CN113999006B - 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备 - Google Patents

具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备 Download PDF

Info

Publication number
CN113999006B
CN113999006B CN202111309877.5A CN202111309877A CN113999006B CN 113999006 B CN113999006 B CN 113999006B CN 202111309877 A CN202111309877 A CN 202111309877A CN 113999006 B CN113999006 B CN 113999006B
Authority
CN
China
Prior art keywords
grain
ceramic
piezoelectric
nano
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111309877.5A
Other languages
English (en)
Other versions
CN113999006A (zh
Inventor
侯育冬
王悦
于肖乐
郑木鹏
朱满康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202111309877.5A priority Critical patent/CN113999006B/zh
Publication of CN113999006A publication Critical patent/CN113999006A/zh
Application granted granted Critical
Publication of CN113999006B publication Critical patent/CN113999006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备,属于高温压电材料技术领域。陶瓷晶界处存在规律性排布的纳米级颗粒,且晶界纳米颗粒与陶瓷晶粒内部具有协同的铁电畴。这种特殊晶界颗粒桥结构的存在,使得高温压电陶瓷可以同时获得小晶粒尺寸和高压电性能,进而获得高的换能系数,在高温细晶压电能量收集器应用领域具有十分重要的应用前景。

Description

具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及 制备
技术领域
本发明属于高温压电材料技术领域,具体涉及一种可实现高温细晶压电陶瓷同时具有小晶粒尺寸和高压电性能的结构设计策略及制备方法。
背景技术
在能源日益紧缺的当下,如何将环境中废弃的振动能转化为电能应用于电子设备供电变得尤其重要。基于压电材料独特的正压电效应,可实现清洁发电的压电能量收集器受到全球性的关注。近年来,在航空航天、新能源汽车和石油勘探等领域,自供电无线微型传感器需要在极端高温环境下稳定工作,因此可驱动无线微型传感器的高温能量收集用压电陶瓷不仅要具有远小于1μm的细晶级晶粒尺寸以保证力学可靠性和便于低尺度集成,同时也要保持高换能系数以获得高发电特性。然而,从以往的研究发现,压电陶瓷的晶粒尺寸与压电性能之间存在协同效应,难以在小晶粒尺寸时获得良好的换能系数。
究其原因是普通压电陶瓷主要由结晶晶粒和非晶相晶界所构成。晶粒越小,非晶相晶界的含量越高,在外加电场下,其对陶瓷晶粒内部电畴翻转的阻碍作用越严重,从而导致陶瓷压电性能降低。若要在保持小晶粒尺寸的同时提升细晶压电陶瓷的压电性能,则必须改变普通细晶压电陶瓷的非晶相晶界结构。
在本发明中,我们首次提出替代非晶相晶界结构的晶界颗粒桥结构这一新型高性能细晶压电陶瓷设计策略,即将普通细晶陶瓷的非晶相晶界替换为含有连续的纳米颗粒构成的桥接型晶界(晶界颗粒桥结构)。以0.345BiScO3-0.615PbTiO3-0.04Pb(In1/2Nb1/2)O3(缩写为BS-PT-PIN)为研究体系,成功制备出晶界颗粒桥结构的致密高温细晶压电陶瓷,在具有小晶粒尺寸的同时具有高换能系数,打破晶粒尺寸与压电性能间的耦合关系。该策略的提出与成功实施,为更多高性能细晶压电陶瓷的设计及制备提供了可靠参考。
发明内容
本发明提供了一种具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷及其制备方法。本发明的高温细晶压电陶瓷材料的特征在于具有晶界颗粒桥结构,即陶瓷晶界处存在规律性(如单列排布)排布的纳米级颗粒,且纳米颗粒与陶瓷晶粒内部具有协同的铁电畴。这种特殊晶界结构的存在使高温压电陶瓷材料在具有小晶粒尺寸的同时,保持良好的压电性能,进而实现高的换能系数,有利于作为高温压电能量收集材料使用。
为实现上述目的,本发明采取以下技术方案:
该高温压电陶瓷材料的化学组成为:0.345BiScO3-0.615PbTiO3-0.04Pb(In1/ 2Nb1/2)O3
本发明上述具有晶界颗粒桥结构的高温细晶压电陶瓷材料的制备方法,其特征在于采用粒度分布均匀的纳米级前驱粉体,通过干压成型、无压烧结工艺获得目标陶瓷,具体包括以下步骤:
(1)将原料Bi2O3、TiO2、Sc2O3、Nb2O5、Pb3O4、In2O3置于烘箱中烘干12小时,按照化学计量比称量,以无水乙醇为介质进行12小时行星球磨,随后在120℃的条件下烘干,再于研钵中研细;
(2)研磨后的粉末进行90分钟、800转/分钟碳化钨高能球磨,随后将粉体研磨、过筛,将通过200目、未通过400目网筛的粉末于800MPa的压力下干压成型,获得素坯体;
(3)将素坯体于950℃烧结120分钟,获得目标陶瓷材料。
烧结后的陶瓷样品,经抛光处理后涂覆、烧结银电极,在30kV·cm-1的直流电场下人工极化,测试电学性能。
其中,0.345BiScO3-0.615PbTiO3-0.04Pb(In1/2Nb1/2)O3陶瓷的平均晶粒尺寸为0.26μm,其性能可达到:压电电荷常数d33=343pC/N,换能系数d33×g33=12274×10-15m2/N。
在本发明中,粉体经过球磨、过筛,粒径小,且粒度分布更为均匀。陶瓷晶界采用纳米颗粒填充形成特有的晶界颗粒桥结构,晶界中纳米颗粒(粒径约10nm左右)具备与陶瓷晶粒内部协同的铁电纳米畴,从而在人工极化时大幅降低外加电场作用下畴壁翻转受到的阻碍作用,提升极化效果,使得陶瓷在具有小晶粒尺寸的同时能够保持优异的压电性能,获得具有良好应用前景的高换能系数高温细晶能量收集压电陶瓷材料。
附图说明
图1为晶界颗粒桥结构设计策略图,(a)为该结构示意图,(b)为该结构对陶瓷性能提升作用示意图。
图2为本发明成分在950℃烧结的BS-PT-PIN陶瓷样品附图,(a)为陶瓷的断面扫描电镜(SEM)照片及晶粒尺寸分布图,可见细晶陶瓷平均晶粒尺寸为0.26μm,(b)为陶瓷晶界附近的高倍数透射电镜(TEM)图。由图可见陶瓷晶界含有规则排列的纳米颗粒,即形成晶界颗粒桥结构。
图3为本发明成分在950℃烧结的BS-PT-PIN陶瓷极化后样品的铁电畴附图。由图可见,晶界中纳米颗粒具备与陶瓷晶粒内部协同的铁电纳米畴。
图4为本发明成分不同温度烧结陶瓷极化后样品的铁电畴情况,(a)为900℃烧结,(b)为1000℃烧结,(c)为1050℃烧结。由图可见,样品不含晶界颗粒桥结构。因此,只有特定温度(950℃)烧结才可以获得具有协同畴的晶界颗粒桥结构。
具体实施方式
下面通过实施例进一步阐明本发明的实质性特点和显著优点。这些实施例只是出于示例性说明的目的,而非用于限定本发明。
实施例1:
将原料Bi2O3、TiO2、Sc2O3、Nb2O5、Pb3O4、In2O3置于烘箱中烘干12小时,按照化学式0.345BiScO3-0.615PbTiO3-0.04Pb(In1/2Nb1/2)O3称量,以150ml无水乙醇为介质进行12小时行星球磨,随后在120℃的条件下烘干,再于研钵中研细。研磨后的粉末进行90分钟、800转/分钟的碳化钨高能球磨,随后将粉体研磨、过筛,将通过200目、未通过400目网筛的粉末于800MPa的压力下干压成型,然后于950℃烧结120分钟,获得目标陶瓷材料。
对比例1:
按照化学式0.345BiScO3-0.615PbTiO3-0.04Pb(In1/2Nb1/2)O3称量原料Bi2O3、TiO2、Sc2O3、Nb2O5、Pb3O4、In2O3,烧结温度为900℃。其他同实施例1。
对比例2:
按照化学式0.345BiScO3-0.615PbTiO3-0.04Pb(In1/2Nb1/2)O3称量原料Bi2O3、TiO2、Sc2O3、Nb2O5、Pb3O4、In2O3,烧结温度为1000℃。其他同实施例1。
对比例3:
按照化学式0.345BiScO3-0.615PbTiO3-0.04Pb(In1/2Nb1/2)O3称量原料Bi2O3、TiO2、Sc2O3、Nb2O5、Pb3O4、In2O3,烧结温度为1050℃。其他同实施例1。
表1上述实施例性能对比表
Figure BDA0003341575850000051

Claims (2)

1.一种高温细晶能量收集压电陶瓷材料,其特征在于,陶瓷晶界处存在规律性排布的纳米级颗粒,且纳米颗粒与陶瓷晶粒内部具有协同的铁电畴;
该材料的化学组成为0.345BiScO3-0.615PbTiO3-0.04Pb(In1/2Nb1/2)O3;纳米颗粒粒径为10nm,陶瓷晶粒平均晶粒尺寸为0.26μm。
2.制备权利要求1所述的一种高温细晶能量收集压电陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)将原料Bi2O3、TiO2、Sc2O3、Nb2O5、Pb3O4、In2O3置于烘箱中烘干12小时,按照化学计量比称量,以150ml无水乙醇为介质进行12小时行星球磨,随后在120℃的条件下烘干,再于研钵中研细;
(2)研磨后的粉末进行90分钟、800转/分钟碳化钨高能球磨,随后将粉体研磨、过筛,将通过200目、未通过400目网筛的粉末于800MPa的压力下干压成型,获得素坯体;
(3)将素坯体于950℃烧结120分钟,获得目标陶瓷材料。
CN202111309877.5A 2021-11-07 2021-11-07 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备 Active CN113999006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111309877.5A CN113999006B (zh) 2021-11-07 2021-11-07 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111309877.5A CN113999006B (zh) 2021-11-07 2021-11-07 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备

Publications (2)

Publication Number Publication Date
CN113999006A CN113999006A (zh) 2022-02-01
CN113999006B true CN113999006B (zh) 2022-09-30

Family

ID=79927877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111309877.5A Active CN113999006B (zh) 2021-11-07 2021-11-07 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备

Country Status (1)

Country Link
CN (1) CN113999006B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100158A (ja) * 1995-10-06 1997-04-15 Murata Mfg Co Ltd 圧電磁器及びその製造方法
CN103467089A (zh) * 2013-09-09 2013-12-25 天津大学 一种铌锌铌镍锆钛酸铅压电陶瓷
CN103936412A (zh) * 2014-03-27 2014-07-23 北京大学 一种铌锡酸铅-钪酸铋-钛酸铅三元系高温压电陶瓷材料及其制备方法
CN107032790A (zh) * 2017-05-15 2017-08-11 北京工业大学 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN107698252A (zh) * 2017-10-13 2018-02-16 北京工业大学 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN109180180A (zh) * 2018-10-25 2019-01-11 北京工业大学 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
CN111393160A (zh) * 2020-04-17 2020-07-10 北京工业大学 一种陶瓷材料作为高温压电能量收集材料的应用及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107056291B (zh) * 2017-04-14 2020-09-25 北京工业大学 一种亚微米晶尺度压电能量收集材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100158A (ja) * 1995-10-06 1997-04-15 Murata Mfg Co Ltd 圧電磁器及びその製造方法
CN103467089A (zh) * 2013-09-09 2013-12-25 天津大学 一种铌锌铌镍锆钛酸铅压电陶瓷
CN103936412A (zh) * 2014-03-27 2014-07-23 北京大学 一种铌锡酸铅-钪酸铋-钛酸铅三元系高温压电陶瓷材料及其制备方法
CN107032790A (zh) * 2017-05-15 2017-08-11 北京工业大学 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN107698252A (zh) * 2017-10-13 2018-02-16 北京工业大学 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN109180180A (zh) * 2018-10-25 2019-01-11 北京工业大学 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
CN111393160A (zh) * 2020-04-17 2020-07-10 北京工业大学 一种陶瓷材料作为高温压电能量收集材料的应用及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ultra-broad temperature insensitive ceramics with large piezoelectricity by morphotropic phase boundary design;Haiyan Zhao等;《Acta Materialia》;20191002;第181卷;第238-248页 *

Also Published As

Publication number Publication date
CN113999006A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN109180180B (zh) 一步无压烧结合成亚微米晶尺度压电陶瓷材料的制备方法
KR101348547B1 (ko) 표면 코팅된 리튬티탄산화물 분말 및 이의 제조방법
CN107056291B (zh) 一种亚微米晶尺度压电能量收集材料及其制备方法
Berthebaud et al. Thermoelectric properties and spark plasma sintering of doped YB 22 C 2 N
CN113666743A (zh) 一种knn基透明储能陶瓷材料及其制备方法
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN112736233A (zh) 一种锂离子电池电极活性物质、制备方法及其电极和电池
JP7233333B2 (ja) 焼結体の製造方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN109400147B (zh) 一种应用于高功率密度能量收集器件的无铅压电织构复合材料及其制备方法和应用
CN113999006B (zh) 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备
Anas et al. Nanofillers in ZnO based materials: a ‘smart’technique for developing miniaturized high energy field varistors
CN108101537A (zh) 一种纳米压电陶瓷能量收集材料及其制备方法
CN112645709A (zh) 一种pzt基压电陶瓷及其制备方法
CN109659427B (zh) 一种过渡金属包覆In2O3(ZnO)5核-壳结构热电材料的制备方法
CN115028450B (zh) 一种铌酸钠基陶瓷材料及其制备方法
CN112723877B (zh) 一种具有微米内晶型结构的陶瓷-金属无铅压电复合材料及制备方法
KR101851736B1 (ko) 열전 효율이 향상된 열전소자 및 그 제조방법
CN107394130A (zh) 一种三维多孔石墨烯改性的lfp粉体的制备方法
CN104505146A (zh) 一种具有纳米核壳及内晶型结构的介电复合材料及制备方法
CN116813344B (zh) 一种铌酸钠基复合储能陶瓷材料
CN112786777B (zh) 无源自供能用压电纳米线的制备方法及压电纳米线
CN114560695B (zh) 一种高储能密度和高储能效率的复合陶瓷材料制备方法
CN115872735B (zh) 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant