CN113666743A - 一种knn基透明储能陶瓷材料及其制备方法 - Google Patents

一种knn基透明储能陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113666743A
CN113666743A CN202111011340.0A CN202111011340A CN113666743A CN 113666743 A CN113666743 A CN 113666743A CN 202111011340 A CN202111011340 A CN 202111011340A CN 113666743 A CN113666743 A CN 113666743A
Authority
CN
China
Prior art keywords
powder
energy storage
knn
ceramic material
putting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111011340.0A
Other languages
English (en)
Inventor
王之恒
戴中华
雷莹
张鑫
王盛彬
刘卫国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN202111011340.0A priority Critical patent/CN113666743A/zh
Publication of CN113666743A publication Critical patent/CN113666743A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种KNN基透明储能陶瓷材料及其制备方法。其组分(K0.5Na0.5NbO3)1‑x(BiZn0.5Zr0.5O3)x,其中x的范围x=0.05‑0.2,在这个取值范围内材料可获得大的储能密度,储能效率可达96%,储能强度Wrec可达到2.6J/cm3。通过BZZ的适量添加,减小了晶粒尺寸,消除了缺陷,提高了耐击穿场强Eb,使KNN‑BZZ基陶瓷具有高的储能效率和铁电性。

Description

一种KNN基透明储能陶瓷材料及其制备方法
技术领域
本发明涉及功能陶瓷技术领域,具体涉及一种KNN基透明储能陶瓷材料及其制备方法。
背景技术
储能陶瓷电容器具有功率密度高、充放电速度快、输出电流大、循环寿命长,在高温高压等特殊环境下性能稳定等优点,符合新时期能源利用的要求,在电力、电子电路系统中发挥着重要作用。
铌酸盐系材料具有较高的居里温度和较大的机电耦合系数,是一类性能优良的钙钛矿型无铅铁电材料。KNN基陶瓷与BNT基和BT基陶瓷相比具有较低的最大极化强度Pmax和较高的剩余极化强度Pr,从而难以获得较大的可利用储能密度Wrec。通过掺杂、固溶其它组元等方法使铌酸盐系陶瓷弛豫性增强,从而降低Pr,减小能量损失,增大可利用储能密度。另一方面,固溶其他组元能够改善样品致密度,减小晶粒尺寸,提高击穿场强,进一步提高高储能密度。
发明内容
有鉴于此,本发明为解决KNN基透明铁电陶瓷,其较高的Pr导致其Wrec相对较低的问题,提供一种KNN基透明储能陶瓷材料及其制备方法,降低Pr,增大极化差值△P(Pmax与Pr的差值),提高储能特性。
为解决现有技术存在的问题,本发明的技术方案是:一种KNN基透明储能陶瓷材料,其特征在于:所述添加BiZn0.5Zr0.5O3的KNN基储能陶瓷材料的组分原料及摩尔百分比含量范围为:(K0.5Na0.5NbO3)1-x(BiZn0.5Zr0.5O3)x,其中x的范围x=0.05-0.2。
一种KNN基透明储能陶瓷材料的制备方法为:将制作好的粉末用磨具压成素胚,放入橡胶套中,进行抽真空,放置于等静压机中进行压制,将压制好的素胚放入马弗炉中使用两步烧结法烧结,得到样品。
具体方法为:
(1)配料:将K2CO3粉体、Na2CO3粉体、Nb2O5粉体、ZrO2粉体,ZnO粉体、Bi2O3粉体作为原料,按照配方比例进行混合球磨,得到混合粉体;
(2)筛料:将混合粉体烘干,用120目的筛子进行过筛,得到干燥粉体;
(3)预烧:将干燥粉料在900℃到950℃之间进行预烧;
(4)二次球磨:将预烧后的混合粉料进行球磨,过筛,得到混合粉体;
(5)压片:将制作好的混合粉体用磨具压成素胚,放入橡胶套中,进行抽真空,放置于等静压机中进行压制;
(6)烧结:采用两步烧结法制得(K0.5Na0.5NbO3)1-x(BiZn0.5Zr0.5O3)x透明铁电陶瓷材料。
进一步,步骤(4)二次球磨的时间为16-18h。
进一步,步骤(5)压片时采用的等静压方法在压制时压力为180MPa-200MPa。
进一步,步骤(6)烧结时采用两步烧结法:将素胚放入马弗炉中迅速升温至1160℃,保温5-10min,再迅速降温至1120-1150℃,保温2-5小时后,降至室温,其中升温时速率为3℃/min。
与现有技术相比,本发明的优点如下:
1.本发明通过加入ZnO、ZrO2、Bi2O3(BZZ)组合,由于加入的Bi3+具有孤对电子的构结构,可以显著抑制Pr,从而提高Wrec
2.本发明采用两步烧结法,第一步高温烧结5-10min,第二步较低温度烧结2-5h;
第一步高温烧结,优点在于:可提高样品结晶速度;
第二步较低温度烧结2-5h,优点在于:抑制晶粒的生长,在晶粒尺寸未增大前急速降温至较低烧结温度,烧结后,炉冷降至室温,该方法可以有效控制晶粒尺寸,改善样品性能;
3.本发明组分(K0.5Na0.5NbO3)1-x(BiZn0.5Zr0.5O3)x,其中x的取值范围为x=0.05-0.2,x=0.1时可获得最大储能密度,储能强度Wrec可达到2.6J/cm3,x=0.2时可获得最大储能效率,高达96%,BZZ的适量添加,使KNN-BZZ基陶瓷弛豫铁电性增强,降低了Pr,晶粒尺寸减小,提高了耐击穿场强Eb,储能效率升高,储能密度增大。
附图说明:
图1是本发明实施例1中制得的0.95(K0.5Na0.5NbO3)-0.05(BiZn0.5Zr0.5O3)陶瓷样品的电子显微镜图片;
图2是本发明实施例1中制得的0.95(K0.5Na0.5NbO3)-0.05(BiZn0.5Zr0.5O3)陶瓷在室温下的电滞回线;
图3是本发明施例2中制得的0.90(K0.5Na0.5NbO3)-0.10(BiZn0.5Zr0.5O3)陶瓷样品的电子显微镜图片;
图4是本发明施例2中制得的0.90(K0.5Na0.5NbO3)-0.10(BiZn0.5Zr0.5O3)陶瓷在室温下的电滞回线;
图5是本发明施例3中制得的0.85(K0.5Na0.5NbO3)-0.15(BiZn0.5Zr0.5O3)陶瓷样品的电子显微镜图片;
图6是本发明施例3中制得的0.85(K0.5Na0.5NbO3)-0.15(BiZn0.5Zr0.5O3)陶瓷在室温下的电滞回线;
图7是本发明施例4中制得的0.80(K0.5Na0.5NbO3)-0.20(BiZn0.5Zr0.5O3)瓷样品的电子显微镜图片;
图8是本发明施例4中制得的0.80(K0.5Na0.5NbO3)-0.20(BiZn0.5Zr0.5O3)陶瓷在室温下的电滞回线;
图9是固溶体KNN-BZZ陶瓷在最佳电场下的电滞回线对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1:
本实施例为KNN基透明储能陶瓷材料,其化学式为0.95(K0.5Na0.5NbO3)-0.05(BiZn0.5Zr0.5O3),步骤如下:
(1)配料:将原料Bi2O3、Na2CO3、ZrO2、K2CO3,ZnO、Nb2O5按比例称量,放在120℃的烘箱中烘干4h;
(2)球磨:从烘箱取出原料,放入球磨罐中,加入锆球,无水乙醇,在行星球磨机中进行一次球磨,转速为390-440r/min,时间为12h;
(3)预烧:将球磨后的混合物放入80℃的烘箱中进行烘干,再使用60目的筛网进行过筛得到粉料,将粉末放入坩埚中,以3℃/min的速率升到910℃,在高温烧结炉中保温5h,得到预烧粉;
(4)二次球磨:将预烧粉放入球磨罐中,放入锆球,适量无水乙醇,在行星球磨罐中进行球磨,转速为390-440r/min,时间为16h;
(5)压片:将球磨后的混合物放入80℃的烘箱中进行烘干,再使用60目的筛网进行过筛得到粉料,将制作好的粉末用磨具压成素胚,放入橡胶套中,进行抽真空,放置于等静压机中进行压制,压制时压力为200MPa;
(6)烧结:将胚体放置于1120℃-1150℃的烧结炉中保温2小时最终得到样品。
将陶瓷片进行SEM扫描测试,可见其晶粒分布情况,分布均匀,致密。
将陶瓷片打磨至0.2mm,表面覆盖银电极,面积为0.0314cm2,测试其铁电性能,得到其电滞回线如图1,观察得到其曲线整体呈偏瘦,计算得到其效率达到71%,W=2.9J/cm3,Wrec=2.1J/cm3
实施例2:
本实施例为KNN基透明储能陶瓷材料,其化学式为0.9(K0.5Na0.5NbO3)-0.1(BiZn0.5Zr0.5O3),步骤如下:
(1)配料:将原料Bi2O3、Na2CO3、K2CO3、ZrO2、ZnO,Nb2O5按比例称量,放在120℃的烘箱中烘干4h;
(2)球磨:从烘箱取出原料,放入球磨罐中,加入锆球,无水乙醇,在行星球磨机中进行一次球磨,转速为390-440r/min,时间为12h;
(3)预烧:将球磨后的混合物放入80℃的烘箱中进行烘干,再使用60目的筛网进行过筛得到粉料,将粉末放入坩埚中,以3℃/min的速率升到920℃,在高温烧结炉中保温5h,得到预烧粉;
(4)二次球磨:将预烧粉放入球磨罐中,放入锆球,适量无水乙醇,在行星球磨罐中进行球磨,转速为390-440r/min,时间为17h;
(5)压片:将球磨后的混合物放入80℃的烘箱中进行烘干,再使用60目的筛网进行过筛得到粉料,将制作好的粉末用磨具压成素胚,放入橡胶套中,进行抽真空,放置于等静压机中进行压制,压制时压力为200MPa;
(6)烧结:将胚体放置于烧结炉中于1160-1170℃进行高温烧结10分钟后,再降温至1120℃-1150℃烧结3小时,得到样品。
将陶瓷片进行SEM扫描测试,可见其晶粒分布情况,分布均匀,致密;
将陶瓷片打磨至0.2mm,表面覆盖银电极,面积为0.0314cm2,测试其铁电性能,得到其电滞回线如图3,观察得到由于BZZ的增加,Pr减小,击穿场强变大,有效储能密度增大,W=3.7J/cm3,Wrec=2.6J/cm3
实施例3:
本实施例为KNN基透明储能陶瓷材料,其化学式为0.85(K0.5Na0.5NbO3)-0.15(BiZn0.5Zr0.5O3),步骤如下:
(1)配料:将原料Bi2O3、Na2CO3、K2CO3、ZrO2、ZnO,Nb2O5按比例称量,放在120℃的烘箱中烘干4h;
(2)球磨:从烘箱取出原料,放入球磨罐中,加入锆球,无水乙醇,在行星球磨机中进行一次球磨,转速为390-440r/min,时间为12h;
(3)预烧:将球磨后的混合物放入80℃的烘箱中进行烘干,再使用60目的筛网进行过筛得到粉料,将粉末放入坩埚中,以3℃/min的速率升到900℃,在高温烧结炉中保温5h,得到预烧粉;
(4)二次球磨:将预烧粉放入球磨罐中,放入锆球,适量无水乙醇,在行星球磨罐中进行球磨,转速为390-440r/min,时间为18h;
(5)压片:将球磨后的混合物放入80℃的烘箱中进行烘干,再使用60目的筛网进行过筛得到粉料,将制作好的粉末用磨具压成素胚,放入橡胶套中,进行抽真空,放置于等静压机中进行压制,压制时压力为200MPa;
(6)烧结:将胚体放置于烧结炉中于1160-1170℃进行高温烧结10分钟后,再降温至1120℃-1150℃烧结4小时,得到样品。
将陶瓷片进行SEM扫描测试,可见其晶粒分布情况,分布均匀,致密。
将陶瓷片打磨至0.2mm,表面覆盖银电极,面积为0.0314cm2,测试其铁电性能,得到其电滞回线如图5,观察得到由于BZZ的持续增加,其整体储能效率变高,计算得到其效率高达92%,W=1.8J/cm3,Wrec=1.66J/cm3
实施例4:
本实施例为KNN基透明储能陶瓷材料,其化学式为0.8(K0.5Na0.5NbO3)-0.2(BiZn0.5Zr0.5O3),步骤如下:
(1)配料:将原料Bi2O3、Na2CO3、K2CO3、ZrO2、ZnO,Nb2O5按比例称量,放在120℃的烘箱中烘干4h;
(2)球磨:从烘箱取出原料,放入球磨罐中,加入锆球,无水乙醇,在行星球磨机中进行一次球磨,转速为390-440r/min,时间为12h;
(3)预烧:将球磨后的混合物放入80℃的烘箱中进行烘干,再使用60目的筛网进行过筛得到粉料,将粉末放入坩埚中,以3℃/min的速率升到930℃,在高温烧结炉中保温5h,得到预烧粉;
(4)二次球磨:将预烧粉放入球磨罐中,放入锆球,适量无水乙醇,在行星球磨罐中进行球磨,转速为390-440r/min,时间为16h;
(5)压片:将球磨后的混合物放入80℃的烘箱中进行烘干,再使用60目的筛网进行过筛得到粉料,将制作好的粉末用磨具压成素胚,放入橡胶套中,进行抽真空,放置于等静压机中进行压制,压制时压力为200MPa;
(6)烧结:将胚体放置于烧结炉中于1160-1170℃进行高温烧结10分钟后,再降温至1120℃-1150℃烧结3小时,得到样品。
将陶瓷片进行SEM扫描测试,可见其晶粒分布情况,分布均匀,致密。将陶瓷片打磨至0.2mm,表面覆盖银电极,面积为0.0314cm2,测试其铁电性能,得到其电滞回线,观察得到由于BZZ的持续增加,储能效率继续增大,达到96%。
从图1、3、5、7可以看出,陶瓷样品的颗粒分布致密,晶粒尺寸均匀,随着BZZ的掺杂,晶粒尺寸逐渐减小。
从图2、4、6、8中可以得出,当添加量为5%、10%、15%、20%mol时,其击穿场强分别为230kv/cm、300kv/cm、225kv/cm、170kv/cm,其储能效率均能超过50%,0.8(K0.5Na0.5NbO3)-0.2(BiZn0.5 Zr0.5O3)中储能效率高达96%。BZZ在KNN基陶瓷中固溶能力有限,适量添加可以提高储能性能。图中所示,添加BZZ后,其整体储能性能得到提高,继续添加,性能有所降低。
从图9中可以看出四个体系P-E曲线的对比,随着BZZ的添加,Pmax逐渐降低,0.9(K0.5Na0.5NbO3)-0.1(BiZn0.5Zr0.5O3)陶瓷总体性能最优,Wrec=2.6J/cm3,0.8(K0.5Na0.5NbO3)-0.2(BiZn0.5Zr0.5O3)陶瓷储能效率达到了最好。
以上所述仅是本发明的优选实施例,并非用于限定本发明的保护范围,应当指出,对本技术领域的普通技术人员在不脱离本发明原理的前提下,对其进行若干改进与润饰,均应视为本发明的保护范围。

Claims (6)

1.一种KNN基透明储能陶瓷材料,其特征在于:所述添加BiZn0.5Zr0.5O3的KNN基储能陶瓷材料的组分原料及摩尔百分比含量范围为:(K0.5Na0.5NbO3)1-x(BiZn0.5Zr0.5O3)x,其中x的范围x=0.05-0.2。
2.根据权利要求1所述的一种KNN基透明储能陶瓷材料的制备方法,其特征在于:方法为:将制作好的粉末用磨具压成素胚,放入橡胶套中,进行抽真空,放置于等静压机中进行压制,将压制好的素胚放入马弗炉中使用两步烧结法烧结,得到样品。
3.根据权利要求2所述的一种KNN基透明储能陶瓷材料的制备方法,其特征在于:具体方法为:
(1)配料:将K2CO3粉体、Na2CO3粉体、Nb2O5粉体、ZrO2粉体,ZnO粉体、Bi2O3粉体作为原料,按照配方比例进行混合球磨,得到混合粉体;
(2)筛料:将混合粉体烘干,用120目的筛子进行过筛,得到干燥粉体;
(3)预烧:将干燥粉料在900℃到950℃之间进行预烧;
(4)二次球磨:将预烧后的混合粉料进行球磨,过筛,得到混合粉体;
(5)压片:将制作好的混合粉体用磨具压成素胚,放入橡胶套中,进行抽真空,放置于等静压机中进行压制;
(6)烧结:采用两步烧结法制得(K0.5Na0.5NbO3)1-x(BiZn0.5Zr0.5O3)x透明铁电陶瓷材料。
4.根据权利要求3所述的一种KNN基透明储能陶瓷材料的制备方法,其特征在于:步骤(4)二次球磨的时间为16-18h。
5.根据权利要求4所述的一种KNN基透明储能陶瓷材料的制备方法,其特征在于:步骤(5)压片时采用的等静压方法在压制时压力为180MPa-200MPa。
6.根据权利要求4所述的一种KNN基透明储能陶瓷材料的制备方法,其特征在于:步骤(6)烧结时采用两步烧结法:将素胚放入马弗炉中迅速升温至1160℃,保温5-10min,再迅速降温至1120-1150℃,保温2-5小时后,降至室温,其中升温时速率为3℃/min。
CN202111011340.0A 2021-08-31 2021-08-31 一种knn基透明储能陶瓷材料及其制备方法 Pending CN113666743A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111011340.0A CN113666743A (zh) 2021-08-31 2021-08-31 一种knn基透明储能陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111011340.0A CN113666743A (zh) 2021-08-31 2021-08-31 一种knn基透明储能陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113666743A true CN113666743A (zh) 2021-11-19

Family

ID=78547726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111011340.0A Pending CN113666743A (zh) 2021-08-31 2021-08-31 一种knn基透明储能陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113666743A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163231A (zh) * 2021-11-29 2022-03-11 华中科技大学 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用
CN115093211A (zh) * 2022-07-19 2022-09-23 陕西科技大学 一种高储能高击穿的铁酸铋-钛酸锶基陶瓷材料及其制备方法
CN115477538A (zh) * 2022-10-05 2022-12-16 西南大学 一种两步烧结制备铌酸钾钠基压电陶瓷的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213929A (zh) * 2021-06-04 2021-08-06 西安工业大学 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213929A (zh) * 2021-06-04 2021-08-06 西安工业大学 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIAO ZHANG等: "Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
王迎军: "《新型材料科学与技术 无机材料卷 中》", 31 October 2016, 华南理工大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163231A (zh) * 2021-11-29 2022-03-11 华中科技大学 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用
CN115093211A (zh) * 2022-07-19 2022-09-23 陕西科技大学 一种高储能高击穿的铁酸铋-钛酸锶基陶瓷材料及其制备方法
CN115477538A (zh) * 2022-10-05 2022-12-16 西南大学 一种两步烧结制备铌酸钾钠基压电陶瓷的方法

Similar Documents

Publication Publication Date Title
CN113666743A (zh) 一种knn基透明储能陶瓷材料及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN110981476A (zh) 一种铌酸钾钠基透明陶瓷材料及其制备方法
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN113321506A (zh) 一种无铅弛豫铁电体陶瓷材料及制备方法
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN102167585A (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN112408983A (zh) 一种铋酸镧掺杂铌酸钾钠基多功能陶瓷材料及制备方法
CN115504784A (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN113135753A (zh) 一类低电场驱动高效储能特性的无铅弛豫陶瓷材料及其制备方法
CN114031395B (zh) BNT-BKT-BT-AlN复合压电材料及其制备和应用
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN112028624B (zh) 一种bnt基储能陶瓷材料及其制备方法与应用
CN115286386B (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
CN115894021B (zh) 一种高机械品质因数硬性压电陶瓷材料及其制备方法
CN115872735B (zh) 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用
CN115677343B (zh) 一种高剩余极化强度bnt基铁电陶瓷材料及其制备方法与应用
CN116332642B (zh) 一种高Qm的<111>取向四元织构陶瓷及其三步烧结制备方法
CN116425537B (zh) Zr掺杂铌酸锶钡钆-二氧化锆复合陶瓷材料及制备方法
CN114560695B (zh) 一种高储能密度和高储能效率的复合陶瓷材料制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211119

RJ01 Rejection of invention patent application after publication