CN115403372B - 一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用 - Google Patents

一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN115403372B
CN115403372B CN202211041725.6A CN202211041725A CN115403372B CN 115403372 B CN115403372 B CN 115403372B CN 202211041725 A CN202211041725 A CN 202211041725A CN 115403372 B CN115403372 B CN 115403372B
Authority
CN
China
Prior art keywords
energy storage
based composite
ceramic
high energy
composite ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211041725.6A
Other languages
English (en)
Other versions
CN115403372A (zh
Inventor
王根水
邓韬
刘振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Hangzhou Institute of Advanced Studies of UCAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Hangzhou Institute of Advanced Studies of UCAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS, Hangzhou Institute of Advanced Studies of UCAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202211041725.6A priority Critical patent/CN115403372B/zh
Publication of CN115403372A publication Critical patent/CN115403372A/zh
Application granted granted Critical
Publication of CN115403372B publication Critical patent/CN115403372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用。所述钛酸铋钠基复合陶瓷的组成为:(1‑x)Bi0.5Na0.5TiO3‑0.5xSm2Ti2O7;其中,0.09≤x≤0.15。

Description

一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用
技术领域
本发明涉及一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用,其具有极化强度高,击穿场强大、储能密度高等特点,属于功能陶瓷技术领域。
背景技术
随着电子信息产业的发展,脉冲功率技术及装置已引起广泛关注。能量存储系统是脉冲功率装置中的主要组成部分之一,而介质电容器因为其能量释放速度快、组合灵活、价格低廉等优势,成为目前应用最为广泛的储能器件。
与BaTiO3基和K0.5Na0.5NbO3基陶瓷相比,Bi0.5Na0.5TiO3(BNT)基陶瓷具有复杂的相结构,并且在相同的电场下可以激发出更大的极化强度而成为具有高可回收能量密度介电材料的有力候选者。BNT陶瓷具有高饱和极化强度Pmax(~45μC/cm2),但BNT陶瓷的剩余极化强度Pr(~38μC/cm2)高,导致其储能密度和储能效率低。对BNT陶瓷掺杂改性或者固溶其他材料是提高其储能密度的有效方法,例如固溶SrTiO3或NaNbO3等材料能较好地改良BNT陶瓷的储能特性。
除形成固溶体外,引入第二相形成复合陶瓷也是改良BNT陶瓷性能的方法之一。研究者们曾向Bi0.5Na0.5TiO3-0.06BaTiO3陶瓷中引入钨青铜结构的Sr0.8Na0.4Nb2O6,并形成稳定的第二相Bi1.74Ti2O6.624,诱导弛豫特性产生,增强陶瓷介电性能和储能性能,提升了温度稳定性,在室温到180℃的温度范围内,仍可以保持3304的高介电常数和6.4%的低储能密度变化率(J.Am.Ceram.Soc.,2021,104(10):5138-5147.);也有采用缺陷工程的设计策略,形成(Bi0.47Sm0.03Na0.5-x)0.94Ba0.06TiO3-BaBi4Ti4O15两相复合结构。第二相BaBi4Ti4O15的生成,提升了击穿电场,获得优异储能特性,可回收储能密度可达4.64J/cm3,同时复相结构还增强了耐疲劳性和温度稳定性(Chem.Eng.J.,2022,439:135762.)。然而,目前钛酸铋钠基复合陶瓷储能密度小,击穿场强低,且在高电场时效率下降严重,限制了其在高功率脉冲电源中的应用。
发明内容
针对上述问题,本发明提供了一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用。该材料晶粒细小,性能优异,为高功率脉冲电源等储能元器件提供了一种铁电备选材料。
第一方面,本发明提供了一种高储能特性的钛酸铋钠基复合陶瓷,所述钛酸铋钠基复合陶瓷的组成为:(1-x)Bi0.5Na0.5TiO3-0.5xSm2Ti2O7;其中,0.09≤x≤0.15(优选0.09≤x≤0.12)。
本发明中,引入稀土元素Sm,形成Bi0.5Na0.5TiO3-Sm2Ti2O7两相结构,并制备储能元件,得到了击穿场强和储能密度大幅提升的复合陶瓷。
较佳的,所述高储能特性的钛酸铋钠基复合陶瓷的击穿电场为342.11~430.75kV/cm。
较佳的,所述高储能特性的钛酸铋钠基复合陶瓷的储能密度4.875~7.019J/cm3
较佳的,所述高储能特性的钛酸铋钠基复合陶瓷的储能效率为76.49~81.82%。
第二方面,本发明提供了一种高储能特性的钛酸铋钠基复合陶瓷的制备方法,包括:(1)选用氧化铋粉体、二氧化钛粉体、碳酸钠粉体和氧化钐粉体作为原料,按照Bi:Na:Sm:Ti=(0.5-0.5x):(0.5-0.5x):x:1的摩尔比称量并混合,然后经过煅烧和细磨,得到陶瓷粉体;
(2)将所得陶瓷粉体和粘结剂混合,再经造粒、过筛和成型,得到陶瓷生坯;
(3)将所得陶瓷生坯再经排塑和烧结,得到所述高储能特性的钛酸铋钠基复合陶瓷。
较佳的,步骤(1)中,所述混合的方式球磨混合;无水乙醇作为球磨介质,转速为200~240转/分钟,时间为4~8小时,所用磨球为氧化锆球和氧化锆柱;所述煅烧的温度为800~900℃,时间为2~4小时。
较佳的,步骤(2)中,所述粘结剂为聚乙烯醇水溶液,浓度为6~7wt%;所述粘结剂的加入量为陶瓷粉体质量的5~7wt%;所述过筛的筛网为40目。
较佳的,步骤(3)中,所述排塑的温度为650~700℃,时间为2~3小时。
较佳的,步骤(3)中,所述烧结温度为1100~1200℃,并保温2~4小时。优选,烧结的升温速率为2~3℃/min。
第三方面,本发明提供了一种储能陶瓷元件,包括:上述高储能特性的钛酸铋钠基复合陶瓷,以及分布在高储能特性的钛酸铋钠基复合陶瓷表面的电极。
第四方面,本发明提供了一种上述高储能特性的钛酸铋钠基复合陶瓷在高功率脉冲电容器中的应用。
有益效果:
本发明中,引入Sm元素,调控第二相的生成和分布,改变了高储能特性的钛酸铋钠基复合陶瓷电学性能,342.11~430.75kV/cm,可回收储能密度4.875~7.019J/cm3,储能效率为76.49~81.82%。所得材料具有耐高压、无铅环保、成分及制备工艺稳定等优点,适用于高功率脉冲电源制备和应用,具有显著应用价值。
附图说明
图1为实施例1、2、3的钛酸铋钠基复合陶瓷的X-射线衍射图;
图2为实施例1钛酸铋钠基复合陶瓷的单极电滞回线图;
图3为实施例2钛酸铋钠基复合陶瓷的单极电滞回线图;
图4为实施例3钛酸铋钠基复合陶瓷的单极电滞回线图;
图5为对比例1-2的单级电滞回线图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明涉及一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用,其成分由钙钛矿相Bi0.5Na0.5TiO3和焦绿石相Sm2Ti2O7两部分组成。所述钛酸铋钠基复合陶瓷的组成为:(1-x)Bi0.5Na0.5TiO3-0.5xSm2Ti2O7;其中,0.09≤x≤0.15。采用固相法制备复合陶瓷,本发明工艺流程简单,重复性好,性能易调控。本发明储能特性优异最大击穿电场达430kV/cm,可回收储能密度可为7.019J/cm3,最大储能效率为81.82%。本发明材料组成简单,制备工艺温度,适用于高功率脉冲电源制备和应用。以下示例性地说明高储能特性的钛酸铋钠基复合陶瓷的制备方法。
按照Bi:Na:Sm:Ti=(0.5-0.5x):(0.5-0.5x):x:1的摩尔比进行配料计算,使用原料包括氧化铋、二氧化钛、碳酸钠和氧化钐等粉体。采用电子天平进行称量,称量精确至0.001g。
将原料混合放入球磨机中,以氧化锆球、氧化锆柱和无水乙醇为介质进行混合,再经烘干、煅烧,得到陶瓷粉体。其中,氧化锆球粒径为6mm,氧化锆柱尺寸为直径10mm×高10mm,质量各占一半。
将陶瓷粉体放入尼龙罐中,以相同的氧化锆球、氧化锆柱和无水乙醇为介质进行磨细,烘干,得到磨细陶瓷粉体。
将细磨后的陶瓷粉体与粘结剂混合均匀并研磨造粒,再经过筛和模压成型,得到陶瓷生坯。
将陶瓷生坯进行排塑和烧结,得到高储能特性的钛酸铋钠基复合陶瓷。
将所述高储能特性的钛酸铋钠基复合陶瓷加工成所需尺寸,表面被覆电极后得到储能陶瓷元件。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1(1-x)Bi0.5Na0.5TiO3-0.5xSm2Ti2O7,x=0.09
(1)按照本发明的分子式(1-x)Bi0.5Na0.5TiO3-0.5xSm2Ti2O7,其中按x=0.09进行配料计算,需要原料为:氧化铋,二氧化钛,碳酸钠,氧化钐;采用电子天平进行称量,称量精确至0.001g;
(2)将称取的原料混合放入尼龙罐中,向罐中加入不高于罐体高度2/3的无水乙醇,以氧化锆球、氧化锆柱为介质,将尼龙罐放在行星球磨机上混合4小时,氧化锆球粒径为6mm、氧化锆柱尺寸为直径10mm×高10mm,质量各占一半;然后倒出在烘烤箱中干燥,再用40目尼龙筛进行过筛,将过筛后的混合粉体在压力机上压成尺寸为直径8cm×高6cm的圆柱体;在大气氛围下,在850℃下合成2小时,然后砸碎过40目筛网得到陶瓷粉体;
(3)将所得粉体放入尼龙罐中,以(2)中所述的氧化锆球、氧化锆柱和无水乙醇为介质磨细6小时,在烘烤箱中烘干,得到磨细陶瓷粉体;
(4)在磨细陶瓷粉体中加入浓度为7wt%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为陶瓷粉体质量的5%,然后均匀造粒,过40目筛,模压成型,得到尺寸为直径10mm×高1mm的小圆柱体,并进行排塑;
(5)将所得排塑后的坯体在大气氛围下烧结,升温至1120℃后,烧结2小时,自然冷却至室温后取出试样。
将所制备的钛酸铋钠基复合陶瓷进行X射线衍射测试,附图1展示了实施例1的X射线衍射图。将陶瓷两面磨平、抛光、镀电极,测试电学性能,附图2展示了实施例1的电滞回线。
实施例2:(1-x)Bi0.5Na0.5TiO3-0.5xSm2Ti2O7,其中x=0.12
除步骤(1)中x取值=0.12之外,其他步骤与实施例1相同。
将所制备的钛酸铋钠基复合铁电陶瓷进行X射线衍射测试,附图1展示了实施例2的X射线衍射图。将陶瓷两面磨平、抛光、镀银电极,测试电学性能,附图3展示了实施例2的电滞回线。
实施例3(1-x)Bi0.5Na0.5TiO3-0.5xSm2Ti2O7,其中x=0.15除步骤(1)中x取值=0.15之外,其他步骤与实施例1相同。
将所制备的钛酸铋钠基复合铁电陶瓷进行X射线衍射测试,附图1展示了实施例3的X射线衍射图。将陶瓷两面磨平、抛光、镀银电极,测试电学性能,附图4展示了实施例3的电滞回线。
对比例1
本对比例1中材料中x=0.03,其他步骤与实施例1相同。将陶瓷两面磨平、抛光、镀银电极,测试电学性能,附图5展示了对比例1的电滞回线。
对比例2
本对比例2中材料中x=0.06,其他步骤与实施例1相同。将陶瓷两面磨平、抛光、镀银电极,测试电学性能,附图5展示了对比例2的电滞回线。
表1为本发明制备的钛酸铋钠基复合铁电陶瓷的组成及性能参数:
x 击穿电场(kV/cm) 可回收储能密度(J/cm<sup>3</sup>) 储能效率(%)
实施例1 0.09 342.11 7.019 76.49
实施例2 0.12 402.78 6.387 77.25
实施例3 0.15 430.75 4.875 81.82
对比例1 0.03 216.97 2.419 49.38
对比例2 0.06 276.60 3.299 62.01
从图1可以看出,所述高储能特性的钛酸钡基复合陶瓷在A位掺杂入Sm元素后,出现了第二相,比对标准PDF卡片,确定其为Sm2Ti2O7。陶瓷由纯相BNT钙钛矿结构变为BNT+Sm2Ti2O7两相共存。
本发明中,实施例1、2、3的单极电滞回线如图2、图3、图4所示,对比例1、2的单极电滞回线如图5所示,各例性能参数如表1所示。可见,实施例1-3的储能特性优越,击穿场强高,分别为342.11kV/cm、402.78kV/cm、430.75kV/cm;可回收储能密度大,分别为7.019J/cm3、6.387J/cm3、4.875J/cm3。随着Sm含量的增加,储能特性呈现先后减的趋势。在低Sm含量时,第二相数量少,储能特性由铁电介质BNT主导,随着Sm的增加,第二相也逐渐增多,在铁电介质和线性介质的协同作用下,储能特性上升,但当生成过多第二相时,由线性介质主导的储能特性随之下降。

Claims (9)

1.一种高储能特性的钛酸铋钠基复合陶瓷,其特征在于,所述钛酸铋钠基复合陶瓷的组成为:(1-x)Bi0.5Na0.5TiO3-0.5xSm2Ti2O7;其中,0.09≤x≤0.15;
所述高储能特性的钛酸铋钠基复合陶瓷的击穿电场为342.11~430.75 kV/cm;
所述高储能特性的钛酸铋钠基复合陶瓷的可回收储能密度为4.875~7.019J/cm3
所述高储能特性的钛酸铋钠基复合陶瓷的储能效率为76.49~81.82%。
2.根据权利要求1所述的高储能特性的钛酸铋钠基复合陶瓷,其特征在于,0.09≤x≤0.12。
3.一种如权利要求1或2所述的高储能特性的钛酸铋钠基复合陶瓷的制备方法,其特征在于,包括:
(1)选用氧化铋粉体、二氧化钛粉体、碳酸钠粉体和氧化钐粉体作为原料,按照Bi:Na:Sm :Ti=(0.5-0.5x):(0.5-0.5 x):x:1的摩尔比称量并混合,然后经过煅烧和细磨,得到陶瓷粉体;
(2)将所得陶瓷粉体和粘结剂混合,再经造粒、过筛和成型,得到陶瓷生坯;
(3)将所得陶瓷生坯再经排塑和烧结,得到所述高储能特性的钛酸铋钠基复合陶瓷。
4.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述混合的方式球磨混合;无水乙醇作为球磨介质,转速为200~240转/分钟,时间为4~8小时,所用磨球为氧化锆球和氧化锆柱;所述煅烧的温度为1100~1200℃,时间为2~4小时。
5.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述粘结剂为聚乙烯醇水溶液,浓度为6~7wt%;所述粘结剂的加入量为陶瓷粉体质量的5~7wt%;所述过筛的筛网为40目。
6.根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述排塑的温度为650~700℃,时间为2~3小时。
7.根据权利要求3-6中任一项所述的制备方法,其特征在于,步骤(3)中,所述烧结温度为1100~1200℃,保温时间为2~4小时;所述烧结的升温速率为2~3℃/min。
8.一种储能陶瓷元件,其特征在于,包括:权利要求1或2所述的高储能特性的钛酸铋钠基复合陶瓷,以及分布在高储能特性的钛酸铋钠基复合陶瓷表面的电极。
9.一种权利要求1或2所述的高储能特性的钛酸铋钠基复合陶瓷在高功率脉冲电容器中的应用。
CN202211041725.6A 2022-08-29 2022-08-29 一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用 Active CN115403372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211041725.6A CN115403372B (zh) 2022-08-29 2022-08-29 一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211041725.6A CN115403372B (zh) 2022-08-29 2022-08-29 一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115403372A CN115403372A (zh) 2022-11-29
CN115403372B true CN115403372B (zh) 2023-03-24

Family

ID=84162571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211041725.6A Active CN115403372B (zh) 2022-08-29 2022-08-29 一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115403372B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116874297A (zh) * 2023-07-10 2023-10-13 石河子大学 一种钛酸铋钠基储能陶瓷材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511893B (zh) * 2021-03-24 2022-08-05 广西大学 一种bnt基三层结构的高储能密度陶瓷及其制备方法

Also Published As

Publication number Publication date
CN115403372A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN109354492B (zh) 铋基无铅高储能密度陶瓷材料及其制备方法
CN109180178A (zh) 一种高储能密度钛酸锶钡基无铅弛豫铁电陶瓷及其制备方法
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
CN107244898B (zh) 钛酸锶钡掺杂的锆钛酸钡钙基压电陶瓷材料及制备方法
CN111233470A (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN115159983B (zh) 一种铌酸钠基弛豫反铁电陶瓷材料及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN115403372B (zh) 一种高储能特性的钛酸铋钠基复合陶瓷及其制备方法和应用
CN113004032A (zh) 一种类线性高储能高效率无铅弛豫陶瓷及其制备方法
CN111170739A (zh) 一种高储能铌酸银基无铅反铁电陶瓷及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN115504784A (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
CN115073169A (zh) 一种高能量低损耗的(1-x)NBT-SBT-xBKT无铅陶瓷材料及其制备方法
CN115180944A (zh) 一种充满型钨青铜结构高熵铁电陶瓷材料及其制备方法
CN107814569A (zh) 一种无铅反铁电体陶瓷及其制备方法
CN108409319B (zh) 高储能密度及充放电性能的无铅陶瓷材料及其制备方法
CN109293353B (zh) 一种高储能密度和高储能效率的无铅BiFeO3基铁电陶瓷材料及其制备方法
JP2020152630A (ja) 低い誘電損失を有する誘電体の製造方法及びそれによって製造される誘電体
CN102010200A (zh) 一种镍、铜内电极抗还原陶瓷介质材料及其制备方法
CN109456055A (zh) 一种高击穿高极化钛酸铋钠陶瓷材料、制备方法及应用
CN116803948B (zh) 一种高储能特性的钛酸钡基陶瓷材料及其制备方法和应用
CN116789450B (zh) 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用
CN111087242A (zh) 一种高极化的铁电陶瓷及其制备方法
CN116789449B (zh) 一种温度稳定性优异的高储能铌酸钠基铁电陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant