CN111393160A - 一种陶瓷材料作为高温压电能量收集材料的应用及制备方法 - Google Patents

一种陶瓷材料作为高温压电能量收集材料的应用及制备方法 Download PDF

Info

Publication number
CN111393160A
CN111393160A CN202010305058.2A CN202010305058A CN111393160A CN 111393160 A CN111393160 A CN 111393160A CN 202010305058 A CN202010305058 A CN 202010305058A CN 111393160 A CN111393160 A CN 111393160A
Authority
CN
China
Prior art keywords
temperature
ceramic material
piezoelectric
ceramic
piezoelectric energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010305058.2A
Other languages
English (en)
Other versions
CN111393160B (zh
Inventor
侯育冬
赵海燕
于肖乐
郑木鹏
朱满康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202010305058.2A priority Critical patent/CN111393160B/zh
Publication of CN111393160A publication Critical patent/CN111393160A/zh
Application granted granted Critical
Publication of CN111393160B publication Critical patent/CN111393160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种陶瓷材料作为高温压电能量收集材料的应用及制备方法,属于压电陶瓷材料领域。该陶瓷材料的基体化学组成为zBiScO3‑xPbTiO3‑yBi(Zn0.5Hf0.5)O3,x,y,z分别表示PbTiO3、Bi(Zn0.5Hf0.5)O3和BiScO3组分的摩尔分数,x取值为0.620~0.650,y取值为0.01~0.03,z取值为1‑x‑y,作为高温压电能量收集材料的应用。本发明应用于高温压电能量收集器件,可实现400℃超高温境中废弃振动能的回收再利用,具有显著的社会意义和经济价值。

Description

一种陶瓷材料作为高温压电能量收集材料的应用及制备方法
技术领域
本发明属于压电陶瓷材料领域,具体涉及应用于高温压电能量收集器件的,在400℃超高温下具有高压电电荷常数和高能量收集性能的陶瓷材料及其制备方法。
背景技术
随着无线传感网络(WSN)系统的发展,低功耗微传感设备得到了迅速发展和广泛应用,但是随之而来的数量庞大的供电电池的更换将造成昂贵的维护成本和巨大的资源浪费。特别是在一些特殊领域,如航空航天、核反应堆、地热能源等高温服役环境中,供电电池的不定期更换将付出巨大代价,实现高温微器件的自供电具有重要的现实意义。压电能量收集器件可高效地将环境中废弃的振动能回收再利用,被认为是微功率电力供应无线传感网络中最有可能替代传统电池实现为WSN长期供电的能量转换装置。
目前,商业化应用最广泛的压电材料是Pb(Zr,Ti)O3(简称PZT)体系材料,其居里温度约为180~386℃,但实际安全使用温度被限制在200℃以下,温度过高就会出现性能的严重劣化,大大限制了其在高温环境的应用。而钙钛矿结构BiScO3-PbTiO3(简称BS-PT)材料,具有高居里温度且压电活性高,是高温压电陶瓷研究的主要材料体系。然而由于其退极化行为发生在400℃之前,在400℃及以上的超高温度环境中也无法应用。因此,研制出在400℃及以上的超高温下仍具有高压电性,且能实现大功率器件化应用的高温压电陶瓷材料一直是人们亟待解决的问题。
本发明中,以BS-PT为基体材料,利用相界理论设计宽组成范围的zBiScO3-xPbTiO3-yBi(Zn0.5Hf0.5)O3三元陶瓷材料体系,通过多重准同型相界(MPB)的构建与筛选,利用传统固相法,制备出在400℃超高温下具有高压电电荷常数值的高温压电陶瓷材料,并实现了高温压电能量收集性能评价。
发明内容
本发明的目的在于提供将一种陶瓷材料作为400℃超高温下具有高压电电荷常数值以及压电能量收集性能的高温压电陶瓷材料的应用及制备方法。
本发明的材料特征在于,作为高温压电陶瓷材料时,陶瓷材料400℃时压电电荷常数d33=726pC/N,可应用于高温领域压电器件。
本发明的材料另一特征在于,将其装配成悬臂梁式(单层)能量收集器时,在400℃高温下,开路电压峰峰值为3.16V,能量密度为0.031μW/mm3,对10μF、16V的商业电解电容器充电40s电容器充满时两端电压为0.9V,可应用于高温领域压电能量收集器件。
为实现上述目的,本发明采取以下技术方案:
一种陶瓷材料的应用,该压电陶瓷材料的化学组成为:zBiScO3-xPbTiO3-yBi(Zn0.5Hf0.5)O3,其中,x,y,z分别表示PbTiO3、Bi(Zn0.5Hf0.5)O3和BiScO3组分的摩尔分数,其中x取值为0.620~0.650,y取值为0.01~0.03,z取值为1-x-y,用于高温(如400℃)领域压电能量收集器件,优选为x=0.635,y=0.01,z=0.355。
上述陶瓷材料400℃超高温时,具有高压电性能,压电电荷常数d33=726pC/N。
上述陶瓷材料装配成悬臂梁式能量收集器,400℃时,开路电压峰峰值为3.16V,能量密度为0.031μW/mm3,对10μF、16V的商业电解电容器充电40s电容器充满时两端电压为0.9V。
本发明上述在超高温下具有高压电性能和能量收集性能的陶瓷材料制备方法,具体包括以下步骤:
(1)将原料Pb3O4、TiO2、Bi2O3、Sc2O3、ZnO和HfO2按压电陶瓷材料中元素化学摩尔比称量,将称量好的原料放入球磨罐中,以无水乙醇为介质置于卧式球磨机中球磨24h,然后在100℃条件下烘干;
(2)将烘干的料在800℃煅烧,具体工艺如下:25℃~650℃,升温速率为7℃/min,650℃~800℃,升温速率为3℃/min,保温2h,随炉冷却至室温。
(3)将煅烧后的粉料加入无水乙醇进行二次球磨24h;
(4)将二次球磨得到的粉料加入粘结剂,在压力下压制成陶瓷素坯,并加热进行排胶处理;
如加入5wt.%的聚乙烯醇(PVA)粘结剂,在100MPa单轴压力下压制成陶瓷素坯,在560℃进行排胶处理2h;
(5)将排胶处理后的素坯体在1150℃烧结,具体工艺如下:25℃~650℃,升温速率为7℃/min,650℃~950℃,升温速率为3℃/min,650℃~1150℃,升温速率为1.5℃/min,保温2h,随炉冷却至室温。
制备得到的陶瓷材料,经过表面的抛光处理,烧渗银电极,在120℃的硅油中,在4kV/mm的电压下极化30min。经室温老化24h后对样品进行电性能的测试。
其中,得到纯钙钛矿结构最佳样品组成为x=0.635,y=0.01,z=0.355。经原位测试,400℃时压电电荷常数d33=726pC/N;将其装配成悬臂梁式能量收集器后,400℃时开路电压峰峰值为3.16V,能量密度为0.031μW/mm3,对10μF、16V的商业电解电容器充电40s电容器充满时两端电压为0.9V。可以满足400℃超高温领域常规微电子器件的供电应用要求。
与现有技术相比较,本发明具有以下优点:
(1)本发明在400℃超高温下仍具有高压电性,原位测试压电电荷常数为726pC/N,比此时基体0.36BiScO3-0.64PbTiO3(简称BS-PT64)的d33值(405pC/N)高出79%,高压电性为高温大功率器件应用提供了保障。
(2)本发明陶瓷材料装配成悬臂梁式能量收集器,在400℃时,开路电压峰峰值为3.16V,能量密度为0.031μW/mm3,对10μF、16V的商业电解电容器充电40s电容器充满时两端电压为0.9V。而此温度下BS-PT64能量收集器的开路电压峰峰值仅为0.72V,而外接负载时则无法工作。证明本发明陶瓷材料是一种潜在的可应用于400℃超高温环境能量收集器件的压电陶瓷材料。
(3)本发明通过工艺制度设计,用卧式球磨机球磨,传统固相法制备,方法简单,效果优异,应用于能量收集器件,便于大规模生产,具有显著的经济和社会价值。
附图说明
图1为本发明具体实施中陶瓷材料x=0.635,y=0.01,z=0.355(简称BS-PT-BZH)和BS-PT64用原位法测得的400℃时的压电性能比较。
图2为本发明具体实施中BS-PT-BZH以及BS-PT64陶瓷材料装配成的悬臂梁式能量收集器在400℃时的输出电压信号。
图3为本发明具体实施中BS-PT-BZH陶瓷材料装配成的悬臂梁式能量收集器在400℃测试温度下,外加负载电阻时:(a)发电功率随负载电阻值的变化关系;(b)能量密度。
图4为本发明具体实施中BS-PT-BZH陶瓷材料装配成的悬臂梁式能量收集器400℃测试温度下,对一个10μF、16V的商业电解电容器进行充电时:(a)电容器两端电压随充电时间的变化关系;(b)充电40s电容器充满时两端电压值。
具体实施方式
以下将通过实施例对本发明进行详细描述,这些实施例只是出于示例性说明的目的,而非用于限定本发明。
本发明提供一种可应用于高温压电能量收集器件的压电陶瓷材料,其特征在于,其化学组成为zBiScO3-xPbTiO3-yBi(Zn0.5Hf0.5)O3。组成原料为:Pb3O4、TiO2、Bi2O3、Sc2O3、ZnO和HfO2。具体制备方法为:首先,将按化学计量比将称量好的原料放入球磨罐中,以无水乙醇为介质置于卧式球磨机中球磨24h,在100℃条件下烘干;然后严格按照工艺要求在800℃煅烧2h;再加入无水乙醇进行二次球磨24h,将得到的粉料加入约5wt.%粘结剂压制成陶瓷素坯,排胶处理后在一定烧结工艺下1150℃烧结2h。烧结后的陶瓷片经表面处理后,印刷并烧渗银电极,在120℃的硅油中,在4kV/mm的电压下极化30min。经老化24h后对陶瓷样品进行电性能的测试。进一步,将其装配成悬臂梁式能量收集器后,进行高温能量收集性能测试。
下面通过实施例进一步阐明本发明的实质性特点和显著优点。应该指出,本发明决非仅局限于所陈述的实施例。
实施例1:
按化学式zBiScO3-xPbTiO3-yBi(Zn0.5Hf0.5)O3,其中x取值为0.630,y取值为0.01,z取值为0.360。称量Pb3O4、TiO2、Bi2O3、Sc2O3、ZnO和HfO2,并在无水乙醇介质中球磨24h。混合物经烘干后,经过800℃煅烧2h;再加入无水乙醇进行二次球磨,将得到的粉料加入5wt.%的PVA粘结剂压制成陶瓷素坯,排胶处理后在1150℃烧结2h。烧结后的陶瓷片,印刷并烧渗银电极,在120℃的硅油中,在4kV/mm的电压下极化30min,得到高温压电陶瓷材料。将其装配成悬臂梁式能量收集器,进行高温压电能量收集测试。
实施例2:
按化学式zBiScO3-xPbTiO3-yBi(Zn0.5Hf0.5)O3,其中x取值为0.635,y取值为0.01,z取值为0.355。陶瓷材料的制备同实施例1。将其装配成悬臂梁式能量收集器,进行高温压电能量收集测试。
实施例3:
按化学式zBiScO3-xPbTiO3-yBi(Zn0.5Hf0.5)O3,其中x取值为0.625,y取值为0.02,z取值为0.355。陶瓷材料的制备同实施例1。
实施例4
按化学式zBiScO3-xPbTiO3-yBi(Zn0.5Hf0.5)O3,其中x取值为0.620,y取值为0.03,z取值为0.350。陶瓷材料的制备同实施例1。
表1上述实施例性能对比表
Figure BDA0002455450350000061

Claims (10)

1.一种陶瓷材料作为高温压电能量收集材料的应用,其特征在于,该化学组成通式表示为:zBiScO3-xPbTiO3-yBi(Zn0.5Hf0.5)O3,通式中x,y,z分别表示PbTiO3、Bi(Zn0.5Hf0.5)O3和BiScO3组分的摩尔分数,其中x取值为0.620~0.650,y取值为0.01~0.03,z取值为1-x-y,用于高温压电能量收集器件;优选x取值为0.635,y取值为0.01,z取值为0.355。
2.按照权利要求1所述的陶瓷材料的应用,其特征在于,用于400℃时,具有高压电电荷常数d33=726pC/N。
3.按照权利要求1所述的陶瓷材料的应用,其特征在于,在将其制备成高温压电能量收集器,在400℃时,具有开路电压峰峰值为3.16V。
4.按照权利要求1所述的陶瓷材料的应用,其特征在于,在将其制备成高温压电能量收集器,在400℃时,发电能量密度为0.031μW/mm3
5.按照权利要求1所述的陶瓷材料的应用,其特征在于,在将其制备成高温压电能量收集器,在400℃时对10μF、16V的商业电解电容器充电40s电容器充满时两端电压为0.9V。
6.按照权利要求1-5任一项所述的陶瓷材料的应用,其特征在于,所述陶瓷材料是按照以下步骤制备得到:
(1)将原料Pb3O4、TiO2、Bi2O3、Sc2O3、ZnO和HfO2按压电陶瓷材料中元素化学摩尔比称量,将称量好的原料放入球磨罐中,以无水乙醇为介质置于卧式球磨机中球磨24h;
(2)将烘干的料经过煅烧,并加入无水乙醇进行二次球磨24h;
(3)将二次球磨得到的粉料加入粘结剂,压制成陶瓷素坯,并加热进行排胶处理;
(4)将排胶处理后的素坯体经过烧结,随炉冷却至室温;
(5)将制得的陶瓷片进行抛光、烧渗银电极后,经人工极化,得到压电陶瓷材料。
7.按照权利要求6的应用,其特征在于,步骤(2)中,所述煅烧温度为800℃,具体工艺如下:25℃~650℃,升温速率为7℃/min,650℃~800℃,升温速率为3℃/min,保温2h,随炉冷却至室温。
8.按照权利要求6的应用,其特征在于,步骤(3)中,所述加入粘合剂为5wt.%的聚乙烯醇(PVA)水溶液。
9.按照权利要求6的应用,其特征在于,步骤(4)中,所述烧结温度为1150℃。具体工艺如下:25℃~650℃,升温速率为7℃/min,650℃~950℃,升温速率为3℃/min,650℃~1150℃,升温速率为1.5℃/min,保温2h,随炉冷却至室温。
10.按照权利要求6的应用,其特征在于,步骤(5)中,所述人工极化温度为120℃,极化电压为4kV/mm,极化时间为30min。
CN202010305058.2A 2020-04-17 2020-04-17 一种陶瓷材料作为高温压电能量收集材料的应用及制备方法 Active CN111393160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010305058.2A CN111393160B (zh) 2020-04-17 2020-04-17 一种陶瓷材料作为高温压电能量收集材料的应用及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010305058.2A CN111393160B (zh) 2020-04-17 2020-04-17 一种陶瓷材料作为高温压电能量收集材料的应用及制备方法

Publications (2)

Publication Number Publication Date
CN111393160A true CN111393160A (zh) 2020-07-10
CN111393160B CN111393160B (zh) 2022-02-08

Family

ID=71426055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010305058.2A Active CN111393160B (zh) 2020-04-17 2020-04-17 一种陶瓷材料作为高温压电能量收集材料的应用及制备方法

Country Status (1)

Country Link
CN (1) CN111393160B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999006A (zh) * 2021-11-07 2022-02-01 北京工业大学 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备
CN114276133A (zh) * 2022-01-25 2022-04-05 唐山师范学院 压电陶瓷材料、压电陶瓷材料的应用及其制备方法
CN114315345A (zh) * 2022-01-11 2022-04-12 北京工业大学 一种具有宽温稳定换能系数的高温压电能量收集陶瓷材料及制备
CN115385683A (zh) * 2022-08-29 2022-11-25 西安交通大学 一种兼具高居里温度和高压电系数的压电陶瓷材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180665A (zh) * 2011-03-07 2011-09-14 广州金升阳科技有限公司 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN103121841A (zh) * 2012-12-07 2013-05-29 北京科技大学 一种具有优异压电性能的材料及其制备方法
CN103936412A (zh) * 2014-03-27 2014-07-23 北京大学 一种铌锡酸铅-钪酸铋-钛酸铅三元系高温压电陶瓷材料及其制备方法
CN107698252A (zh) * 2017-10-13 2018-02-16 北京工业大学 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180665A (zh) * 2011-03-07 2011-09-14 广州金升阳科技有限公司 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN103121841A (zh) * 2012-12-07 2013-05-29 北京科技大学 一种具有优异压电性能的材料及其制备方法
CN103936412A (zh) * 2014-03-27 2014-07-23 北京大学 一种铌锡酸铅-钪酸铋-钛酸铅三元系高温压电陶瓷材料及其制备方法
CN107698252A (zh) * 2017-10-13 2018-02-16 北京工业大学 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHAOPAN等: "Preparation and characterization of high Curie-temperature piezoelectric ceramics in a new Bi-based perovskite of (1-x)PbTiO3-xBi(Zn1/2Hf1/2)O3", 《INORGANIC CHEMISTRY》 *
张强等: "BiScO3-Bi(Zn1/2Ti1/2)O3-PbTiO3高居里温度压电陶瓷介电压电性能研究", 《功能材料》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999006A (zh) * 2021-11-07 2022-02-01 北京工业大学 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备
CN113999006B (zh) * 2021-11-07 2022-09-30 北京工业大学 具有晶界颗粒桥结构的高温细晶能量收集压电陶瓷材料及制备
CN114315345A (zh) * 2022-01-11 2022-04-12 北京工业大学 一种具有宽温稳定换能系数的高温压电能量收集陶瓷材料及制备
CN114276133A (zh) * 2022-01-25 2022-04-05 唐山师范学院 压电陶瓷材料、压电陶瓷材料的应用及其制备方法
CN115385683A (zh) * 2022-08-29 2022-11-25 西安交通大学 一种兼具高居里温度和高压电系数的压电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN111393160B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
CN111393160B (zh) 一种陶瓷材料作为高温压电能量收集材料的应用及制备方法
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN110204335B (zh) 一种同时具有高储能密度和效率的陶瓷材料及其制备方法
CN110342925B (zh) 一种反铁电陶瓷材料及其制备方法
CN107459350B (zh) 一种介电储能反铁电陶瓷材料及其制备方法
CN114315345B (zh) 一种具有宽温稳定换能系数的高温压电能量收集陶瓷材料及制备
CN111704463B (zh) 电介质陶瓷材料及其制备方法
CN112919903A (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN102992761B (zh) 一种应用于能量收集器件的压电陶瓷材料及制备方法
CN114736016B (zh) 一种宽温度稳定性的高储能密度钛酸铋钾基钙钛矿陶瓷及制备方法
CN113321506A (zh) 一种无铅弛豫铁电体陶瓷材料及制备方法
CN104725041A (zh) 一种高储能效率镧掺杂锆钛锡酸铅反铁电陶瓷及其制备方法
CN113511893B (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN106699177B (zh) 一种具有高发电特性的无铅压电能量收集材料及其制备方法
CN112521145A (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
CN108727021B (zh) 一种压电能量收集用兼具宽组分窗口与高换能系数陶瓷材料及制备
CN114276133A (zh) 压电陶瓷材料、压电陶瓷材料的应用及其制备方法
CN109400153B (zh) 一种应用于压电能量收集具有高换能系数的四元系陶瓷材料及制备
CN118619663A (zh) 一种兼具高退极化温度和大压电性能的压电能量收集陶瓷材料及制备
CN113651614B (zh) 一种压电能量收集用兼具高和热稳定压电性能的陶瓷材料及制备
CN116023138B (zh) 一种应用于宽温区内能量收集的无铅压电陶瓷材料及制备
CN116553924B (zh) 一种具有高机电转换系数的高温稳定压电陶瓷材料及其制备方法
CN116751051B (zh) 一种钛酸铋钠基高储能性能陶瓷电容器及制备方法
CN117362034B (zh) 一种高机械品质因数铌酸钾钠基压电陶瓷及低温制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant