CN114956805A - 一种巨介电ccto陶瓷的还原-再氧化制备方法 - Google Patents

一种巨介电ccto陶瓷的还原-再氧化制备方法 Download PDF

Info

Publication number
CN114956805A
CN114956805A CN202210813020.5A CN202210813020A CN114956805A CN 114956805 A CN114956805 A CN 114956805A CN 202210813020 A CN202210813020 A CN 202210813020A CN 114956805 A CN114956805 A CN 114956805A
Authority
CN
China
Prior art keywords
equal
ccto
reoxidation
sintering
ccto ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210813020.5A
Other languages
English (en)
Inventor
祖昊
何晓娟
张胜
黄慧
王传丰
刘慧�
边健
丰远
严亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN202210813020.5A priority Critical patent/CN114956805A/zh
Publication of CN114956805A publication Critical patent/CN114956805A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及电子陶瓷元器件领域,公开了一种巨介电CCTO陶瓷的还原‑再氧化制备方法,配方中添加少量BN液相烧结助剂以降低烧结温度,同时,配方中可额外添加包含Al、Mg、Ni等元素中的一种或多种元素,以调节介电常数与介电损耗;本发明首先采用惰性气体或惰性气体与氢气的混合气体烧结,同时,结合埋粉或密封烧结,以阻止CCTO陶瓷材料分解并成瓷;然后,结合低温再氧化处理,获得的CCTO陶瓷具备巨介电、低损耗的良好电学性能;本发明所采用的还原‑再氧化法制备工艺,可推进基于CCTO陶瓷材料的多层片式元件采用贱金属Ni/Cu替代贵金属Pd/Ag作为内电极,有利于降低多层片式元件的制作成本,适于大规模生产。

Description

一种巨介电CCTO陶瓷的还原-再氧化制备方法
技术领域
本发明涉及电子陶瓷元器件领域,具体涉及一种巨介电CCTO陶瓷的还原-再氧化制备方法。
背景技术
21世纪以来,电子信息产业得到了飞速发展,产品设计日新月异,集成度越来越高,可靠性要求日益严苛。作为电子信息产业基础,集成电路时刻面临着严峻的瞬态过压威胁,导致半导体器件失效或损坏难题。尤其是随着芯片集成度的不断提高,高频、高压浪涌的危害日益显著,浪涌保护设计越来越关键和重要。如今,面临复杂的高频、高压浪涌威胁,简单的集成压敏电阻的电路设计已难以获得可靠的浪涌保护。采用压敏-电容联合应用的保护电路设计,已然成为克服高频、高压浪涌的有效解决方案。
集压敏效应与电容效应于一体的多功能CCTO陶瓷受到了广泛地关注。其介电常数可达104以上,同时,Chung在Nature Materials上提出其压敏系数高达900以上。自1967年被报道以来,研究人员已构筑了系列巨介电、低损耗以及高压敏性能的CCTO陶瓷体系,研制出基于贵金属Ag/Pd内电极的多层片式陶瓷电容器(MLCC)原型器件。贵金属Ag/Pd内电极的应用必然致使生产成本攀升,内电极贱金属化是实现低成本化的关键所在,是多层片式元件发展史上的里程碑式技术突破。
贱金属Ni/Cu内电极必须采用惰性气氛或惰性气体与氢气的混合气氛烧结以避免氧化,然而,惰性气氛或惰性气体与氢气的混合气氛烧结可致使CCTO陶瓷材料出现分解现象,巨介电与压敏性能消失。
发明内容
本发明的目的在于提供一种巨介电CCTO陶瓷的还原-再氧化制备方法,解决以下技术问题:
通过抑制CCTO陶瓷在还原气氛中分解,实现惰性气氛或者惰性气氛与氢气的混合气氛烧结CCTO陶瓷,获得的还原的CCTO陶瓷需经过再氧化处理以进一步降低介电损耗;采用还原-再氧化工艺制备的多层片式CCTO陶瓷可使用贱金属Ni/Cu作为内电极,可降低元件制作成本,适于大规模生产。
本发明的目的可以通过以下技术方案实现:
一种巨介电CCTO陶瓷的还原-再氧化制备方法,包括以下步骤:
S1、将CaCO3、CuO、TiO2以及Bi2O3按化学式Ca1-xBixCu3Ti4-yO12称取,其中0.02≤x≤0.5,0≤y≤0.2,加去离子水进行球磨,
将所得浆料烘干、过筛得到粉体;
S2、将S1中获得的粉体在750℃-950℃下空气气氛进行预烧,根据化学式Ca1- xBixCu3Ti4-yO12+zBN称取BN,其中0≤z≤0.2,再次加去离子水进行球磨,将所得浆料烘干、过筛得到第二粉体;
S3、向S2获得的第二粉体中加入PVA,研磨、过筛并压片成型,获得的生坯在空气气氛中500℃-600℃下进行排胶;
S4、将S3获得的生坯在惰性气体或惰性气体与氢气的混合气体中烧结,烧结温度在900℃-1100℃,获得还原的CCTO陶瓷;
S5、将S4获得的还原的CCTO陶瓷,在氧气或空气气氛中400℃-850℃下进行再氧化处理,获得巨介电CCTO陶瓷。
作为本发明进一步的方案,所述S1中还加入包含Al、Ni、Mg元素中任意一种元素组成的化合物,加入总量不超过混合物的40mol%。
作为本发明进一步的方案,所述S4中需要结合埋粉或密封烧结以形成富铜气氛。
一种巨介电CCTO陶瓷,由上述方法制备,所述巨介电CCTO陶瓷的组成为:
Ca1-xBixCu3Ti4-yO12+zBN
其中,0.02≤x≤0.5,0≤y≤0.2,0≤z≤0.2。
本发明的有益效果:
(1)通过抑制CCTO在低氧分压烧结条件下分解现象,实现烧结气氛从传统空气气氛转变为惰性气氛或者惰性气氛与氢气的混合气氛;采用还原-再氧化工艺制备的多层片式CCTO陶瓷可采用贱金属Ni/Cu内电极替换贵金属Ag/Pd内电极,有效地降低元件制备成本;
(2)在惰性气氛或者惰性气氛与氢气的混合气氛中完成烧结,同时向CCTO粉体中加入BN,能有效促进CCTO在低温烧结过程中成瓷;
(3)首先在惰性气氛或者惰性气氛与氢气的混合气氛中完成烧结,然后在空气气氛中在较低温度下进行热处理,降低巨介电CCTO陶瓷介电损耗;CCTO陶瓷的介电常数可达104以上,介电损耗可低至0.1。
附图说明
图1是本发明的实例1-9样品在高纯N2气氛中1050℃烧结后的XRD图;
图2是本发明的实例1-9样品在100Hz-1MHz条件下,介电常数与介电损耗;
图3是本发明的实例10-13样品在100Hz-1MHz条件下,介电常数与介电损耗;
图4是本发明的实例14-17样品在100Hz-1MHz条件下,介电常数与介电损耗;
图5是本发明的实例18-21样品在100Hz-1MHz条件下,介电常数与介电损耗。
具体实施方式
下面将结合说明书附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明涉及的CCTO陶瓷材料的主要组成为:Ca1-xBixCu3Ti4-yO12+zBN,其中,0.02≤x≤0.5,0≤y≤0.2,0≤z≤0.2。
通过固相法合成CCTO陶瓷粉体,经压片成型、排胶。将CCTO生坯置于惰性气氛或惰性气氛与氢气的混合气氛中烧结,烧结过程要结合埋粉或密封烧结,获得的还原的CCTO陶瓷须在空气中再氧化处理,依次包括下述步骤:
S1、将CaCO3、CuO、TiO2以及Bi2O3按化学式Ca1-xBixCu3Ti4-yO12称取(0.02≤x≤0.5,0≤y≤0.2),加去离子水进行球磨,将所得浆料烘干、过筛得到粉体。
S2、将S1获得的粉体在750℃-950℃下空气气氛进行预烧,按化学式Ca1- xBixCu3Ti4-yO12+zBN称取适量的BN(0≤z≤0.2),加入预烧后的CCTO粉体,再次加去离子水进行球磨,将所得的浆料烘干、过筛得到粉体。
S3、向步骤S2获得的粉体中加入PVA,研磨、过筛并压片成型,获得的生坯在空气气氛中500℃-600℃下进行排胶。
S4、将步骤S3获得的生坯在惰性气体或惰性气体与氢气的混合气体中烧结,同时,需要结合埋粉或密封烧结以形成富铜气氛,烧结温度在900℃-1100℃。
S5、将步骤S4获得的还原的CCTO陶瓷,在氧气或空气气氛中400℃-850℃下进行再氧化处理,获得巨介电CCTO陶瓷。
在本发明的另一个实施例中,还额外向步骤S1所述混合物中加入包含Al、Ni、Mg等元素中任意一种元素组成的化合物,加入总量不超过所述混合的40mol%。
实施例1-9
实施例1-9中,CCTO陶瓷材料的主要组成为:Ca1-xBixCu3Ti4-yO12+zBN,其中,x=0、0.02、0.04、0.06、0.08、0.10、0.12、0.14、0.16,y=x/4,z=0.03。初始原材料选自CaCO3、CuO、TiO2、Bi2O3
材料制备按以下实验的工艺步骤进行:
S1、按上述化学式称取CaCO3、CuO、TiO2以及Bi2O3,加去离子水球磨2小时,将所得浆料烘干、过筛得到粉体。
S2、将步骤S1获得的粉体在850℃空气气氛中预烧4小时,称3mol%的BN,加入预烧后的CCTO粉体,再次加去离子水球磨2小时,将所得的浆料烘干、过筛得到粉体。
S3、向步骤S2获得的粉体中加入5wt%的PVA粘合剂,研磨、过筛并压片成型,获得的生坯在空气气氛中550℃下排胶4小时。
S4、将步骤S3获得的生坯掩埋于相同组份的CCTO粉体中,在高纯N2气氛中烧结,烧结温度为1150℃,烧结时间为2小时。还原的样品XRD分析如图1所示。
S5、将步骤S4获得的CCTO陶瓷,置于空气气氛中800℃下再氧化2小时。
在获得的CCTO陶瓷上下两面涂铟镓合金电极,测试介电常数与介电损耗。
表1实施例1-9材料在1kHz条件下性能指标。
Figure BDA0003739995800000061
表1
在100Hz-1MHz条件下,实施例1-9材料的性能如图2所示。
实施例1-9说明了Bi掺杂的CCTO陶瓷在经过还原气氛烧结并进行再氧化处理之后,仍然具有巨介电性能;适量的Bi掺杂可有效的降低CCTO陶瓷的介电损耗。
实施例10-13
实施例10-13中,CCTO陶瓷材料的主要组成为:Ca1-xBixCu3Ti4-yO12+zBN,其中,x=0.06,y=0.015,z=0.03,同时,还额外向上述混合物中添加0.05mol、0.10mol、0.2mol、0.3mol的含镍元素的氧化物,初始原材料选自CaCO3、CuO、TiO2、Bi2O3以及NiO。
材料制备的实验工艺步骤与实施例1-9中的步骤S1-S5相同。
在获得的CCTO陶瓷上下两面涂铟镓合金电极,测试介电常数与介电损耗。
表2实施例10-13材料在1kHz条件下的性能指标。
Figure BDA0003739995800000071
表2
在100Hz-1MHz条件下,实施例10-13材料的性能如图3所示。
实施例10-13结果表明0.05mol与0.1mol的Ni掺杂可进一步降低所获得的CCTO陶瓷的介电损耗。
实施例14-17
实施例14-17中,CCTO陶瓷材料的主要组成为:Ca1-xBixCu3Ti4-yO12+zBN,其中,x=0.06,y=0.015,z=0.03,同时,还额外向上述混合物中添加0.1mol、0.2mol、0.3mol、0.4mol的镁氧化物,初始原材料选自CaCO3、CuO、TiO2、Bi2O3以及MgO。
材料制备的实验工艺步骤与实施例1-9中的步骤(1)-(5)相同。
在获得的CCTO陶瓷上下两面涂铟镓合金电极,测试介电常数与介电损耗。
表3实施例14-17材料在1kHz条件下的性能指标。
Figure BDA0003739995800000081
表3
在100Hz-1MHz条件下,实施例14-17材料的性能如图4所示。
实施例14-17结果表明掺杂Mg元素可显著提高还原-再氧化工艺制备的CCTO陶瓷的介电常数。
实施例18-21
实施例18-21中,CCTO陶瓷材料的主要组成为:Ca1-xBixCu3Ti4-yO12+zBN,其中,x=0.1,y=0.025,z=0.03,同时,还额外向上述混合物中添加0.010mol、0.2mol、0.3mol、0.4mol的铝氧化物,初始原材料选自CaCO3、CuO、TiO2、Bi2O3以及Al2O3
材料制备的实验工艺步骤与实施例1-9中的步骤(1)-(5)相同。
在获得的CCTO陶瓷上下两面涂铟镓合金电极,测试介电常数与介电损耗。
表4实施例18-21材料在1kHz条件下的性能指标。
Figure BDA0003739995800000091
表4
在100Hz-1MHz条件下,实施例18-21材料的性能如图5所示。
实施例18-21结果表明Al掺杂可有效降低还原-再氧化工艺制备的CCTO陶瓷的介电损耗,1kHz条件下,介电损耗可低至0.105。
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (4)

1.一种巨介电CCTO陶瓷的还原-再氧化制备方法,其特征在于,包括以下步骤:
S1、将CaCO3、CuO、TiO2以及Bi2O3按化学式Ca1-xBixCu3Ti4-yO12称取,其中0.02≤x≤0.5,0≤y≤0.2,加去离子水进行球磨,将所得浆料烘干、过筛得到粉体;
S2、将S1中获得的粉体在750℃-950℃下空气气氛进行预烧,根据化学式Ca1- xBixCu3Ti4-yO12+zBN称取BN,其中0≤z≤0.2,再次加去离子水进行球磨,将所得浆料烘干、过筛得到第二粉体;
S3、向S2获得的第二粉体中加入PVA,研磨、过筛并压片成型,获得的生坯在空气气氛中500℃-600℃下进行排胶;
S4、将S3获得的生坯在惰性气体或惰性气体与氢气的混合气体中烧结,烧结温度在900℃-1100℃,获得还原的CCTO陶瓷;
S5、将S4获得的还原的CCTO陶瓷,在氧气或空气气氛中400℃-850℃下进行再氧化处理,获得巨介电CCTO陶瓷。
2.根据权利要求1所述的一种巨介电CCTO陶瓷的还原-再氧化制备方法,其特征在于,所述S1中还包含Al、Ni、Mg元素中任意一种元素组成的化合物,加入总量不超过混合物的40mol%。
3.根据权利要求1所述的一种巨介电CCTO陶瓷的还原-再氧化制备方法,其特征在于,所述S4中需要结合埋粉或密封烧结以形成富铜气氛。
4.一种巨介电CCTO陶瓷,由权利要求1-3任一所述的巨介电CCTO陶瓷的还原-再氧化制备方法制备,其特征在于,所述巨介电CCTO陶瓷的组成为:
Ca1-xBixCu3Ti4-yO12+zBN
其中,0.02≤x≤0.5,0≤y≤0.2,0≤z≤0.2。
CN202210813020.5A 2022-07-11 2022-07-11 一种巨介电ccto陶瓷的还原-再氧化制备方法 Pending CN114956805A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210813020.5A CN114956805A (zh) 2022-07-11 2022-07-11 一种巨介电ccto陶瓷的还原-再氧化制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210813020.5A CN114956805A (zh) 2022-07-11 2022-07-11 一种巨介电ccto陶瓷的还原-再氧化制备方法

Publications (1)

Publication Number Publication Date
CN114956805A true CN114956805A (zh) 2022-08-30

Family

ID=82968632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210813020.5A Pending CN114956805A (zh) 2022-07-11 2022-07-11 一种巨介电ccto陶瓷的还原-再氧化制备方法

Country Status (1)

Country Link
CN (1) CN114956805A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536384A (zh) * 2022-10-24 2022-12-30 合肥学院 一种巨介电、低损耗ccto陶瓷的还原-再氧化制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628808A (zh) * 2008-07-17 2010-01-20 清华大学 一种CaTiO3基压敏-电容双功能陶瓷材料及制备方法
CN112457026A (zh) * 2020-12-14 2021-03-09 江西科技学院 一种钛酸铜钙陶瓷还原—氧化气氛协同烧结方法
CN112552039A (zh) * 2020-12-14 2021-03-26 江西科技学院 一种CaCu3Ti4O12粉体制备及陶瓷烧结方法
CN113149640A (zh) * 2021-04-06 2021-07-23 宁波大学 一种高温高能高效车用逆变电容器核心材料的制备方法
CN114436643A (zh) * 2021-07-19 2022-05-06 西安工程大学 一种巨介电常数、低介电损耗陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101628808A (zh) * 2008-07-17 2010-01-20 清华大学 一种CaTiO3基压敏-电容双功能陶瓷材料及制备方法
CN112457026A (zh) * 2020-12-14 2021-03-09 江西科技学院 一种钛酸铜钙陶瓷还原—氧化气氛协同烧结方法
CN112552039A (zh) * 2020-12-14 2021-03-26 江西科技学院 一种CaCu3Ti4O12粉体制备及陶瓷烧结方法
CN113149640A (zh) * 2021-04-06 2021-07-23 宁波大学 一种高温高能高效车用逆变电容器核心材料的制备方法
CN114436643A (zh) * 2021-07-19 2022-05-06 西安工程大学 一种巨介电常数、低介电损耗陶瓷及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
L. F. XU: "Microstructure and dielectric properties of Ca1-3/2xBixCu3Ti4O12 (x=0.00, 0.05, 0.10, 0.15 and 0.20) ceramics", 《JOURNAL OF MATERIALS SCIENCE:MATERIALS IN ELECTRONS》 *
M. LI: "Enhanced dielectric responses in Mg-doped", 《JOURNAL OF APPLIED PHYSICS》 *
ZHANG CHENG-HUA: "Microstructure and electrical properties of sol−gel derived Ni-doped CaCu3Ti4O12 ceramics", 《TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA》 *
王亚娟: "Al2O3掺杂CaCu3Ti4O12介电性能与I-U非线性特征", 《陕西师范大学学报》 *
王迎军, 华南理工大学 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536384A (zh) * 2022-10-24 2022-12-30 合肥学院 一种巨介电、低损耗ccto陶瓷的还原-再氧化制备方法

Similar Documents

Publication Publication Date Title
JP5281714B2 (ja) ニッケル内電極と整合されるセラミック媒体材料及びそれによって得られたコンデンサの製備方法
KR102492594B1 (ko) 적층 세라믹 콘덴서 및 그 제조 방법
KR102417726B1 (ko) 적층 세라믹 콘덴서 및 그 제조 방법
CN112216510B (zh) 陶瓷电子器件及其制造方法
JP2019201166A (ja) 積層セラミックコンデンサおよびその製造方法
CN101549997A (zh) 电介质陶瓷组合物和电子部件
KR20180027351A (ko) 적층 세라믹 콘덴서 및 그 제조 방법
CN114956805A (zh) 一种巨介电ccto陶瓷的还原-再氧化制备方法
JP5648744B2 (ja) 半導体セラミックコンデンサの製造方法
JP2757587B2 (ja) 粒界絶縁型半導体セラミックコンデンサ及びその製造方法
JP2007005499A (ja) 酸化亜鉛積層型バリスタ及びその製造方法
CN107739204B (zh) 一种偏压特性优良的陶瓷介质材料及其制备方法
US8263432B2 (en) Material composition having core-shell microstructure used for varistor
CN102709010B (zh) 一种多层压敏电阻器及其制备方法
JP2022188286A (ja) 積層セラミックコンデンサおよびその製造方法
CN115132494A (zh) 陶瓷电子器件及陶瓷电子器件的制造方法
US11763993B2 (en) Ceramic electronic device and mounting substrate
JP2019021817A (ja) 積層セラミックコンデンサおよびその製造方法
CN113307622A (zh) 高性能抗还原钛酸钡基介质陶瓷及其制备方法
Handa et al. High volume efficiency multilayer ceramic capacitor
CN117263683B (zh) 一种微波陶瓷材料及其制备方法和在与铜共烧制备5g ltcc滤波器中的应用
JP2003063867A (ja) セラミックコンデンサ及びその誘電体組成物並びにその製造方法
CN115536384A (zh) 一种巨介电、低损耗ccto陶瓷的还原-再氧化制备方法
TWI394736B (zh) Low temperature co-firing process and product of laminated ceramic element without adding hydrogen
JP2757402B2 (ja) 高誘電率系誘電体磁器組成物の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220830

RJ01 Rejection of invention patent application after publication