CN116789450B - 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用 - Google Patents

一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
CN116789450B
CN116789450B CN202211005832.3A CN202211005832A CN116789450B CN 116789450 B CN116789450 B CN 116789450B CN 202211005832 A CN202211005832 A CN 202211005832A CN 116789450 B CN116789450 B CN 116789450B
Authority
CN
China
Prior art keywords
entropy
tungsten bronze
ceramic material
bronze structure
ferroelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211005832.3A
Other languages
English (en)
Other versions
CN116789450A (zh
Inventor
王根水
彭浩南
刘振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202211005832.3A priority Critical patent/CN116789450B/zh
Publication of CN116789450A publication Critical patent/CN116789450A/zh
Application granted granted Critical
Publication of CN116789450B publication Critical patent/CN116789450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用。所述非充满型钨青铜结构高熵铁电陶瓷的组成为:(Pb0.2Sr0.2Ba0.2La0.2Na0.2)Nb2O6。本发明首次报道具有非充满型钨青铜结构的高熵铁电陶瓷组分,同时获得了6.16J/cm3的储能密度和82.12%的储能效率,有望应用于脉冲功率电容器器件中。

Description

一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和 应用
技术领域
本发明涉及一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用,属于功能陶瓷技术领域发明。
背景技术
随着对便携式电子产品、电动汽车以及大规模储能设备需求的不断增长,传统电介质陶瓷材料由于其脉冲功率应用、超快的充放电速度、高功率密度得到了广泛关注。为满足以上领域的使用需求,开发具有优异储能性能的新型介质陶瓷来满足先进脉冲功率电容器的实际需求变得越来越重要和迫切。弛豫铁电材料由于具有较高的击穿场强、较大的饱和极化以及较小的剩余极化而备受关注。
钨青铜化合物作为铁电体系的一员,因其优越的电光、介电、铁电和热释电性能而备受关注,四方钨青铜的结构通式为(A1)2(A2)4(C)4(B1)2(B2)8O30,Sr2+、Ba2+、Ca2+、Pb2+、K+、Na+以及一些稀有金属离子占据A1和A2位点,B位离子一般为Nb5+、Ta5+,C位由Li+等小半径离子占据,但一般情况下为空。钨青铜结构化合物根据A位的占据情况,全满时称为充满型、部分填充时称为非充满型。A位空位的离子占用情况和无序程度会影响NbO6八面体极性单元沿c轴方向和ab平面的畸变,产生一些特殊的介电和铁电行为。充满型钨青铜结构,例如Sr1.88Ho0.12NaNb4.88Ti0.12O15(Wrec=1.7J/cm3 and η=89%)(ACS SustainableChem.Eng.2020,8(47):17527-17539)相比于非充满型钨青铜结构,例如(Sr0.5Ba0.5)1.02Nb1.98Fe0.02O6(Wrec=0.595J/cm3 and η=91.3%)(Ceram.Int.2019,45(8):11109-11113),通常具有更优异的储能性能,因此,大多数研究都集中在基于在充满型钨青铜结构来设计优异的储能材料。
发明内容
为此,本发明考虑到非充满型钨青铜结构作为钨青铜化合物具有较宽的组分设计空间,首次基于非充满型钨青铜结构成功设计高熵组分。本发明的目的在于提供一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法。
第一方面,本发明提供了一种非充满型钨青铜结构高熵铁电陶瓷材料,所述非充满型钨青铜结构高熵铁电陶瓷材料的组成为:(Pb0.2Sr0.2Ba0.2La0.2Na0.2)Nb2O6
本发明中,通过在非充满型钨青铜结构的A位进行高熵设计,即等摩尔比的Pb2+、Sr2+、Ba2+、La3+、Na+五种金属离子,得到了非充满型钨青铜结构高熵铁电陶瓷材料。
较佳的,所述非充满型钨青铜结构高熵铁电陶瓷材料符合非充满型钨青铜结构通式:(A1)2(A2)4(C)4(B1)2(B2)8O30,其中A位部分填充,C位为空。具体地,所述钨青铜结构铁电陶瓷结构上C位空隙为空,A位空隙占据了5个位点(未全满),为非充满型钨青铜结构。
较佳的,所述非充满型钨青铜结构高熵铁电陶瓷材料的A位含五种等摩尔比含量的元素,材料构型熵较佳的,所述所述的非充满型钨青铜结构高熵铁电陶瓷材料的最大极化强度为37.78μC/cm2,储能密度为6.16J/cm3,储能效率为82.12%。
另一方面,本发明提供了一种非充满型钨青铜结构高熵铁电陶瓷材料的制备方法,包括:
(1)选取氧化铅粉体、碳酸锶粉体、碳酸钡粉体、氧化镧粉体、碳酸钠粉体、以及五氧化二铌粉体作为原材料,按照化学式(Pb0.2Sr0.2Ba0.2La0.2Na0.2)Nb2O6称量并混合,然后在1140℃~1200℃下预烧处理,得到陶瓷粉体;
(2)将所得陶瓷粉体和粘结剂混合,再经造粒、过筛、成型和排塑,得到陶瓷坯体;
(3)将所得陶瓷坯体,在1250℃~1300℃下烧结处理,得到所述非充满型钨青铜结构高熵铁电陶瓷材料。
较佳的,步骤(1)中,所述混合的方式为球磨混合;无水乙醇作为球磨介质,转速为280~300转/分钟,时间为4~6小时、优选为6小时。
较佳的,步骤(1)中,所述预烧处理的时间为3~4小时。
较佳的,步骤(1)中,所述预烧处理的升温速率不高于2℃/分钟。
较佳的,步骤(2)中,所述粘结剂为浓度为6~7wt.%的聚乙烯醇水溶液;所述粘结剂的加入量为陶瓷粉体质量的6~7wt.%。
较佳的,步骤(2)中,所述过筛的筛网为40目。
较佳的,步骤(2)中,所述排塑的温度为750~800℃,时间为1~3小时。
较佳的,步骤(3)中,所述烧结处理的时间为3~4小时。
较佳的,步骤(3)中,所述烧结处理的升温速率不高于2℃/分钟。
再一方面,本发明提供了一种非充满型钨青铜结构高熵铁电陶瓷材料在制备脉冲功率电容器中的应用
有益效果:
本发明中,首次在非充满型钨青铜结构中成功设计高熵组分,所得非充满型钨青铜结构高熵铁电陶瓷材料具有稳定的单相结构,晶粒较小且均匀分布,同时高熵化的设计在A位引入多种不同价态和半径的离子,从而产生强烈的成分波动和化学无序,诱导弛豫行为,使得该高熵铁电陶瓷在483.5kV/cm下获得了6.16J/cm3的储能密度和82.12%的储能效率,具有满足先进脉冲功率电容器实际需求的潜力。本发明为设计新型介电材料提供了新思路。本发明制备工艺简单。
附图说明
图1为实施例1的X-射线衍射图;
图2为对比例1的X-射线衍射图;
图3为实施例1的非充满型钨青铜结构高熵铁电陶瓷材料的表面微观形貌图;
图4为实施例1的非充满型钨青铜结构高熵铁电陶瓷材料的介电温谱;
图5为实施例1的非充满型钨青铜结构高熵铁电陶瓷材料的单极电滞回线图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明中,非充满型钨青铜结构高熵铁电陶瓷材料的化学分子式为(Pb0.2Sr0.2Ba0.2La0.2Na0.2)Nb2O6。本发明采用高熵化的设计,通过在非充满型钨青铜结构的A位引入多种不同价态和半径的离子,从而产生强烈的成分波动和化学无序,诱导弛豫行为,最终提高其储能特性。
本发明中,采用固相法制备非充满型钨青铜结构高熵铁电陶瓷材料,其工艺流程简单。以下示例性地说明本发明提供的非充满型钨青铜结构高熵铁电陶瓷材料的制备方法。
本发明中,按照化学式(Pb0.2Sr0.2Ba0.2La0.2Na0.2)Nb2O6,进行配料计算,使用原料包括氧化铅粉体、碳酸锶粉体、碳酸钡粉体、氧化镧粉体、碳酸钠粉体和五氧化二铌粉体;采用电子天平进行称量,称量精确至0.001g。其中,氧化铅纯度至少为95%(例如97.88%)、碳酸锶纯度至少为95%(例如99.99%)、碳酸钡纯度至少为95%(例如99.5%)、氧化镧纯度至少为95%(例如99.95%)、碳酸钠纯度至少为95%(例如99.8%)、五氧化二铌纯度至少为95%(例如99.99%)。
将称取的原料粉体混合放入球磨机中,以氧化锆柱、氧化锆球和无水乙醇为介质进行球磨混合,最后经烘干和煅烧,得到陶瓷粉体。其中,所述煅烧的温度可为1260℃,时间可为3~4小时。球磨混合所用氧化锆球粒径为6mm、10mm,氧化锆柱尺寸为直径7.6mm×高7.7mm,重量各占三分之一。将陶瓷粉体放搅拌磨中,以小粒径氧化锆球(例如,氧化锆球粒径为1mm)和无水乙醇为介质进行磨细,烘干,得到混合粉体。
将混合粉体与粘结剂混合均匀并研磨造粒,过筛和模压成型得到陶瓷胚体。粘结剂优选为聚乙烯醇水溶液,浓度为6~7wt.%,其加入量为陶瓷粉体质量的5~7%。过筛筛网优选为40目。
将陶瓷胚体进行排塑和烧结,得到非充满型钨青铜结构高熵铁电陶瓷材料。其中,排塑的温度可为800℃,时间可为2小时。烧结的温度优选为1270℃,烧结时间4小时。
本发明中,非充满型钨青铜结构高熵铁电陶瓷材料是由五种或更多的元素组成,其以接近等量的比例混合,以引起最大的构型熵来实现稳定的单相结构。非充满型钨青铜结构高熵铁电陶瓷材料是基于高熵合金发展起来的新型陶瓷材料体系,具有组分调节空间大、高熵效应以及性能可控等优点。本发明首次报道具有非充满型钨青铜结构的高熵铁电陶瓷组分,同时获得了同时获得了6.16J/cm3的储能密度和82.12%的储能效率,有望应用于脉冲功率电容器器件中。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)按照本发明的分子式(Pb0.2Sr0.2Ba0.2La0.2Na0.2)Nb2O6,进行配料计算:
所用原料包括:氧化铅纯度为97.88%,分子量为138.250;碳酸锶纯度为99.99%,分子量为147.630;碳酸钡纯度为99.5%,分子量为93.179;氧化镧纯度为99.95%,分子量为325.809;碳酸钠纯度为99.8%,分子量为105.990;五氧化二铌纯度为99.99%,分子量为265.810。采用电子天平进行称量,称量精确至0.001g;
(2)将称取的原料混合放入尼龙罐中,向罐中加入不高于罐体高度2/3的无水乙醇,以氧化锆球、氧化锆柱为介质将尼龙罐放在行星球磨机上混合6小时(所使用的氧化锆球粒径为6mm、10mm,氧化锆柱尺寸为直径7.6mm×高7.7mm,重量各占三分之一);然后倒出在烘箱中干燥,再用40目尼龙筛进行过筛,将过筛后的混合粉体在压力机上压成尺寸为直径15mm×高2mm的圆柱体;在空气氛围下,在1260℃下合成4小时,然后砸碎过40目筛网,得到陶瓷粉体;
(3)将所得陶瓷粉体放入搅拌磨中,以直径为1mm的氧化锆球和无水乙醇为介质磨细6小时,在烘烤箱中烘干,得到陶瓷粉体;
(4)在所得混合粉体中加入浓度为7wt.%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为陶瓷粉体质量的6.5%。然后均匀造粒,过40目筛,模压成型,得到尺寸为直径13mm×高1mm的小圆柱体,并进行排塑;
(5)将所得排塑后的坯体在氧化铝坩埚内烧结,烧结温度为1270℃,烧结时间为4小时,自然冷却至室温后取出试样,得到非充满型钨青铜结构高熵铁电陶瓷材料。
将所制备的非充满型钨青铜结构高熵铁电陶瓷材料进行X射线衍射测试,附图1展示了实施例1的X射线衍射图。
将陶瓷表面处理后拍摄表面形貌图,附图3展示了实施例1的表面形貌图。
将陶瓷两面磨平、抛光、镀银电极,测试电学性能,附图4展示了实施例1的介电温谱;附图5展示了实施例1的单极电滞回线。
对比例1
按照分子式(Ca0.2Sr0.2Ba0.2La0.2Na0.2)Nb2O6,进行配料计算:除步骤(1)中氧化铅(纯度为97.88%)替换为碳酸钙(纯度为99.99%);步骤(2)中合成温度为1200℃;步骤(5)中烧结温度为1250℃以外,其他步骤与实施例1相同。
将所制备的非充满型钨青铜结构高熵铁电陶瓷材料进行X射线衍射测试,附图2展示了对比例1的X射线衍射图。
附图1展示了实施例1的X射线衍射图,从图1可见所得实施例1陶瓷无杂相,与标准卡片PDF#73-0487一致,空间群P4bm,属于四方钨青铜晶系。
附图2展示了对比例1的X射线衍射图,从图2可见所得对比例1在29°附近存在一强度明显的杂峰,经标准PDF卡片对比分析,对比例1中含有CaNb2O6第二相存在。这可能是由于Ca2+与Pb2+在离子半径、晶格常数以及电负性等的差异,导致混合熵不足以克服混合焓(正值)带来的不稳定性。
附图3展示了实施例1的表面形貌图,从图中可知该陶瓷表面致密,大小晶粒均匀分布,粒径约为2.63μm,无杂相。
附图4展示了实施例1的介电温谱,从图中可知介电峰表现出频率依赖性,随着频率增加,最大介电常数逐渐下降并向高温移动,证实了实施例1的弛豫性;在-50~100℃温度范围内材料损耗均保持在较低水平。
附图5展示了实施例1的单极电滞回线,从图中可知该陶瓷击穿场强为483.5kV/cm,最大极化强度为37.78μC/cm2,6.16J/cm3的储能密度和82.12%的储能效率。
综上,本发明在钨青铜结构的A位利用高熵策略进行组分设计,并通过组分优化以获得稳定的钨青铜单相结构。本发明实施例制备工艺简单,所制得的非充满型钨青铜结构高熵铁电陶瓷材料具有耐电强度高、储能密度高和储能效率高的优点,有潜力应用在脉冲功率电容器中。

Claims (10)

1. 一种非充满型钨青铜结构高熵铁电陶瓷材料,其特征在于,所述非充满型钨青铜结构高熵铁电陶瓷材料的组成为:(Pb 0.2Sr0.2Ba0.2La0.2Na0.2)Nb2O6
2. 根据权利要求1所述的非充满型钨青铜结构高熵铁电陶瓷材料,其特征在于,所述非充满型钨青铜结构高熵铁电陶瓷材料符合非充满型钨青铜结构通式:(A1)2(A2)4(C)4(B1)2(B2)8O30,其中A位部分填充,C位为空。
3.根据权利要求1所述的非充满型钨青铜结构高熵铁电陶瓷材料,其特征在于,所述非充满型钨青铜结构高熵铁电陶瓷材料的A位含五种等摩尔比含量的元素,材料构型熵
4. 根据权利要求1所述的非充满型钨青铜结构高熵铁电陶瓷材料,其特征在于,所述的非充满型钨青铜结构高熵铁电陶瓷材料的最大极化强度为37.78μC/cm2,储能密度为6.16J/cm3,储能效率为82.12%。
5.一种如权利要求1-4中任一项所述的非充满型钨青铜结构高熵铁电陶瓷材料的制备方法,其特征在于,包括:
(1)选取氧化铅粉体、碳酸锶粉体、碳酸钡粉体、氧化镧粉体、碳酸钠粉体以及五氧化二铌粉体作为原材料按照化学式(Pb0.2Sr0.2Ba0.2La0.2Na0.2)Nb2O6称量并混合,然后在1140℃~1200℃下预烧处理,得到陶瓷粉体;
(2)将所得陶瓷粉体和粘结剂混合,再经造粒、过筛和成型,经排塑后得到陶瓷坯体;
(3)将所得陶瓷坯体,在1250℃~1300℃烧结处理,得到所述非充满型钨青铜结构高熵铁电陶瓷材料。
6.根据权利要求5所述的制备方法,其特征在于,步骤(1)中,所述混合的方式为球磨混合;无水乙醇作为球磨介质,转速为280~300转/分钟,时间为4~6小时。
7. 根据权利要求5所述的制备方法,其特征在于,步骤(1)中,所述预烧处理的时间为3~4小时;所述预烧处理的升温速率不高于2 ℃/分钟。
8.根据权利要求5所述的制备方法,其特征在于,步骤(2)中所述粘结剂为浓度为6~7wt.%的聚乙烯醇水溶液;所述粘结剂的加入量为陶瓷粉体质量的6~7wt.%;所述过筛的筛网为40目;所述排塑的温度为750~800℃,时间为1~3小时。
9. 根据权利要求5所述的制备方法,其特征在于,步骤(3)中所述烧结处理的时间为3~4小时;所述烧结处理的升温速率不高于2 ℃/分钟。
10.一种权利要求1-4中任一项所述的非充满型钨青铜结构高熵铁电陶瓷材料在制备脉冲功率电容器中的应用。
CN202211005832.3A 2022-08-22 2022-08-22 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用 Active CN116789450B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211005832.3A CN116789450B (zh) 2022-08-22 2022-08-22 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211005832.3A CN116789450B (zh) 2022-08-22 2022-08-22 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116789450A CN116789450A (zh) 2023-09-22
CN116789450B true CN116789450B (zh) 2024-04-12

Family

ID=88044974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211005832.3A Active CN116789450B (zh) 2022-08-22 2022-08-22 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116789450B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2465695A1 (fr) * 1979-05-10 1981-03-27 Anvar Materiaux oxyfluores ferroelectriques et procede pour leur obtention
JP2004075448A (ja) * 2002-08-15 2004-03-11 Taiyo Yuden Co Ltd 圧電磁器組成物、圧電磁器組成物の製造方法および圧電セラミック部品
CN101062864A (zh) * 2007-05-28 2007-10-31 北京科技大学 一种铌酸钠钾锂基无铅压电陶瓷及其制备方法
JP2009117592A (ja) * 2007-11-06 2009-05-28 Fujifilm Corp ペロブスカイト型酸化物、強誘電体膜、強誘電体素子、及び液体吐出装置
CN105016728A (zh) * 2014-04-23 2015-11-04 中国民航大学 一种稀土掺杂非充满型钨青铜发光铁电材料及其制备方法
JP2017178744A (ja) * 2016-03-31 2017-10-05 旭化成株式会社 強誘電体セラミックス及びその製造方法
CN111875389A (zh) * 2020-08-13 2020-11-03 西安科技大学 一种无铅压电陶瓷性能调控的方法
CN113024250A (zh) * 2021-03-30 2021-06-25 陕西师范大学 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法
CN113666742A (zh) * 2021-08-30 2021-11-19 南京大学 一种通过掺杂实现弛豫-正常铁电相变的材料及其方法
WO2022132883A1 (en) * 2020-12-15 2022-06-23 University Of Maryland, College Park Multi-element compound nanoparticles, and systems and methods of making and use thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2465695A1 (fr) * 1979-05-10 1981-03-27 Anvar Materiaux oxyfluores ferroelectriques et procede pour leur obtention
JP2004075448A (ja) * 2002-08-15 2004-03-11 Taiyo Yuden Co Ltd 圧電磁器組成物、圧電磁器組成物の製造方法および圧電セラミック部品
CN101062864A (zh) * 2007-05-28 2007-10-31 北京科技大学 一种铌酸钠钾锂基无铅压电陶瓷及其制备方法
JP2009117592A (ja) * 2007-11-06 2009-05-28 Fujifilm Corp ペロブスカイト型酸化物、強誘電体膜、強誘電体素子、及び液体吐出装置
CN105016728A (zh) * 2014-04-23 2015-11-04 中国民航大学 一种稀土掺杂非充满型钨青铜发光铁电材料及其制备方法
JP2017178744A (ja) * 2016-03-31 2017-10-05 旭化成株式会社 強誘電体セラミックス及びその製造方法
CN111875389A (zh) * 2020-08-13 2020-11-03 西安科技大学 一种无铅压电陶瓷性能调控的方法
WO2022132883A1 (en) * 2020-12-15 2022-06-23 University Of Maryland, College Park Multi-element compound nanoparticles, and systems and methods of making and use thereof
CN113024250A (zh) * 2021-03-30 2021-06-25 陕西师范大学 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法
CN113666742A (zh) * 2021-08-30 2021-11-19 南京大学 一种通过掺杂实现弛豫-正常铁电相变的材料及其方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Dielectric properties of novel high-entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)Nb2O6-d tungsten bronze ceramics;Xiaoyan Zhang等;《J Mater Sci》;20220823;第57卷;第15901-15912页 *
Solid Solutions of Lead Metaniobate—Stabilization of the Ferroelectric Polymorph and the Effect on the Lattice Parameters, Dielectric, Ferroelectric, and Piezoelectric Properties;Mtabazi G. Sahini;《J. Am. Ceram. Soc.》;20141231;第97卷(第1期);第220-227页 *
谷睿等.钨青铜SrxBa1–xNb2O6 陶瓷的制备及介电性能研究.《电子元件与材料》.第29卷(第5期),第18-24页. *

Also Published As

Publication number Publication date
CN116789450A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN109180178B (zh) 一种高储能密度钛酸锶钡基无铅弛豫铁电陶瓷及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN115159983B (zh) 一种铌酸钠基弛豫反铁电陶瓷材料及其制备方法
CN109694248B (zh) 高抗电强度无铅储能介质陶瓷材料及其制备方法
CN115180944B (zh) 一种充满型钨青铜结构高熵铁电陶瓷材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN109180181A (zh) 一种无铅弛豫反铁电陶瓷储能材料及其制备方法
CN116082034B (zh) 一种高储能特性的钛酸铋钠基高熵陶瓷材料及其制备方法和应用
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN112876247A (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN115073169A (zh) 一种高能量低损耗的(1-x)NBT-SBT-xBKT无铅陶瓷材料及其制备方法
CN103693958A (zh) 一种用于储能电容器的反铁电陶瓷材料及其制备方法和应用
CN114394833A (zh) 钨青铜结构高储能密度及功率密度无铅储能介质陶瓷材料
CN112521145A (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN116789450B (zh) 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用
CN116789449B (zh) 一种温度稳定性优异的高储能铌酸钠基铁电陶瓷材料及其制备方法和应用
CN109293353B (zh) 一种高储能密度和高储能效率的无铅BiFeO3基铁电陶瓷材料及其制备方法
CN116425537A (zh) Zr掺杂铌酸锶钡钆-二氧化锆复合陶瓷材料及制备方法
CN115403372B (zh) 一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用
CN116803948B (zh) 一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用
CN114560695B (zh) 一种高储能密度和高储能效率的复合陶瓷材料制备方法
CN115872735B (zh) 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用
JP2005119939A (ja) セラミック組成物の製造方法
Zheng et al. Co-Modification of Ba 5 NdTi 3 Ta 7 O 30 Dielectric Ceramics by Substitution and Introducing Secondary Phase
CN111747739A (zh) 一种反铁电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant