CN115180950B - 一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法 - Google Patents

一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法 Download PDF

Info

Publication number
CN115180950B
CN115180950B CN202210898384.8A CN202210898384A CN115180950B CN 115180950 B CN115180950 B CN 115180950B CN 202210898384 A CN202210898384 A CN 202210898384A CN 115180950 B CN115180950 B CN 115180950B
Authority
CN
China
Prior art keywords
ceramic
carbide
nano
temperature
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210898384.8A
Other languages
English (en)
Other versions
CN115180950A (zh
Inventor
文青波
卢丽
熊翔
王雅雷
文统辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210898384.8A priority Critical patent/CN115180950B/zh
Publication of CN115180950A publication Critical patent/CN115180950A/zh
Application granted granted Critical
Publication of CN115180950B publication Critical patent/CN115180950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法。所述纳米复相陶瓷的组成通式为(TiaZrbHfcNbdTae)C/SiC其中a+b+c+d+e=1,且a,b,c,d,e中至少3个不同时为0。制备方法包括:(1)将至少三种金属元素配合物混合均匀后与硅基聚合物反应得到单源先驱体;(2)单源先驱体经交联、高温热处理后得到纳米复相陶瓷粉体;或,将单源先驱体交联、热解得到无定形陶瓷,进一步烧结得到纳米复相陶瓷块体。本发明制备方法简单可靠、周期短、成本低、可对多元碳化物的种类和含量精确调控,可有效解决多元素单相固溶、纳米陶瓷相均匀分布以及晶粒粗化的难题,提高材料力学性能和抗氧化烧蚀性能。

Description

一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法
技术领域
本发明属于结构陶瓷材料制备领域,具体涉及一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法。
背景技术
超高温陶瓷因具有高熔点、高强度、耐烧蚀等优点,可用于制备“非/低烧蚀”型防热材料,在飞行器热防护领域拥有巨大的应用前景。然而,传统的二元超高温陶瓷(如HfC、ZrB2等)有一个很大的缺点,即中低温(800–1650℃)条件下容易被氧化(HfC、ZrC等甚至在温度超过500℃时即发生氧化)且无法形成致密氧化层,导致其中低温抗氧化能力严重不足,从而大大降低了该类材料的适用温域和可靠性。
针对超高温陶瓷中低温抗氧化性能差这一缺点,研究人员提出了两个主要的改良策略。第一个策略是添加中低温下可形成致密氧化层的第二相(如SiC、MoSi2和LaB6等),其中以添加SiC相最为常见。第二个策略是制备三元或多元超高温陶瓷,即在二元超高温陶瓷中添加一个或多个IVB–VB族过渡金属元素形成单相固溶体(如Ta4HfC5、Zr0.8Ti0.2C0.74B0.26、(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2和(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C等)。该类型超高温陶瓷氧化后表面可形成复杂氧化物(如Hf2Ta6O17、(TaxNb1-x)2(ZryHf1-y)6O17、Ti(Ta0.5Nb0.5)2O7和(Zr0.5Hf0.5)TiO4等),这些氧化物具有不同的生成温度和熔点,一方面有望在不同温度段形成相应的致密保护层,另一方面有望获得更低的氧离子或金属阳离子扩散系数,从而使得超高温陶瓷在更宽温域内具有优异的抗氧化烧蚀性能。
通常含有3种及以上过渡金属元素的碳化物称为多元碳化物,包括过渡金属元素具有近等摩尔比的“中熵”和“高熵”碳化物以及具有非等摩尔比的碳化物。其中由IVB–VB族过渡金属元素组成的多元碳化物的晶体结构为单相岩盐结构,其金属原子共享阳离子位置,碳原子占据阴离子位置。
近年来,人们将上述两种策略相结合,开发出多元复相超高温陶瓷,以获得更好的中低温抗氧化性能。例如,通过混合多种碳化物粉体结合放电等离子烧结技术,开发了(Hf0.25Ta0.25Zr0.25Nb0.25)C–SiC和(Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C–xSiC多元复相超高温陶瓷块体,并研究了其在1300-1500℃范围内的氧化行为和机理,证明了复相化和多元化在提高超高温陶瓷抗氧化性能方面的协同效应以及通过调整超高温陶瓷相中金属元素的种类来影响氧化机理和提高抗氧化性能的可行性。但粉末烧结法不能很好地控制体系成分的多样性和微观结构的均匀性,很难形成单相固溶体,且由于高温烧结过程中晶粒粗化严重,在不加烧结助剂的情况下,无法制备出晶粒尺寸≤100nm的致密纳米复相陶瓷块体,从而影响陶瓷力学性能和抗氧化烧蚀性能。
发明内容
针对现有技术的不足,本发明的目的是提供一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法;本发明所述纳米复相陶瓷包括粉体和/或块体。本发明借助聚合物转化陶瓷法,将单源先驱体聚合物在高温下转化为多元碳化物/碳化硅纳米复相陶瓷粉体,并通过高温烧结制备出纳米复相陶瓷块体,所得复相陶瓷平均晶粒尺寸≤100nm。
本发明所设计和制备的纳米复相陶瓷克服了传统超高温陶瓷存在的中低温抗氧化性能较差的缺陷;使得其在1200-1500℃范围内具有优异的抗氧化性能。通过验证发现在经较长时间(40h)氧化后,陶瓷表面形成了连续且致密的氧化层。
本发明一种多元碳化物/碳化硅纳米复相陶瓷;所述纳米复相陶瓷的组成通式为(TiaZrbHfcNbdTae)C/SiC,其中0≤a<1,0≤b<1,0≤c<1,0≤d<1,0≤e<1,a+b+c+d+e=1,且a,b,c,d,e中至少3个不同时为0,纳米复相陶瓷中,金属元素共享晶体的阳离子阵点,形成单一固溶体。当a,b,c,d,e中至少3个不同时为0,即多元碳化物(TiaZrbHfcNbdTae)C中金属元素至少有三种。
作为优选,所述复相陶瓷同时含有均匀分布的多元过渡族金属碳化物相和碳化硅相。
作为优选,通式(TiaZrbHfcNbdTae)C/SiC中的多元金属碳化物为面心立方晶体结构,过渡族金属元素Ti、Zr、Hf、Ta或Nb原子共享晶体的阳离子阵点,C原子占据阴离子阵点,形成单一固溶体。
作为优选,多元碳化物(TiaZrbHfcNbdTae)C中金属元素可以是等摩尔比或非等摩尔比。
作为优选,本发明一种多元碳化物/碳化硅纳米复相陶瓷,它可以为陶瓷粉体或陶瓷块体,陶瓷粉体粒度为0.1μm-1000μm、进一步优选为5μm-200μm,陶瓷块体的开孔率为0%-30%、进一步优选为0%-10%。
作为优选,本发明一种多元碳化物/碳化硅纳米复相陶瓷,所述复相陶瓷中至少有一相的平均晶粒尺寸为0.1nm-100nm、进一步优选为10nm-70nm。
作为优选,本发明一种多元碳化物/碳化硅纳米复相陶瓷,所述复相陶瓷中多元碳化物(TiaZrbHfcNbdTae)C的质量分数为0.1%-95%、进一步优选为20%-85%。
本发明一种多元碳化物/碳化硅纳米复相陶瓷的制备方法,包括如下述步骤:
(1)将Ti、Zr、Hf、Nb和Ta中至少三种金属元素的配合物与硅基聚合物按照化学计量比称量配料,在惰性气氛中,将配置好的化学原料溶于有机溶剂中,搅拌混合均匀,然后加热使其发生化学反应,将金属原子通过化学键连接到硅基聚合物分子链上,最后除去溶剂,获得同时含有至少三种过渡金属元素的硅基单源先驱体;
(2)将步骤(1)所得单源先驱体在惰性气氛下进行交联、高温热处理,完成“聚合物-陶瓷”转化以及分相、结晶过程后,即得到多元碳化物/碳化硅纳米复相陶瓷,所述惰性气体为氩气或氮气,所述交联温度为150-300℃,热处理温度为1400-2200℃,最高温度下保温时间为0.1-20h;或
将步骤(1)所得单源先驱体在惰性气氛下进行交联、热解,完成“聚合物-陶瓷”转化过程后,即得到至少含三种过渡族金属元素的无定形陶瓷;将无定形陶瓷进行高温烧结即得多元碳化物/碳化硅纳米复相陶瓷块体(TiaZrbHfcNbdTae)C/SiC,所述热解温度为800-1300℃,高温烧结条件为:烧结炉真空度<5Pa,烧结温度1500-2200℃,烧结压力0-150MPa,保温时间0-600min,升温速率5-800℃/min。
作为优选方案;Ti金属元素配合物选自四(二甲氨基)钛(Ⅳ)[Ti(NMe2)4]或四(二乙氨基)钛(Ⅳ)[Ti(NEt2)4]中的至少一种。当然其他Ti金属元素配合物也可用于本发明。
作为优选方案;Zr金属元素配合物选自[Ti(NEt2)4]、四(二甲氨基)锆(Ⅳ)[Zr(NMe2)4]或四(二乙氨基)锆(Ⅳ)[Zr(NEt2)4]中的至少一种。当然其他Zr金属元素配合物也可用于本发明。
作为优选方案;Hf金属元素配合物选自四(二甲氨基)铪(Ⅳ)[Hf(NMe2)4]或四(二乙氨基)铪(Ⅳ)[Hf(NEt2)4]中的至少一种。当然其他Hf金属元素配合物也可用于本发明。
作为优选方案;Ta金属元素配合物选自五(二甲氨基)钽(Ⅴ)[Ta(NMe2)4]或五(二乙氨基)钽(Ⅴ)[Ta(NEt2)4]中的至少一种。当然其他Ta金属元素配合物也可用于本发明。
作为优选方案;Nb金属元素配合物选自五(二甲氨基)铌(Ⅴ)[Nb(NMe2)4]或五(二乙氨基)铌(Ⅴ)[Nb(NEt2)4]中的至少一种。当然其他Nb金属元素配合物也可用于本发明。
作为优选方案;所述硅基聚合物为聚碳硅烷、烯丙基氢化聚碳硅烷、乙烯基聚碳硅烷、超支化聚碳硅烷中的一种或几种。
作为优选方案;所述有机溶剂为无水甲苯或无水二甲苯中的至少一种。
作为优选方案;所述惰性气氛为氩气和/或氮气。
作为优选方案;所述加热温度为30-150℃、进一步优选为80-100℃,所述加热反应时间为10-600min、进一步优选为120-180min。
所述溶剂脱除方法为减压蒸馏或旋蒸法。作为优选,所述溶剂脱除采用减压蒸馏法,减压蒸馏时,加热温度区间为50-80℃。
溶剂脱除后,获得含至少三种过渡族金属元素的硅基单源先驱体。
作为进一步的优选方案,热解温度为1000-1200℃,保温时间为2-4h。
本发明在惰性气体保护下,将所得单源先驱体在更高温度下(≥1400℃)进行热处理,即得多元碳化物/碳化硅纳米复相陶瓷。
作为优选,所述热处理的温度为1400-1700℃,保温时间为2-6h。
本发明所得无定形陶瓷进行高温烧结即得多元碳化物/碳化硅纳米复相陶瓷块体。
作为优选方案,所述高温烧结为放电等离子烧结,烧结条件为:烧结炉真空度<5Pa,温度2000-2200℃,烧结压力50-100MPa,保温时间10-30min,升温速率100-400℃/min。
本发明所得多元碳化物/碳化硅纳米复相陶瓷块体的平均晶粒尺寸小于100nm。经优化后可小于等于60nm。
本发明所得多元碳化物/碳化硅纳米复相陶瓷块体在1500℃的抛物线氧化速率常数小于3.0*10-2mg2/(cm4·h)。经优化后所得多元碳化物/碳化硅纳米复相陶瓷块体在1500℃的抛物线氧化速率常数小于2.0*10-3mg2/(cm4·h)。
本发明技术方案,具有如下优点:
(1)本发明所述方法制备工艺简单易行,制备周期短;
(2)本发明所述方法有利于实现金属元素在分子水平上的灵活调控和均匀分布;
(3)本发明制备陶瓷抗氧化效果佳,所得纳米复相陶瓷块体在1200-1500℃下具有优异的抗氧化性能,氧化层连续且致密。
本方法通过配合物小分子与聚合物的化学反应引入IVB–VB族过渡金属元素,可通过配合物种类和比例实现多元碳化物种类和含量精确调控,可在分子水平上实现过渡金属元素的均匀混合,可有效解决多元素形成单相固溶体、纳米陶瓷相均匀分布和高温晶粒粗化的难题,进而提高材料力学性能和抗氧化烧蚀性能。本方法具有所需设备简易、工艺简单可靠,制备周期短、有大规模批量生产的潜力。
附图说明
图1是本发明多元碳化物/碳化硅纳米复相陶瓷制备工艺流程图。
图2为本发明实施例1所得多元碳化物/碳化硅纳米复相陶瓷粉体XRD图谱。
图3为本发明实施例2所得多元碳化物/碳化硅纳米复相陶瓷粉体XRD图谱。
图4为本发明实施例3所得多元碳化物/碳化硅纳米复相陶瓷块体XRD图谱。
图5为本发明实施例4所得多元碳化物/碳化硅纳米复相陶瓷粉体XRD图谱。
图6为本发明实施例4所得多元碳化物/碳化硅纳米复相陶瓷粉体TEM图。
图7为本发明实施例5所得多元碳化物/碳化硅纳米复相陶瓷块体XRD图谱。
图8为本发明实施例5所得多元碳化物/碳化硅纳米复相陶瓷块体1500℃氧化后截面SEM图。
图9为本发明对比例1所得无定形陶瓷XRD图谱。
具体实施方式
以下通过实施方案进一步阐述本说明,应理解,下述实施方案仅用于说明本发明,而非限制本发明。
实施例1
按照(Ti0.33Zr0.33Hf0.33)C/SiC的化学计量比称量1.26g的四(二乙氨基)钛(Ⅳ)、1.00g的四(二甲氨基)锆(Ⅳ)、1.75g的四(二乙氨基)铪(Ⅳ)溶解于40ml无水甲苯中,称量6.00g的AHPCS溶解于15ml无水甲苯中,二者混合均匀,室温搅拌30min,加热到100℃保温2h,自然冷却后静置12h,55℃减压蒸馏除去无水甲苯,得到含Ti、Zr、Hf的硅基单源先驱体(记为Ti-Zr-Hf-AHPCS),将单源先驱体在氩气中于1100℃保温2h得到无定形陶瓷,随后在氩气中于1500℃回火5h,记为SiTiZrHfC-1500。
如图2所示,得到化学组成为(Ti0.33Zr0.33Hf0.33)C/SiC的复相陶瓷,其XRD图谱呈现出两组衍射峰,一组是典型的具有面心立方晶体结构的金属碳化物衍射峰,即:Ti、Zr、Hf原子共享晶体的金属阳离子阵点,C原子占据阴离子阵点,形成单一固溶体,另一组是β-SiC衍射峰,通过XRD精修计算得陶瓷块体中(Ti0.33Zr0.33Hf0.33)C金属碳化物晶体和β-SiC晶体晶粒尺寸分别为18.5nm和45.6nm,(Ti0.33Zr0.33Hf0.33)C的晶胞参数为0.45647nm,与文献“High-strength medium-entropy(Ti,Zr,Hf)C ceramics up to 1800℃.J.Am.Ceram.Soc.2021,104(6),2436-2441”中报导(Ti0.33Zr0.33Hf0.33)C的晶胞参数值(0.45657nm)非常接近,证明该方法对金属原子个数比的有效调控。
实施例2
按照(Ti0.33Zr0.33Hf0.33)C/SiC的化学计量比称量1.26g的四(二乙氨基)钛(Ⅳ)、1.00g的四(二甲氨基)锆(Ⅳ)、1.75g的四(二乙氨基)铪(Ⅳ)溶解于40ml无水甲苯中,称量6.00g的烯丙基氢化聚碳硅烷(AHPCS)溶解于15ml无水甲苯中,将二者混合均匀,室温搅拌30min,然后加热到100℃保温2h,自然冷却后静置12h,55℃减压蒸馏除去无水甲苯,得到含Ti、Zr、Hf的硅基单源先驱体Ti-Zr-Hf-AHPCS,将该单源先驱体在氩气中于1100℃保温2h得到无定形陶瓷,随后在氩气中于1700℃回火5h得到纳米复相陶瓷,记为SiTiZrHfC-1700。
如图3所示,得到化学组成为(Ti0.33Zr0.33Hf0.33)C/SiC的纳米复相陶瓷,其XRD图谱呈现出两组衍射峰,一组是典型的具有面心立方晶体结构的金属碳化物衍射峰,即:Ti、Zr、Hf原子共享晶体的金属阳离子阵点,C原子占据阴离子阵点,形成单一固溶体,另一组是β-SiC衍射峰,通过XRD精修计算得(Ti0.33Zr0.33Hf0.33)C和β-SiC晶体晶粒尺寸分别为13.3nm和20nm,(Ti0.33Zr0.33Hf0.33)C的晶胞参数为0.45872nm。
实施例3
按照(Ti0.33Zr0.33Hf0.33)C/SiC的化学计量比称量6.30g的四(二乙氨基)钛(Ⅳ)、5.00g的四(二甲氨基)锆(Ⅳ)、8.75g的四(二乙氨基)铪(Ⅳ)溶解于200ml无水甲苯中,称量30.00g的AHPCS溶解于75ml无水甲苯中,二者混合均匀,室温搅拌30min,加热到100℃保温2h,自然冷却静置12h,55℃减压蒸馏除去无水甲苯溶液,得到含Ti、Zr、Hf的硅基单源先驱体,将单源先驱体在氩气中于1100℃保温2h得到无定形陶瓷。
将上述无定形陶瓷放置在石墨模具中进行放电等离子烧结,炉内真空度<5Pa,以100℃/min的升温速率升温到2000℃,保温10min,压力45MPa,随后以100℃/min的降温速率冷却到室温得到纳米复相陶瓷块体,记为SiTiZrHfC-SPS。
如图4所示,得到化学组成为(Ti0.33Zr0.33Hf0.33)C/SiC的复相陶瓷块体,其致密度为90.0%,其XRD图谱呈现出两组衍射峰,一组是典型的具有面心立方晶体结构的金属碳化物衍射峰,即:Ti、Zr、Hf原子共享晶体的金属阳离子阵点,C原子占据阴离子阵点,形成单一固溶体,另一组是β-SiC衍射峰,计算得陶瓷块体中(Ti0.33Zr0.33Hf0.33)C金属碳化物晶体和β-SiC晶体晶粒尺寸分别为27.2nm和34.7nm,(Ti0.33Zr0.33Hf0.33)C的晶胞参数为0.45444nm,该样品在1500℃的抛物线氧化速率常数为2.6*10-2mg2/(cm4·h)。
实施例4
按照Ti0.25Zr0.25Hf0.25Ta0.25C/SiC的化学计量比称量0.63g的四(二乙氨基)钛(Ⅳ)、0.50g的四(二甲氨基)锆(Ⅳ)、0.87g的四(二乙氨基)铪(Ⅳ)、0.75g的五(二甲氨基)钽(Ⅴ)溶解于40ml无水甲苯中,称量4.15g的AHPCS溶解于15ml无水甲苯中,二者混合均匀,室温搅拌30min,加热到100℃保温2h,自然冷却静置12h,55℃减压蒸馏除去无水甲苯溶液,得到含Ti、Zr、Hf、Ta的硅基单源先驱体,将该单源先驱体在氩气中于1100℃保温2h得到无定形陶瓷,随后在氩气中于1700℃回火5h得到纳米复相陶瓷,记为SiTiZrHfTaC-1700。
通过元素分析结果,计算得到Ti、Zr、Hf和Ta含量为近似等摩尔比(nTi:nZr:nHf:nTa=0.022:0.024:0.024:0.026),即得到化学组成为(Ti0.25Zr0.25Hf0.25Ta0.25)C/SiC的纳米复相陶瓷,进一步证明该方法对金属原子个数比的有效调控。如图5所示,其XRD图谱呈现出两组衍射峰,一组是典型的具有面心立方晶体结构的金属碳化物衍射峰,即:Ti、Zr、Hf和Ta原子共享晶体的金属阳离子阵点,C原子占据阴离子阵点,形成单一固溶体,另一组是β-SiC衍射峰,计算得(Ti0.25Zr0.25Hf0.25Ta0.25)C和β-SiC晶体晶粒尺寸分别为19.9nm和29.7nm,如图6(a)所示,所得(Ti0.25Zr0.25Hf0.25Ta0.25)C金属碳化物均匀分布在β-SiC中,图6(b)中统计(Ti0.25Zr0.25Hf0.25Ta0.25)C晶粒尺寸约为19.5nm,与XRD精修结果相近,图6(c)中显示多元碳化物中各种金属元素分布均匀。(Ti0.25Zr0.25Hf0.25Ta0.25)C的晶胞参数为0.45479nm,与文献“Synthesis of High Entropy Carbide Nano Powders via Liquid Polymer PrecursorRoute.J.Inorg.Mater.2021,36(4):393-398”中报导的(Ti0.25Zr0.25Hf0.25Ta0.25)C晶胞参数值(0.45293nm)非常接近。
实施例5
按照Ti0.25Zr0.25Hf0.25Ta0.25C/SiC的化学计量比称量5.67g的四(二乙氨基)钛(Ⅳ)、4.50g的四(二甲氨基)锆(Ⅳ)、7.83g的四(二乙氨基)铪(Ⅳ)、6.75g的五(二甲氨基)钽(Ⅴ)溶解于360ml无水甲苯中,称量37.35g的AHPCS溶解于135ml无水甲苯中,二者混合均匀,室温搅拌30min,加热到100℃保温2h,自然冷却后静置12h,55℃减压蒸馏除去无水甲苯溶液,得到含Ti、Zr、Hf、Ta的硅基单源先驱体,将该单源先驱体在氩气中于1100℃保温2h得到无定形陶瓷。
将无定形陶瓷放置在石墨模具中进行放电等离子烧结,炉内真空度<5Pa,以100℃/min的升温速率升温到2200℃,保温20min,压力50MPa,随后以100℃/min的降温速率冷却到室温得到纳米复相陶瓷块体,记为SiTiZrHfTaC-SPS。
如图7所示,得到化学组成为(Ti0.25Zr0.25Hf0.25Ta0.25)C/SiC的复相陶瓷块体,其致密度为96.5%,其XRD图谱呈现出两组衍射峰,一组是典型的具有面心立方晶体结构的金属碳化物衍射峰,即:Ti、Zr、Hf和Ta原子共享晶体的金属阳离子阵点,C原子占据阴离子阵点,形成单一固溶体,另一组是β-SiC衍射峰,计算得陶瓷块体中(Ti0.25Zr0.25Hf0.25Ta0.25)C金属碳化物晶体和β-SiC晶体晶粒尺寸分别为43.7nm和59.4nm,(Ti0.25Zr0.25Hf0.25Ta0.25)C的晶胞参数为0.45360nm,与文献“Synthesis of High Entropy Carbide Nano Powders viaLiquid Polymer Precursor Route.J.Inorg.Mater.2021,36(4):393-398”中报导的(Ti0.25Zr0.25Hf0.25Ta0.25)C的晶胞参数(0.45293nm)非常接近。
图8为SiTiZrHfTaC-SPS在1500℃下氧化40h后的截面图,图中氧化层连续且致密、厚度约为7.20μm,其抛物线氧化速率常数为1.5*10-3mg2/(cm4·h),比文献“Oxidationbehaviors of(Hf0.25Zr0.25Ta0.25Nb0.25)C and(Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500℃.J.Mater.Sci.Technol.2020,60,147-155.”报导的(Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC在1500℃的抛物线氧化速率常数22.42mg2/(cm4·h)降低了4个数量级。
对比例1
按照Ti0.25Zr0.25Hf0.25Ta0.25C/SiC的化学计量比称量0.63g的四(二乙氨基)钛(Ⅳ)、0.50g的四(二甲氨基)锆(Ⅳ)、0.87g的四(二乙氨基)铪(Ⅳ)、0.75g的五(二甲氨基)钽(Ⅴ)溶解于40ml无水甲苯中,称量4.15g的AHPCS溶解于15ml无水甲苯中,二者混合均匀,室温搅拌30min,加热到100℃保温2h,自然冷却静置12h,55℃减压蒸馏除去无水甲苯溶液,得到含Ti、Zr、Hf、Ta和Si的单源先驱体,将单源先驱体在氩气中于1100℃保温2h得到无定形陶瓷,随后在氩气中于1300℃回火5h,记为SiTiZrHfTaC-1300。
如图9所示,所制备的陶瓷粉体未呈现出明显的特征峰,说明热处理温度较低导致热解后的无定形陶瓷无法结晶、分相,仍维持无定形状态。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种多元碳化物/碳化硅纳米复相陶瓷,其特征在于:所述纳米复相陶瓷的组成通式为(TiaZrbHfcNbdTae)C/SiC,其中0≤a<1,0≤b<1,0≤c<1,0≤d<1,0≤e<1,a+b+c+d+e=1,且a, b, c, d, e中至少3个不同时为0;
所述复相陶瓷同时含有均匀分布的多元过渡族金属碳化物相和碳化硅相;
所述多元碳化物/碳化硅纳米复相陶瓷通过如下述步骤制备:
(1)将Ti、Zr、Hf、Nb和Ta中至少三种金属元素的配合物与硅基聚合物按照化学计量比称量配料,在惰性气氛中,将配置好的化学原料溶于有机溶剂中,搅拌混合均匀,然后加热使其发生化学反应,将金属原子通过化学键连接到硅基聚合物分子链上,最后除去溶剂,获得同时含有至少三种过渡金属元素的硅基单源先驱体;
其中,Ti金属元素配合物选自四(二甲氨基)钛(Ⅳ)或四(二乙氨基)钛中的至少一种;
Zr金属元素配合物选自四(二甲氨基)锆(Ⅳ)或四(二乙氨基)锆(Ⅳ)中的至少一种;
Hf金属元素配合物选自四(二甲氨基)铪(Ⅳ)或四(二乙氨基)铪(Ⅳ)中的至少一种;
Ta金属元素配合物选自五(二甲氨基)钽(Ⅴ)或五(二乙氨基)钽(Ⅴ)中的至少一种;
Nb金属元素配合物选自五(二甲氨基)铌(Ⅴ)或五(二乙氨基)铌(Ⅴ)中的至少一种;
(2)将步骤(1)所得单源先驱体在惰性气氛下进行交联、高温热处理,完成“聚合物-陶瓷”转化以及分相、结晶过程后,即得到多元碳化物/碳化硅纳米复相陶瓷,所述惰性气氛为氩气气氛或氮气气氛,所述交联温度为150-300℃,热处理温度为1400-2200℃,最高温度下保温时间为0.1-20 h;或
将步骤(1)所得单源先驱体在惰性气氛下进行交联、热解,完成“聚合物-陶瓷”转化过程后,即得到至少含三种过渡族金属元素的无定形陶瓷;将无定形陶瓷进行高温烧结即得多元碳化物/碳化硅纳米复相陶瓷块体(TiaZrbHfcNbdTae)C/SiC,所述热解温度为800-1300℃,高温烧结条件为:烧结炉真空度<5 Pa,烧结温度1500-2200℃,烧结压力0-150 MPa,保温时间0-600 min,升温速率5-800℃/min。
2.根据权利要求1所述的一种多元碳化物/碳化硅纳米复相陶瓷,其特征在于:通式(TiaZrbHfcNbdTae)C/SiC中的多元金属碳化物为面心立方晶体结构,过渡族金属元素Ti、Zr、Hf、Ta或Nb原子共享晶体的阳离子阵点,C原子占据阴离子阵点,形成单一固溶体。
3.根据权利要求1所述的一种多元碳化物/碳化硅纳米复相陶瓷,其特征在于:多元碳化物(TiaZrbHfcNbdTae)C中金属元素是等摩尔比或非等摩尔比。
4.根据权利要求1所述的一种多元碳化物/碳化硅纳米复相陶瓷,其特征在于:它为陶瓷粉体或陶瓷块体,陶瓷粉体粒度为0.1μm-1000μm,陶瓷块体的开孔率为0%-30%。
5.根据权利要求1所述的一种多元碳化物/碳化硅纳米复相陶瓷,其特征在于:所述复相陶瓷中至少有一相的平均晶粒尺寸为0.1nm-100nm。
6.根据权利要求1所述的一种多元碳化物/碳化硅纳米复相陶瓷,其特征在于:所述复相陶瓷中多元碳化物(TiaZrbHfcNbdTae)C的质量分数为0.1%-95%。
7.根据权利要求1所述的一种多元碳化物/碳化硅纳米复相陶瓷;其特征在于:
所述硅基聚合物为聚碳硅烷、烯丙基氢化聚碳硅烷、乙烯基聚碳硅烷、超支化聚碳硅烷中的一种或几种,所述有机溶剂为无水甲苯或无水二甲苯,所述惰性气氛为氩气气氛或氮气气氛,所述加热温度为30-150℃,所述加热反应时间为10-600min,所述溶剂脱除方法为减压蒸馏或旋蒸法;
所述高温烧结为放电等离子烧结,烧结条件为:烧结炉真空度<5 Pa,温度2000-2200℃,烧结压力50-100MPa,保温时间10-30min,升温速率100-400℃/min。
CN202210898384.8A 2022-07-28 2022-07-28 一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法 Active CN115180950B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210898384.8A CN115180950B (zh) 2022-07-28 2022-07-28 一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210898384.8A CN115180950B (zh) 2022-07-28 2022-07-28 一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN115180950A CN115180950A (zh) 2022-10-14
CN115180950B true CN115180950B (zh) 2023-05-19

Family

ID=83521803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210898384.8A Active CN115180950B (zh) 2022-07-28 2022-07-28 一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115180950B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784761B (zh) * 2022-12-02 2023-09-19 无锡博智复合材料有限公司 一种高熵陶瓷涂层与基体协同改性碳/碳复合材料及其制备方法
CN116283297B (zh) * 2023-02-13 2024-04-09 中国人民解放军国防科技大学 一种四元碳化物陶瓷先驱体、四元碳化物陶瓷及制备方法
CN116477950B (zh) * 2023-04-18 2023-11-28 中南大学 一种SiC-MC复相陶瓷先驱体及其复相陶瓷的制备方法
CN116514553A (zh) * 2023-05-09 2023-08-01 武汉科技大学 一种复合碳化物陶瓷粉体材料及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401694A (en) * 1987-01-13 1995-03-28 Lanxide Technology Company, Lp Production of metal carbide articles
CN102093055B (zh) * 2010-12-31 2012-08-15 厦门大学 一种碳化硅/碳化钛复相陶瓷的制备方法
CN102503425A (zh) * 2011-10-12 2012-06-20 厦门大学 一种碳化硅/碳化锆复相陶瓷的制备方法
US20170088674A1 (en) * 2014-08-14 2017-03-30 Institute Of Process Engineering, Chinese Academy Of Sciences Polymetallocarbosilane from organic metal catalyzed polymerization and uses thereof
CN105669982B (zh) * 2016-01-22 2018-08-21 中国人民解放军国防科学技术大学 一种有机金属聚合物复相陶瓷先驱体及其制备方法与应用
CN109912313A (zh) * 2019-03-06 2019-06-21 中南大学 一种新型多元单相超高温陶瓷改性碳/碳复合材料及其制备方法
CN111454061B (zh) * 2020-04-07 2021-10-01 厦门大学 一种聚碳硅烷不熔化预处理及其裂解转化三维陶瓷方法

Also Published As

Publication number Publication date
CN115180950A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN115180950B (zh) 一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法
Preiss et al. Studies on the carbothermal preparation of titanium carbide from different gel precursors
Ni et al. Synthesis of monodispersed fine hafnium diboride powders using carbo/borothermal reduction of hafnium dioxide
CN111454061B (zh) 一种聚碳硅烷不熔化预处理及其裂解转化三维陶瓷方法
CN109180180B (zh) 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
Zhang et al. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo) C ceramic prepared by pressureless sintering
CN112679213B (zh) 一种超多元高熵陶瓷及其制备方法和应用
CN112094121A (zh) 一种硫系中高熵max相固溶体材料及其制备方法与应用
El-Sheikh et al. In situ synthesis of ZrC/SiC nanocomposite via carbothermic reduction of binary xerogel
Xiang et al. Synthesis and microstructure of tantalum carbide and carbon composite by liquid precursor route
Wang et al. Synthesis of ZrC–SiC powders from hybrid liquid precursors with improved oxidation resistance
Cai et al. Polymer precursor‐derived HfC–SiC ultrahigh‐temperature ceramic nanocomposites
Liu et al. Effect of SiC content on microstructure evolution of ZrB2-ZrC-SiC ceramic in sol-gel process
Das et al. Synthesis and flash sintering of zirconium nitride powder
Mukerji et al. Sialons from natural aluminosilicates
Chen et al. Synthesis of highly sinterable YAG nanopowders by a modified co-precipitation method
Suri et al. Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume
Xiang et al. Hydrothermal‐carbothermal synthesis of highly sinterable AlN nanopowders
CN1246102A (zh) 碳氮化物粉末及其制备方法和应用
Zheng et al. Effect of MgCl2 addition on the preparation of ZrC–SiC composite particles by sol-gel
He et al. Synthesis and oxidation of Zr3Al3C5 powders
Zabelina et al. SiC composites containing carbon nanotubes and oxide additives based on organoelementoxanes. Preparation by spark plasma sintering
Zheng et al. Improving the sinterability of ZrC–SiC composite powders by Mg addition
Tiwari et al. Influence of SiC content to control morphology of in-situ synthesized ZrB2–SiC composite through single-step reduction process
Choudhary et al. Lithium orthosilicate ceramics with preceramic polymer as silica source

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant