的BaCO3、TiO2进行混合,预烧保温后,得到BaTiO3主晶相;
S12将按化学计量比称量的Bi2O3、MgO、TiO2进行混合,得到Bi(Mg1/2Ti1/2)O3主晶相;
S13将按化学计量比称量的Bi2O3、Na2CO3、SrCO3、TiO2进行混合,预烧保温后,得到(Bi0.5Na0.5)0.7Sr0.3TiO3主晶相;
S14将按化学计量比称量的BaTiO3、Bi(Mg1/2Ti1/2)O3进行混合,预烧保温后,得到0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3主晶相;
S15将按化学计量比称量的0.9所述BaTiO3、-0.1所述Bi(Mg1/2Ti1/2)O3和所述(Bi0.5Na0.5)0.7Sr0.3TiO3进行混合,预烧保温后,得到钛酸钡基陶瓷粉体。
S2将所述钛酸钡基陶瓷粉料放入球磨罐中进行预处理后,得到第一产物;
S21将所述钛酸钡基陶瓷粉体、氧化锆球与无水乙醇按质量比1:2:1的比例混合得到混合产物;
S22将所述混合产物球磨4h,混合磨细后在100~130℃下快速烘干以得到干燥产物;
S23将所述干燥产物通过筛网将氧化锆球分离开来,得到第一产物。
S3将所述第一产物倒入球磨罐中进行混合后分离,得到粉体,用模具对所述粉体进行压制,得到圆片;
S31在所述第一产物中加入聚乙烯醇进行造粒,得到细粒径的第一产物;
具体的,在细粒径的钛酸钡基陶瓷粉体中加入聚乙烯醇进行造粒。
S32将所述细粒径的第一产物进行压制,得到圆片。
具体的,将经造粒后的细粒径的钛酸钡基陶瓷粉体压制成直径为8mm,厚度为1.2mm的圆片,在550℃下排胶4小时,其升温速率为1℃/min。
S4将所述圆片在马弗炉中按烧结条件进行烧结,得到钛酸钡基陶瓷材料。
所述烧结条件为温度为1200~1300℃,保温时间为2h。
第二方面,本发明提供一种钛酸钡基陶瓷材料,由第一方面所述的一种钛酸钡基陶瓷材料的制备方法制备得到,
包括BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3
具体实施例1:
准备纯度≥99%的高纯粉体BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3作为原料,
将按化学计量比称量的BaCO3、TiO2进行混合,预烧保温后得到0.9摩尔百分比的BaTiO3主晶相;
将按化学计量比称量的Bi2O3、MgO、TiO2进行混合,预烧保温后得到0.1摩尔百分比的Bi(Mg1/2Ti1/2)O3主晶相;
将按化学计量比称量的Bi2O3、Na2CO3、SrCO3、TiO2进行混合,预烧保温后得到0摩尔百分比的(Bi0.5Na0.5)0.7Sr0.3TiO3主晶相;
将按化学计量比称量的BaTiO3、Bi(Mg1/2Ti1/2)O3进行混合,预烧保温后得到0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3主晶相;
将按化学计量比称量的0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3、0摩尔百分比的(Bi0.5Na0.5)0.7Sr0.3TiO3进行混合,预烧保温后可得到0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3材料粉体,按照粉体、氧化锆球与无水乙醇质量比为1:2:1的比例向粉体中依次加入氧化锆球和无水乙醇,球磨4h,混合磨细后在100~130℃下快速烘干,利用筛网将氧化锆球分离开来,过筛后的粉体放在氧化铝坩埚内进行预烧,预烧温度为850℃,保温时间为4h,升温速率为5℃/min;
预烧后的粉末再次按照粉体、氧化锆球与无水乙醇质量比为1:2:1的比例依次放入到尼龙罐中球磨4小时,之后取出,放入烘箱内在100~130℃下烘干。烘干后的粉体加入8wt%的聚乙烯醇进行造粒,之后将粉体压制成直径为8mm,厚度为1.2mm的小圆柱,在550℃下排胶4小时,其升温速率为1℃/min。最后将排完胶的小圆柱分别在1100~1300℃下烧结2h即得到所需陶瓷材料。
具体实施例2:
根据制备的钛酸钡基陶瓷粉料的组成式为(0.95)[0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3]-0.05(Bi0.5Na0.5)0.7Sr0.3TiO3称量各高纯粉体,其余步骤与具体实施例1相同。
具体实施例3:
根据制备的钛酸钡基陶瓷粉料的组成式为(0.9)[0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3]-0.1(Bi0.5Na0.5)0.7Sr0.3TiO3称量各高纯粉体,其余步骤与具体实施例1相同。
具体实施例4:
根据制备的钛酸钡基陶瓷粉料的组成式为(0.85)[0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3]-0.15(Bi0.5Na0.5)0.7Sr0.3TiO3称量各高纯粉体,其余步骤与具体实施例1相同。
具体实施例5:
根据制备的钛酸钡基陶瓷粉料的组成式为(0.8)[0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3]-0.2(Bi0.5Na0.5)0.7Sr0.3TiO3称量各高纯粉体,其余步骤与具体实施例1相同。
具体实施例1至5制备的钛酸钡基陶瓷粉料的储能性能对比如下表:
经对比,结果显示在x=0.15时,该陶瓷具有较高的储能密度(4.25J/cm3)和储能效率(87.5%),也即可作为优选组成,同时,在25~200℃温度范围内能保持一个相对稳定的储能密度,因此,(1-x)[0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3有望成为一种很有前景的高储能脉冲功率电容器。
本发明通过高绝缘性能MgO引入极大地提高了BaTiO3的击穿强度和绝缘性,Bi(Mg1/2Ti1/2)O3的引入可以促进BaTiO3陶瓷的烧结,显著降低其气孔率和晶粒尺寸,进而获得高的击穿强度,通过在BaTiO3基体中引入Bi(Mg1/2Ti1/2)O3和(Bi0.5Na0.5)0.7Sr0.3TiO3,将铁电畴转化为极性纳米微区,利用极性纳米微区在外加电场下的快速响应,显著提高材料的储能密度和储能效率。
本发明的有益效果为:通过引入强铁电体Bi(Mg1/2Ti1/2)O3和(Bi0.5Na0.5)0.7Sr0.3TiO3与BaTiO3反铁电体形成均匀固溶体,以提高陶瓷材料最大极化强度和击穿场强,从而提升了介电陶瓷材料的储能密度。
以上所揭露的仅为本发明一种钛酸钡基陶瓷材料及制备方法较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (6)

1.一种钛酸钡基陶瓷材料的制备方法,其特征在于,包括以下步骤:
对BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3进行预烧保温,得到钛酸钡基陶瓷粉体;
将所述钛酸钡基陶瓷粉料放入球磨罐中进行预处理后,得到第一产物;
将所述第一产物倒入球磨罐中进行混合后分离,得到粉体,用模具对所述粉体进行压制,得到圆片;
将所述圆片在马弗炉中按烧结条件进行烧结,得到钛酸钡基陶瓷材料;
所述对BaCO3、TiO2、Bi2O3、MgO、Na2CO3和SrCO3进行预烧保温,得到钛酸钡基陶瓷粉体的具体方式为:
将BaCO3、TiO2进行混合,预烧保温后,得到BaTiO3主晶相;
将Bi2O3、MgO、TiO2进行混合,预烧保温后,得到Bi(Mg1/2Ti1/2)O3主晶相;
将Bi2O3、Na2CO3、SrCO3、TiO2进行混合,预烧保温后,得到(Bi0.5Na0.5)0.7Sr0.3TiO3主晶相;
将BaTiO3、Bi(Mg1/2Ti1/2)O3进行混合,预烧保温后,得到0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3主晶相;
将所述0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3和所述(Bi0.5Na0.5)0.7Sr0.3TiO3进行混合,预烧保温后,得到钛酸钡基陶瓷粉体。
2.如权利要求1所述的一种钛酸钡基陶瓷材料的制备方法,其特征在于,
所述将所述钛酸钡基陶瓷粉料放入球磨罐中进行预处理后,得到第一产物的具体方式为:
将所述钛酸钡基陶瓷粉体、氧化锆球与无水乙醇按质量比1:2:1的比例混合得到混合产物;
将所述混合产物球磨4h,混合磨细后在100~130℃下快速烘干以得到干燥产物;
将所述干燥产物通过筛网将氧化锆球分离开来,得到第一产物。
3.如权利要求2所述的一种钛酸钡基陶瓷材料的制备方法,其特征在于,
所述将所述第一产物倒入球磨罐中进行混合后分离,得到粉体,用模具对所述粉体进行压制,得到圆片的具体方式为:
在所述第一产物中加入聚乙烯醇进行造粒,得到细粒径的第一产物;
将所述细粒径的第一产物进行压制,得到圆片。
4.如权利要求3所述的一种钛酸钡基陶瓷材料的制备方法,其特征在于,
所述预烧保温的预烧温度为720~850℃,保温时间为4~6h。
5.如权利要求4所述的一种钛酸钡基陶瓷材料的制备方法,其特征在于,
所述烧结条件为温度为1200~1300℃,保温时间为2h。
6.一种钛酸钡基陶瓷材料,由权利要求1-5中的任意一项所述的一种钛酸钡基陶瓷材料的制备方法制备得到。
CN202210863256.XA 2022-07-21 2022-07-21 一种钛酸钡基陶瓷材料及制备方法 Active CN115368132B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210863256.XA CN115368132B (zh) 2022-07-21 2022-07-21 一种钛酸钡基陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210863256.XA CN115368132B (zh) 2022-07-21 2022-07-21 一种钛酸钡基陶瓷材料及制备方法

Publications (2)

Publication Number Publication Date
CN115368132A CN115368132A (zh) 2022-11-22
CN115368132B true CN115368132B (zh) 2023-07-18

Family

ID=84061095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210863256.XA Active CN115368132B (zh) 2022-07-21 2022-07-21 一种钛酸钡基陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN115368132B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444267A (zh) * 2023-05-08 2023-07-18 四川大学 一种高温强场高介低损的储能陶瓷及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
CN109574656A (zh) * 2018-12-14 2019-04-05 武汉理工大学 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811866B (zh) * 2010-03-30 2012-07-04 武汉理工大学 无铅x8r型电容器陶瓷材料及其制备方法
CN106631021A (zh) * 2017-01-11 2017-05-10 中国人民解放军空军工程大学 一种具有高储能密度和储能效率的陶瓷材料及其制备方法
CN109133915B (zh) * 2018-08-30 2021-11-16 武汉理工大学 一种高储能钛酸钡基介质材料及其制备方法
CN111763082B (zh) * 2019-04-01 2021-08-31 中国科学院上海硅酸盐研究所 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用
CN112174664B (zh) * 2020-10-11 2022-07-08 桂林理工大学 一种高储能、高效率的铌酸钠基陶瓷材料及其制备方法
CN113929458A (zh) * 2021-08-13 2022-01-14 桂林理工大学 一种高效高储能铌酸钠基陶瓷材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
CN109574656A (zh) * 2018-12-14 2019-04-05 武汉理工大学 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法

Also Published As

Publication number Publication date
CN115368132A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN112174664B (zh) 一种高储能、高效率的铌酸钠基陶瓷材料及其制备方法
CN109180178A (zh) 一种高储能密度钛酸锶钡基无铅弛豫铁电陶瓷及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN112919907B (zh) 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法
CN109180181A (zh) 一种无铅弛豫反铁电陶瓷储能材料及其制备方法
CN115448716A (zh) 一种钛酸钡基储能陶瓷材料及其制备方法
CN114644523A (zh) 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN105753471A (zh) 一种高电卡效应铌酸锶钡陶瓷的制备方法
CN114605151A (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN108530056A (zh) 一种巨介电低损耗钛酸锶钡陶瓷及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN113213923A (zh) 一种铪钛酸铅基反铁电陶瓷材料及其制备方法
CN101357848A (zh) 激光烧结复合制备电子陶瓷的方法
CN115196960B (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN111153696A (zh) 一种低温烧结的锆钛酸钡钙基无铅高储能效率陶瓷材料
CN105198409A (zh) 一种高储能密度钛酸锶钡基玻璃复相陶瓷的制备方法
CN116003128B (zh) 一种具有超高储能效率的knn基无铅铁电储能陶瓷材料及其制备方法
CN115677343B (zh) 一种高剩余极化强度bnt基铁电陶瓷材料及其制备方法与应用
CN114520114B (zh) 一种高温度稳定性钛酸铋钠基介质储能陶瓷及其制备方法
CN114874007A (zh) 锆酸钙-钛酸锶高效率储能电介质复合陶瓷的制备方法
CN117658627A (zh) 用于相变检测的高储能荧光可调铁电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant