CN115321976A - 一种巨介电常数、低介电损耗ccto陶瓷材料及其制备方法 - Google Patents

一种巨介电常数、低介电损耗ccto陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN115321976A
CN115321976A CN202210304287.1A CN202210304287A CN115321976A CN 115321976 A CN115321976 A CN 115321976A CN 202210304287 A CN202210304287 A CN 202210304287A CN 115321976 A CN115321976 A CN 115321976A
Authority
CN
China
Prior art keywords
ceramic material
dielectric constant
dielectric loss
low dielectric
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210304287.1A
Other languages
English (en)
Other versions
CN115321976B (zh
Inventor
成鹏飞
党子妍
王丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202210304287.1A priority Critical patent/CN115321976B/zh
Publication of CN115321976A publication Critical patent/CN115321976A/zh
Application granted granted Critical
Publication of CN115321976B publication Critical patent/CN115321976B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种巨介电常数、低介电损耗CCTO陶瓷材料制备方法,具体步骤为:在空气气氛下,以CaCO3、CuO、TiO2为原料,以Nd2O3和Nb2O5作为添加剂,采用固相反应工艺,通过混料、预烧、成型、排胶、烧结工艺流程,获得巨介电常数、低介电损耗陶瓷材料Ca1‑xNdxCu3Ti4‑yNbyO1。本发明在保持CCTO陶瓷材料巨介电常数的基础上提供了一种降低介电损耗的方法,即配方上通过添加Nd2O3和Nb2O5,工艺上通过固相烧结,得到了巨介电常数、低介电损耗的陶瓷材料,其在测试频率为20626Hz时,εr=10880,tanδ=0.020。因此本发明制备出巨介电常数低介电损耗的CCTO陶瓷材料,改善了CCTO陶瓷材料的介电性能。本发明充分运用了固相法,工艺简单,易操作,重复性高,样品性能稳定性高,易于实现规模化生产。

Description

一种巨介电常数、低介电损耗CCTO陶瓷材料及其制备方法
技术领域
本发明涉及化工技术领域,具体涉及一种巨介电常数、低介电损耗CCTO陶瓷材料及其制备方法。
背景技术
CaCu3Ti4O12(简称CCTO)陶瓷是一种具有优异介电性能的新型材料,其介电常数高达104以上,且在一定温度及频率范围(即100K-600K,102Hz-105Hz)内,材料的晶体结构和介电常数几乎不发生变化,这些优异的介电特性使得它成为了近些年来凝聚态物理领域研究的热点。但是较高的介电损耗一直制约着它的应用,因此不断优化CCTO的性能,保证CCTO陶瓷巨介电常数的同时合理降低介电损耗,就有希望在将来的高介电容器、高密度信息储存等高新技术领域取代铁电体材料。
掺杂是改变CaCu3Ti4O12材料介电性能的有效方法。Chiodelli等人研究了Co2+/Co3+掺杂对CaCu3Ti4O12材料性能的影响。发现Co掺杂可以显著地提高材料的相对介电常数。当掺杂5%Co后,介电常数可以达到147000,相比于标准CaCu3Ti4O12材料提高了15倍。但其样品的介电损耗并未有良好改善(Chiodelli G,Massarotti V,Capsoni D,et al.Electricand dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials[J].Solid state communications,2004,132(3-4):241-246.)泰国孔敬大学的Thongbai及其团队在CCTO样品中的Ca位掺入Ba离子,把损耗降低到了0.02左右(10kHz),但其样品Ca0.975Ba0.025Ti4O12的介电常数与标准CCTO相比有大幅度下降(Thongbai P,VangchangyiaS,Swatsitang E,et al.Non-Ohmic and dielectric properties of Ba-dopedCaCu3Ti4O12 ceramics[J],Journal of Materials Science:Materials in Electronics,2012,24(3):875-883)。
除了以上提到的几种金属原子以外,近年来,众多其他的原子掺杂的CaCu3Ti4O12材料的介电性能也得到了广泛地研究。比如:Zn离子(Boonlakhorn J,Kidkhunthod P,Putasaeng B,et al.Significantly improved non-Ohmic and giant dielectricproperties of CaCu3-xZnxTi4O12 ceramics by enhancing grain boundary response[J].Ceramics International,2017,43(2):2705-2711.);Bi离子(Gautam P,Khare A,Sharma S,et al.Characterization of Bi2/3Cu3Ti4O12 ceramics synthesized by semi-wet route[J].Progress in Natural Science:Materials International,2016,26(6):567-571.);Na离子(Hao W,Wu H,Xu P,et al.Influence of Sb-doping on dielectricproperties of NaCu3Ti3TaO12 ceramics and relevant mechanism(s)[J].CeramicsInternational,2017,43(4):3631-3638.)等,这些改进方法结果都是在降低CCTO陶瓷样品介电损耗的同时牺牲了一部分介电常数来实现的。
以上实验在抑制介电损耗的同时导致介电常数大幅减小,或由于工艺过于复杂而难以实现工业化大生产。本发明通过传统的固相法制备的CCTO陶瓷,不仅保持了其巨介电常数,同时显著降低了介电损耗,且制备工艺简单,易于大规模生产。
发明内容
本发明的目的在于提供一种巨介电常数、低介电损耗CCTO陶瓷材料,以解决大惯量电液位置伺服系统在快速运行时易产生大幅超调以及稳态震荡的问题,从而实现在对大惯量电液伺服系统的快速、高精度位置跟踪。
为实现上述目的,本发明提供的技术方案为:
一种巨介电常数、低介电损耗CCTO陶瓷材料,由CaCu3Ti4O12、Nd2O3和Nb2O5组成,化学组成为Ca1-xNdxCu3Ti4-yNbyO12,其中0≤x≤0.1,0≤y≤0.08。
一种巨介电常数、低介电损耗CCTO陶瓷材料制备方法,具体步骤为:在空气气氛下,以CaCO3、CuO、TiO2为原料,以Nd2O3和Nb2O5作为添加剂,采用固相反应工艺,通过混料、预烧、成型、排胶、烧结工艺流程,获得巨介电常数、低介电损耗陶瓷材料Ca1-xNdxCu3Ti4- yNbyO1
作为本发明的进一步技术方案:所述升温条件为以200℃/h的升温速率从室温升至950℃后保温15h。
作为本发明的进一步技术方案:所述烧结条件为以200℃/h升温速率从室温升至1000℃,以600℃/h的升温速率升至1100~1120℃,保温20h,然后随炉冷却。
作为本发明的进一步技术方案:所述混料的工艺流程为:将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nd2O3粉末、Nb2O5粉末按一定的摩尔比混合,原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2,行星球磨机转速保持在360r/min,球磨时间12h。将球磨后的浆料在烘箱中70℃烘干。
作为本发明的进一步技术方案:所述预烧的工艺流程为:将烘干后的粉料置于烧结炉内,以200℃/h的升温速率从室温(20℃)升至950℃,保温15h,然后随炉冷却。
作为本发明的进一步技术方案:所述成型的工艺流程为:称取预烧粉体,并加入等质量的PVA粘合剂造粒,将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。
作为本发明的进一步技术方案:所述排胶的工艺流程为:将生坯置于马弗炉内,以78℃/h的升温速率从室温升至150℃,以200℃/h的升温速率升至350℃,以30℃/h的升温速率升至600℃,保温1h,然后以60℃/h的降温速率降至370℃,最后随炉冷却。
作为本发明的进一步技术方案:所述烧结的工艺流程为:将排胶后的生坯置于烧结炉内,以200℃/h升温速率从室温升至1000℃,以600℃/h的升温速率升至1100~1120℃,保温20h,然后随炉冷却。
由于采用了上述技术方案,与现有技术相比,本发明具有以下优点:
本发明在保持CCTO陶瓷材料巨介电常数的基础上提供了一种降低介电损耗的方法,即配方上通过添加Nb2O5,工艺上通过固相烧结,得到了巨介电常数、低介电损耗的陶瓷材料,其在测试频率为20626Hz时,εr=10880,tanδ=0.020。因此本发明制备出巨介电常数低介电损耗的CCTO陶瓷材料,改善了CCTO陶瓷材料的介电性能。本发明充分运用了固相法,工艺简单,易操作,重复性高,样品性能稳定性高,易于实现规模化生产。
附图说明
图1为实施例1,当测试频率为47779Hz时,εr=8791的曲线图;
图2为实施例1,当测试频率为47779Hz时,tanδ=0.046的曲线图;
图3为实施例2,当测试频率为33080Hz时,εr=9807的曲线图,
图4为实施例2,当测试频率为33080Hz时,tanδ=0.028的曲线图;
图5为实施例3,当测试频率为20626Hz时,εr=10880的曲线图;
图6为实施例3,当测试频率为20626Hz时,tanδ=0.020的曲线图。
具体实施方式
下面结合实施例对本发明做进一步详细说明:
一种巨介电常数、低介电损耗CCTO陶瓷材料,由CaCu3Ti4O12、Nd2O3和Nb2O5组成,化学组成为Ca1-xNdxCu3Ti4-yNbyO12,其中0≤x≤0.1,0≤y≤0.08。
本发明还公开了一种巨介电常数、低介电损耗CCTO陶瓷材料的制备方法,
实施例1:
用固相反应法在1100℃保温20h制备组分和质量百分比含量为Ca0.9Nd0.1Cu3Ti3.92Nb0.08O12陶瓷材料。将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。使用行星球磨机以420r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧。预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨。将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。将生坯置于烧结炉内于600℃进行排胶处理。排胶处理后的生坯再置入烧结炉内于1100℃烧结4h,获得CCTO陶瓷体。将CCTO陶瓷体表面打磨,溅射金电极,进行介电性能测试。室温下,当测试频率为47779Hz时,εr=8791,tanδ=0.046。如附图1曲线所示。
实施例2:
用固相反应法在1120℃保温20h制备组分和质量百分比含量为Ca0.9Nd0.1Cu3Ti3.92Nb0.08O12的陶瓷材料。将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。使用行星球磨机以420r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧。预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨。将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。将生坯置于烧结炉内于600℃进行排胶处理。排胶处理后的生坯再置入烧结炉内于1120℃烧结20h,获得CCTO陶瓷体。将CCTO陶瓷体表面打磨,溅射金电极,进行介电性能测试。室温下,当测试频率为33080Hz时,εr=9807,tanδ=0.028。如附图2曲线所示。
实施例3:
用固相反应法在1100℃保温20h制备组分和质量百分比含量为Ca0.9Nd0.1Cu3Ti3.92Nb0.08O12的陶瓷材料。将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nb2O5粉末按一定的摩尔比混合,放入玛瑙球磨罐中湿法球磨,以无水乙醇为球磨介质,按质量比原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2。使用行星球磨机以420r/min球磨12h,球磨后的浆料在烘箱中70℃烘干,然后将烘干后的粉料置于烧结炉内于950℃进行预烧。预烧后的烧块二次球磨、烘干,加入等质量的PVA粘合剂(2wt%)造粒、研磨。将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。将生坯置于烧结炉内于600℃进行排胶处理。排胶处理后的生坯再置入烧结炉内于1100℃烧结40h,获得CCTO陶瓷体。将CCTO陶瓷体表面打磨,溅射金电极,进行介电性能测试。室温下,当测试频率为20626Hz时,εr=10880,tanδ=0.020。如附图3曲线所示。
本发明还可有其他多种实施例,在不违背本发明精神及其实质的情况下,本领域技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (9)

1.一种巨介电常数、低介电损耗CCTO陶瓷材料,其特征在于,由CaCu3Ti4O12、Nd2O3和Nb2O5组成,化学组成为Ca1-xNdxCu3Ti4-yNbyO12,其中0≤x≤0.1,0≤y≤0.08。
2.一种巨介电常数、低介电损耗CCTO陶瓷材料制备方法,其特征在于,具体步骤为:在空气气氛下,以CaCO3、CuO、TiO2为原料,以Nd2O3和Nb2O5作为添加剂,采用固相反应工艺,通过混料、预烧、成型、排胶、烧结工艺流程,获得巨介电常数、低介电损耗陶瓷材料Ca1- xNdxCu3Ti4-yNbyO1
3.根据权利要求2所述的巨介电常数、低介电损耗CCTO陶瓷材料制备方法,其特征在于,所述升温条件为以200℃/h的升温速率从室温升至950℃后保温15h。
4.根据权利要求2所述的巨介电常数、低介电损耗CCTO陶瓷材料制备方法,其特征在于,所述烧结条件为以200℃/h升温速率从室温升至1000℃,以600℃/h的升温速率升至1100~1120℃,保温20h,然后随炉冷却。
5.根据权利要求2所述的巨介电常数、低介电损耗CCTO陶瓷材料制备方法,其特征在于,所述混料的工艺流程为:将纯度为99.0%的CaCO3粉末、CuO粉末、TiO2粉末、Nd2O3粉末、Nb2O5粉末按一定的摩尔比混合,原料∶玛瑙球∶无水乙醇=1∶1~3∶0.8~1.2,行星球磨机转速保持在360r/min,球磨时间12h。将球磨后的浆料在烘箱中70℃烘干。
6.根据权利要求2所述的巨介电常数、低介电损耗CCTO陶瓷材料制备方法,其特征在于,所述预烧的工艺流程为:将烘干后的粉料置于烧结炉内,以200℃/h的升温速率从室温(20℃)升至950℃,保温15h,然后随炉冷却。
7.根据权利要求2所述的巨介电常数、低介电损耗CCTO陶瓷材料制备方法,其特征在于,所述成型的工艺流程为:称取预烧粉体,并加入等质量的PVA粘合剂造粒,将粒径在60目与100目之间的颗粒陈腐24h,使用粉末压片机在约10MPa压强下将陈腐后的颗粒干压成直径约12mm,厚度约2mm的圆柱形生坯。
8.根据权利要求2所述的巨介电常数、低介电损耗CCTO陶瓷材料制备方法,其特征在于,所述排胶的工艺流程为:将生坯置于马弗炉内,以78℃/h的升温速率从室温升至150℃,以200℃/h的升温速率升至350℃,以30℃/h的升温速率升至600℃,保温1h,然后以60℃/h的降温速率降至370℃,最后随炉冷却。
9.根据权利要求2所述的巨介电常数、低介电损耗CCTO陶瓷材料制备方法,所述烧结的工艺流程为:将排胶后的生坯置于烧结炉内,以200℃/h升温速率从室温升至1000℃,以600℃/h的升温速率升至1100~1120℃,保温20h,然后随炉冷却。
CN202210304287.1A 2022-03-25 2022-03-25 一种巨介电常数、低介电损耗ccto陶瓷材料及其制备方法 Active CN115321976B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210304287.1A CN115321976B (zh) 2022-03-25 2022-03-25 一种巨介电常数、低介电损耗ccto陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210304287.1A CN115321976B (zh) 2022-03-25 2022-03-25 一种巨介电常数、低介电损耗ccto陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115321976A true CN115321976A (zh) 2022-11-11
CN115321976B CN115321976B (zh) 2023-09-01

Family

ID=83916266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210304287.1A Active CN115321976B (zh) 2022-03-25 2022-03-25 一种巨介电常数、低介电损耗ccto陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115321976B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063070A (zh) * 2023-02-24 2023-05-05 郑州轻工业大学 一种高介电常数低介电损耗钛酸铜钠钙镉陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508730A (zh) * 2013-10-08 2014-01-15 江苏大学 一种低温烧结的巨介陶瓷电容器介质及其制备方法
FR3020808A1 (fr) * 2014-05-09 2015-11-13 Srt Microceramique Materiau dielectrique en ceramique comportant du ccto
CN106673642A (zh) * 2017-01-11 2017-05-17 北京元六鸿远电子科技股份有限公司 一种巨介电低损耗ccto基陶瓷材料及其制备方法
CN107285760A (zh) * 2017-07-03 2017-10-24 西安工程大学 一种低损耗巨介电常数陶瓷材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508730A (zh) * 2013-10-08 2014-01-15 江苏大学 一种低温烧结的巨介陶瓷电容器介质及其制备方法
FR3020808A1 (fr) * 2014-05-09 2015-11-13 Srt Microceramique Materiau dielectrique en ceramique comportant du ccto
CN106673642A (zh) * 2017-01-11 2017-05-17 北京元六鸿远电子科技股份有限公司 一种巨介电低损耗ccto基陶瓷材料及其制备方法
CN107285760A (zh) * 2017-07-03 2017-10-24 西安工程大学 一种低损耗巨介电常数陶瓷材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
欧润彬: ""巨介电系数CaCu3Ti4O12陶瓷材料的掺杂改性研究"" *
欧润彬: ""巨介电系数CaCu3Ti4O12陶瓷材料的掺杂改性研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116063070A (zh) * 2023-02-24 2023-05-05 郑州轻工业大学 一种高介电常数低介电损耗钛酸铜钠钙镉陶瓷及其制备方法

Also Published As

Publication number Publication date
CN115321976B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
CN110128127B (zh) 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法
JP2013507526A (ja) 酸化スズセラミックスパッタリングターゲットおよびその製造方法
CN109180181B (zh) 一种无铅弛豫反铁电陶瓷储能材料及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN111320468B (zh) 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN110759728A (zh) 一种类线性无铅弛豫铁电陶瓷材料及其制备方法
CN103739283A (zh) 一种钛酸锶钡陶瓷的制备方法
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN111170739A (zh) 一种高储能铌酸银基无铅反铁电陶瓷及其制备方法
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN115321976B (zh) 一种巨介电常数、低介电损耗ccto陶瓷材料及其制备方法
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN110498681B (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
CN110128128B (zh) 一种具有零温度系数及高温稳定性的铁酸铋-铝酸铋-锌钛酸铋高温压电陶瓷及其制备方法
CN108863348A (zh) 一种超宽温度稳定性的介电陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN110668814A (zh) 一种谐振频率温度系数近零的微波介质材料
CN107285760B (zh) 一种低损耗巨介电常数陶瓷材料的制备方法
CN112552048B (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN112225550B (zh) 一种压电陶瓷材料、其制备方法及压电陶瓷传感器
CN101164968A (zh) 复合微波介质陶瓷材料
CN112062556B (zh) 一种锆酸钙-锆酸锶-锆酸钡固溶体陶瓷材料及其制备方法
CN115376825A (zh) 一种兼具高储能密度和储能效率的nn基储能陶瓷块体材料及其制备方法
CN116063067A (zh) 一种多主元素巨介电陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant