CN114163231A - 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用 - Google Patents

无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
CN114163231A
CN114163231A CN202111447880.3A CN202111447880A CN114163231A CN 114163231 A CN114163231 A CN 114163231A CN 202111447880 A CN202111447880 A CN 202111447880A CN 114163231 A CN114163231 A CN 114163231A
Authority
CN
China
Prior art keywords
energy storage
ceramic material
aln
lead
composite ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111447880.3A
Other languages
English (en)
Other versions
CN114163231B (zh
Inventor
张光祖
肖文荣
张超
窦占明
姜胜林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Shenzhen Huazhong University of Science and Technology Research Institute
Original Assignee
Huazhong University of Science and Technology
Shenzhen Huazhong University of Science and Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, Shenzhen Huazhong University of Science and Technology Research Institute filed Critical Huazhong University of Science and Technology
Priority to CN202111447880.3A priority Critical patent/CN114163231B/zh
Publication of CN114163231A publication Critical patent/CN114163231A/zh
Application granted granted Critical
Publication of CN114163231B publication Critical patent/CN114163231B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明属于电子材料技术领域,具体涉及一种无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用,复合陶瓷材料的化学组成为(1‑x)(0.97BaTiO3‑0.03NaNbO3)‑xBi(Zn0.5Zr0.5)O3/AlN;其中,0.0≤x≤0.7,AlN占陶瓷材料(1‑x)(0.97BaTiO3‑0.03NaNbO3)‑xBi(Zn0.5Zr0.5)O3的质量百分数小于等于10%,且AlN为纳米级颗粒,分布在陶瓷材料内部晶粒之间的空隙。本发明通过在无铅脉冲电介质储能陶瓷材料中引入低介电、宽禁带半导体材料AlN,复合在无铅储能复合陶瓷材料中,提高整体击穿场强;通过在无铅脉冲电介质储能复合陶瓷材料中引入弛豫元素Bi离子、Zn离子和Zr离子,提高材料体系的弛豫度,提高微观极性纳米微区的含量,进而提高材料的储能效率和温度稳定性。

Description

无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用
技术领域
本发明属于电子材料技术领域,更具体地,涉及无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用。
背景技术
与锂电池和电化学电容器相比,具有快速充放电能力和高功率密度的介电电容器被认为是最具有应用潜力的能量存储设备,可广泛应用于脉冲电源,混合动力电动汽车和脉冲动力武器等领域。因此,研究具有高储能密度Wrec、储能效率η和良好热稳定性的新型介电电容器储能陶瓷材料具有重要意义。目前,介电电容器陶瓷根据其内部结构可分为四类:线性介电,铁电,反铁电和弛豫铁电。其中具有细长电滞(P-E)回线和平坦型介电常数曲线的弛豫电介质材料可以在较宽的温度范围具有较高的储能效率η。高的储能效率η意味着脉冲电介质储能器在放电过程中以热能形式损耗的能量更少,这将大幅提高脉冲电介质储能器的储能性能的稳定性并且大幅提高电容器的使用寿命。因此,弛豫电介质材料在介电电容器的应用中极具应用前景。
由于传统的铅基弛豫电介质材料对环境不友好,越来越多的研究集中在研制新的无铅弛豫电介质材料。迄今为止,已经开发了一系列具有应用潜力的无铅弛豫铁电储能材料,主要有BaTiO3基、Bi0.5Na0.5TiO3基、K0.5Na0.5NbO3基和BiFeO3基陶瓷。尽管这些材料的某项单一性能(Wrec、η或温度稳定性)可达到应用要求,但是其综合储能性能(Wrec、η和温度稳定性)不能同时很好适应实际应用需求。
发明内容
针对现有技术的缺陷和改进需求,本发明提供了一种无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用,其目的在于全面提高弛豫铁电的综合储能性能及实际可用性。
为实现上述目的,按照本发明的一个方面,提供了一种无铅脉冲电介质储能复合陶瓷材料,其化学组成为(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3/AlN;其中,0.0≤x≤0.7,AlN占陶瓷材料(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3的质量百分数小于等于10%,且所述AlN为纳米级颗粒,分布在所述陶瓷材料内部晶粒之间的空隙。
进一步,x=0.2。
本发明还提供一种如上所述的无铅脉冲电介质储能复合陶瓷材料的制备方法,包括:
步骤1:将BaCO3、TiO2、Na2CO3、Nb2O5、Bi2O3、ZrO2、ZnO和AlN原料按照(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3/AlN化学计量比进行配置,得到陶瓷粉体,其中0.0≤x≤0.7;
步骤2:将所述陶瓷粉体进行球磨混合,将混合均匀后所得粉体依次进行预烧、再次球磨、烘干、过筛、造粒、干压成型和冷等静压后制成陶瓷生坯;
步骤3:将所述陶瓷生坯进行烧结,以1000~1350℃的烧结温度进行烧结,保温小于等于10小时,烧结完成后随炉降温,得到无铅脉冲电介质储能复合陶瓷材料。
进一步,所述步骤2中球磨的条件为:以锆球为球磨介质,以无水乙醇为球磨溶剂,其中球磨介质、球磨溶剂和球磨原料的质量比为10:4:3~10:3:2,所述球磨时间为0~24小时。
进一步,所述步骤2中所述预烧的条件为:0~10℃/min升温到700~1150℃保温小于等于10小时。
进一步,所述步骤2中所述的过筛为过40~200目筛,取40~200目筛下物。
进一步,所述步骤2中所述造粒的工序中使用的粘结剂为含0~10%质量分数聚乙烯醇的水溶液,加入粘结剂的量为所述陶瓷粉体质量的0~20%。
进一步,所述步骤2中所述干压成型的压力在0~40MPa之间,保持压力0~10分钟;所述冷等静压的压力为0~300MPa,保持压力的时间为0~30分钟。
进一步,所述步骤3中所述烧结的条件为:以0~10℃/min升温到1150~1350℃保温小于等于10小时。
本发明还提供一种脉冲电介质电容器,其采用如上所述的无铅脉冲电介质储能复合陶瓷材料作为功能材料。
总体而言,通过本发明所构思的以上技术方案,能够取得以下有益效果:
(1)本发明提供了一种提高无铅脉冲电介质储能复合陶瓷材料击穿场强的方法,其通过在无铅脉冲电介质储能陶瓷材料中引入低介电、宽禁带半导体材料AlN,利用该绝缘体材料本身抗击穿场强高的特点,复合在无铅储能复合陶瓷材料中,通过提高整体击穿场强进而提高材料整体的击穿场强。其中,AlN为纳米级颗粒,由于制备的陶瓷材料(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3的晶粒尺寸在微米级别,纳米级别的AlN能适配地进入晶粒之间的空隙中以提高击穿场强,微米级别的AlN与陶瓷材料的晶粒尺寸差不多,并不能起到补充晶粒之间空隙以达到提高击穿场强的效果。
(2)本发明提供了一种提高无铅脉冲电介质储能复合陶瓷材料温度稳定性的方法,其通过在无铅脉冲电介质储能复合陶瓷材料中引入弛豫元素Bi离子、Zn离子和Zr离子,提高材料体系的弛豫度,提高微观极性纳米微区的含量,进而提高材料的储能效率和温度稳定性。
(3)本发明提供了一种简单有效的高击穿场强、高储能密度、高储能效率和极佳温度稳定性的无铅脉冲电介质储能复合陶瓷材料的制备方法。首先对原材料进行配比混合后,加入纳米AlN颗粒,直接进行复合,经过固相法工序后实现了(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3电介质储能基体和AlN共存,不需要再分步制备,相比于现有的陶瓷复合制备技术,节省了至少四步工序。
综上,本发明提供了一种具有高击穿场强、高储能密度、高储能效率、高温度稳定性,同时工艺简单、成本低的无铅脉冲电介质储能陶瓷材料及其制备方法。
附图说明
图1为本发明实施例提供的x=0.2所对应的一种无铅脉冲电介质储能复合陶瓷材料的SME示意图;
图2为本发明实施例提供的无铅脉冲电介质储能复合陶瓷材料的TEM示意图,其中,(a)为x=0.0对应的一种无铅脉冲电介质储能复合陶瓷材料TEM示意图,(b)为x=0.2对应的一种无铅脉冲电介质储能复合陶瓷材料TEM示意图;
图3为本发明实施例提供的x=0.2所对应的一种无铅脉冲电介质储能复合陶瓷材料储能性能的温度稳定性图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例一
一种简单有效的高击穿场强、高储能密度、高储能效率和极佳温度稳定性的无铅脉冲电介质储能复合陶瓷材料,其化学组成为(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3/AlN,可缩写为BT-NN-xBZZ/AlN。其中,x为原子比,0.0≤x≤0.7,AlN占陶瓷材料(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3的质量百分数小于等于10%,且所述AlN为纳米级颗粒,分布在所述陶瓷材料内部晶粒之间的空隙。
上述复合陶瓷材料是在陶瓷材料(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3中引入AlN纳米颗粒后获得。
为了全面提高弛豫铁电的综合储能性能及实际可用性,本发明提出两种可行的方法:(1)增加材料本身的弛豫度以提高储能效率及拓宽工作温区;(2)增强击穿场强以提高储能密度。由此,本发明引入纳米AlN以及弛豫元素Bi离子、Zn离子和Zr离子,以获得击穿场强、储能密度、储能效率和温度稳定性提高的无铅脉冲电介质储能复合陶瓷材料。
纳米AlN并没有进入(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3的晶格内部,而是独立存在于晶粒之间(如图1所示),通过AlN宽禁带和低介电的特性,提高陶瓷材料的击穿场强。另外,引入的Bi离子、Zn离子和Zr离子有助于提高材料体系的弛豫度,提高微观极性纳米微区的含量,进而提高材料的储能密度和温度稳定性,对于该效果,需要说明的是,一方面,对于弛豫程度较高的样品,由于存在极性纳米区域(PNRs),可以大大降低剩余极化,从而实现高的储能效率。另一方面,由于纳米铁电畴随着温度的升高会逐渐热分解为较小的尺寸,能量势垒变化较大,对宏观极化造成较大的损失,而PNRs的尺寸随温度基本保持不变,能量势垒较小,宏观极化波动较小,所以PNRs含量的增加有利于提升温度稳定性。如2图所示,图2中的(a)表示x=0的情况,图2中的(b)表示x=2的情况,图2中的黑色虚线圈出的是纳米铁电畴,白色虚线圈出的是极性纳米微区,可以看出随着BZZ含量的增加,极性纳米微区增加,也就意味着弛豫度增加。
因此,本实施例从理论层面提出引入弛豫元素调控微观畴结构的策略,同时引入宽禁带和低介电的纳米AlN颗粒来提高陶瓷材料的抗击穿场强。
优选的,x=0.2。0.2组分的综合储能性能是最佳的,储能性能一般来说主要包括储能密度和储能效率,随着BZZ(Bi、Zn、Zr的缩写)含量进一步增加,储能效率虽然会进一步增加,但是饱和极化强度的降低会使得最终的储能密度值相对于0.2BZZ组分有所降低,因此引入更多的BZZ并不能实现更佳的储能性能。
如图3所示,x=0.2组分储能性能的温度稳定性图。温度范围-55℃-250℃,测试条件为350kV/cm,图的左轴是储能密度,图的右轴是储能效率。因此,本实施例提出的无铅脉冲电介质储能陶瓷材料的击穿场强高(380~450kV/cm),高储能密度(在385kV/cm下为3.17J/cm3),高储能效率(92%~94%),极佳的温度稳定性(在-55~250℃温度范围内,储能密度变化低于+0.56%/-7.85%,储能效率变化低于+0.53%/-0.89%,满足X9R的标准),适用于制作脉冲电介质电容器。
实施例二
本发明还提供了一种简单有效的高击穿场强、高储能密度、高储能效率和极佳温度稳定性的无铅脉冲电介质储能复合陶瓷材料的制备方法,包括:
步骤1:将BaCO3、TiO2、Na2CO3、Nb2O5、Bi2O3、ZrO2、ZnO和AlN原料按照(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3/AlN化学计量比进行配置,得到陶瓷粉体,其中0.0≤x≤0.7;
步骤2:将所述陶瓷粉体进行球磨混合,将混合均匀后所得粉体依次进行预烧、再次球磨、烘干、过筛、造粒、干压成型和冷等静压后制成陶瓷生坯;
步骤3:将所述陶瓷生坯进行烧结,以1000~1350℃的烧结温度进行烧结,保温小于等于10小时,烧结完成后随炉降温,得到无铅脉冲电介质储能复合陶瓷材料。
优选的,步骤2中的球磨条件:以锆球为球磨介质,以无水乙醇为球磨溶剂,其中球磨介质、球磨溶剂和球磨原料的质量比为10:4:3~10:3:2,球磨时间为0~24小时。
优选的,步骤2中预烧的条件为:0~10℃/min升温到700~1150℃保温小于等于10小时。
优选的,步骤2中过筛为过40~200目筛,取40~200目筛下物。
优选的,步骤2中造粒的工序中使用的粘结剂为含0~10%质量分数聚乙烯醇的水溶液,加入粘结剂的量为所述陶瓷粉体质量的0~20%。
优选的,步骤2中干压成型的压力在0~40MPa之间,保持压力0~10分钟;冷等静压的压力为0~300MPa,保持压力的时间为0~30分钟。
优选的,步骤3中烧结的条件为:以0~10℃/min升温到1150~1350℃保温小于等于10小时。
为了使得本实施例更加清晰,现给出如下实例。
实例1:
制备0.97BaTiO3-0.03NaNbO3/AlN脉冲电介质储能复合陶瓷材料(x=0),包括以下步骤:
步骤1:按照0.97BaTiO3-0.03NaNbO3化学计量比,称取0.21mol量0.97BaTiO3-0.03NaNbO3所需BaCO3(40.28g)、TiO2(16.60g)、Na2CO3(0.33g)、Nb2O5(0.84g)原料进行混合,再按照配比料:纳米AlN颗粒的质量比为100:0.5的比例加入纳米AlN颗粒,用湿法球磨工艺使所有原材料混合均匀,球磨介质、无水乙醇、球磨料的质量比为5:2:1.5,球磨时间为6小时,球磨介质为锆球,球磨溶剂为无水乙醇。
步骤2:将步骤1中球磨均匀的粉体烘干后,在900℃条件下预烧2小时。
步骤3:将步骤2预烧后的材料再次球磨12小时得到陶瓷粉体。
步骤4:将步骤3中的陶瓷粉体烘干,过80目筛,加入陶瓷粉体质量10%的粘结剂,粘结剂时质量分数为4%~5%的聚乙烯醇(PVA)水溶液,造粒,过筛。
步骤5:将步骤4的陶瓷粉体通过模具进行干压成型,压力为4MPa,保压时间4秒,再通过冷等静压得到陶瓷生坯。
步骤6:将步骤5得到的陶瓷生坯在空气中进行烧结:以3℃/min升温到1150℃保温2小时,随炉降至室温,即得0.97BaTiO3-0.03NaNbO3/AlN脉冲电介质储能复合陶瓷材料。
实例2:
制备0.9(0.97BaTiO3-0.03NaNbO3)-0.1Bi(Zn0.5Zr0.5)O3/AlN脉冲储能复合陶瓷材料(x=0.1),包括以下步骤:
步骤1:按照0.9(0.97BaTiO3-0.03NaNbO3)-0.1Bi(Zn0.5Zr0.5)O3化学计量比,称取0.21mol量0.9(0.97BaTiO3-0.03NaNbO3)-0.1Bi(Zn0.5Zr0.5)O33所需BaCO3(36.26g)、TiO2(14.94g)、Na2CO3(0.30g)、Nb2O5(0.76g)、Bi2O3(4.91g)、ZnO(0.86g)、ZrO2(1.31g)原料进行混合,再按照配比料:纳米AlN颗粒的质量比为100:0.5的比例加入纳米AlN颗粒,用湿法球磨工艺使所有原材料混合均匀。
步骤2:0.9(0.97BaTiO3-0.03NaNbO3)-0.1Bi(Zn0.5Zr0.5)O3/AlN陶瓷生坯按照实施例1中步骤2-5制备完成。
步骤3:将步骤2得到的陶瓷生坯在空气中进行烧结:以3℃/min升温到1200℃保温2小时,随炉降至室温,即得
0.9(0.97BaTiO3-0.03NaNbO3)-0.1Bi(Zn0.5Zr0.5)O3/AlN脉冲电介质储能复合陶瓷材料。
实例3:
制备0.8(0.97BaTiO3-0.03NaNbO3)-0.2Bi(Zn0.5Zr0.5)O3/AlN脉冲电介质储能复合陶瓷材料(x=0.2),包括以下步骤:
步骤1:按照0.8(0.97BaTiO3-0.03NaNbO3)-0.2Bi(Zn0.5Zr0.5)O3化学计量比,称取0.21mol量0.8(0.97BaTiO3-0.03NaNbO3)-0.2Bi(Zn0.5Zr0.5)O33所需BaCO3(32.23g)、TiO2(13.28g)、Na2CO3(0.27g)、Nb2O5(0.67g)、Bi2O3(9.82g)、ZnO(1.73g)、ZrO2(2.61g)原料进行混合,再按照配比料:纳米AlN颗粒的质量比为100:0.5的比例加入纳米AlN颗粒,用湿法球磨工艺使所有原材料混合均匀。
步骤2:0.8(0.97BaTiO3-0.03NaNbO3)-0.2Bi(Zn0.5Zr0.5)O3/AlN陶瓷生坯按照实施例1中步骤2-5制备完成。
步骤3:将步骤2得到的陶瓷生坯在空气中进行烧结:以3℃/min升温到1250℃保温2小时,随炉降至室温,即得
0.8(0.97BaTiO3-0.03NaNbO3)-0.2Bi(Zn0.5Zr0.5)O3/AlN脉冲电介质储能复合陶瓷材料。
如图1所示,本实例制得的脉冲电介质储能复合陶瓷的SEM示意图,纳米颗粒AlN复合在0.8(0.97BaTiO3-0.03NaNbO3)-0.2Bi(Zn0.5Zr0.5)O3陶瓷材料中。
实例4:
制备0.7(0.97BaTiO3-0.03NaNbO3)-0.3Bi(Zn0.5Zr0.5)O3/AlN脉冲储能复合陶瓷材料(x=0.3),包括以下步骤:
步骤1:按照0.7(0.97BaTiO3-0.03NaNbO3)-0.3Bi(Zn0.5Zr0.5)O3化学计量比,称取0.21mol量0.7(0.97BaTiO3-0.03NaNbO3)-0.3Bi(Zn0.5Zr0.5)O33所需BaCO3(28.20g)、TiO2(11.62g)、Na2CO3(0.23g)、Nb2O5(0.59g)、Bi2O3(14.72g)、ZnO(2.60g)、ZrO2(3.92g)原料进行混合,再按照配比料:纳米AlN颗粒的质量比为100:0.5的比例加入纳米AlN颗粒,用湿法球磨工艺使所有原材料混合均匀。
步骤2:0.7(0.97BaTiO3-0.03NaNbO3)-0.3Bi(Zn0.5Zr0.5)O3/AlN陶瓷生坯按照实施例1中步骤2-5制备完成。
步骤3:将步骤2得到的陶瓷生坯在空气中进行烧结:以3℃/min升温到1350℃保温2小时,随炉降至室温,即得
0.7(0.97BaTiO3-0.03NaNbO3)-0.3Bi(Zn0.5Zr0.5)O3/AlN脉冲储能复合陶瓷材料。
实例5:
制备0.3(0.97BaTiO3-0.03NaNbO3)-0.7Bi(Zn0.5Zr0.5)O3/AlN脉冲储能复合陶瓷材料(0.7),包括以下步骤:
步骤1:按照0.3(0.97BaTiO3-0.03NaNbO3)-0.7Bi(Zn0.5Zr0.5)O3化学计量比,称取0.21mol量0.3(0.97BaTiO3-0.03NaNbO3)-0.7Bi(Zn0.5Zr0.5)O33所需BaCO3(12.08g)、TiO2(4.98g)、Na2CO3(0.10g)、Nb2O5(0.25g)、Bi2O3(34.35g)、ZnO(6.07g)、ZrO2(9.15g)原料进行混合,再按照配比料:纳米AlN颗粒的质量比为100:0.5的比例加入纳米AlN颗粒,用湿法球磨工艺使所有原材料混合均匀。
步骤2:0.3(0.97BaTiO3-0.03NaNbO3)-0.7Bi(Zn0.5Zr0.5)O3/AlN陶瓷生坯按照实施例1中步骤2-5制备完成。
步骤3:将步骤2得到的陶瓷生坯在空气中进行烧结:以3℃/min升温到1350℃保温2小时,随炉降至室温,即得
0.3(0.97BaTiO3-0.03NaNbO3)-0.7Bi(Zn0.5Zr0.5)O3/AlN脉冲储能复合陶瓷材料。
实施例三
一种如上所述的无铅脉冲电介质储能复合陶瓷材料的应用,用于制作脉冲电介质电容器。相关技术方案同实施例一,在此不再赘述。
综上,本发明提供了一种提高电介质储能复合陶瓷材料储能效率和温度稳定性的方法,其通过在无铅铁电BaTiO3-NaNbO3/AlN陶瓷材料中引入弛豫元Bi(Zn0.5Zr0.5)O3,利用微观畴结构的调控在工作温区引入极性纳米微区(PNRs),从而提高材料的储能密度,储能效率和温度稳定性,在385kV/cm下储能密度为3.17J/cm3,储能效率为92.42%,在-55~250℃温度范围内,储能密度变化低于+0.56%/-7.85%,储能效率变化低于+0.53%/-0.89%,满足X9R的标准。由此可以解决实际应用中电介质储能器件损耗大、寿命短、工作温区窄及性能不稳定的问题。
需要说明的是,本发明主要为了解决温度稳定性差和储能效率低的问题,关键手段是引入弛豫元素Bi离子、Zn离子和Zr离子。其技术原理是:一方面,对于弛豫程度较高的样品,由于存在极性纳米区域(PNRs),可以大大降低剩余极化,从而实现高的储能效率。另一方面,由于纳米铁电畴随着温度的升高会逐渐热分解为较小的尺寸,能量势垒变化较大,对宏观极化造成较大的损失,而PNRs的尺寸随温度基本保持不变,能量势垒较小,宏观极化波动较小。因此,在制备BNT-BT/AlN弛豫铁电陶瓷后,引入了过量的弛豫元件BZZ来提高PNRs的含量。当温度变化时,它对宏观极化没有影响。在获得较高的储能密度和储能效率后,具有良好的温度稳定性。另外,本发明还能够提高储能密度,关键手段在于提高击穿场强,根据公式,同等条件下,击穿场强越高,储能密度越大,技术手段在于复合AlN,纳米AlN并没有进入(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3的晶格内部,而是独立存在于晶粒之间,通过借助于AlN宽禁带和低介电的特性,提高陶瓷材料的击穿场强。因此本发明最大优点在于极佳的温度稳定性,以及在保持极佳的温度稳定性同时性能参数并不落后。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种无铅脉冲电介质储能复合陶瓷材料,其特征在于,其化学组成为(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3/AlN;其中,0.0≤x≤0.7,AlN占陶瓷材料(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3的质量百分数小于等于10%,且所述AlN为纳米级颗粒,分布在所述陶瓷材料内部晶粒之间的空隙。
2.根据权利要求1所述的一种无铅脉冲电介质储能复合陶瓷材料,其特征在于,x=0.2。
3.一种如权利要求1或2所述的无铅脉冲电介质储能复合陶瓷材料的制备方法,其特征在于,包括:
步骤1:将BaCO3、TiO2、Na2CO3、Nb2O5、Bi2O3、ZrO2、ZnO和AlN原料按照(1-x)(0.97BaTiO3-0.03NaNbO3)-xBi(Zn0.5Zr0.5)O3/AlN化学计量比进行配置,得到陶瓷粉体,其中0.0≤x≤0.7;
步骤2:将所述陶瓷粉体进行球磨混合,将混合均匀后所得粉体依次进行预烧、再次球磨、烘干、过筛、造粒、干压成型和冷等静压后制成陶瓷生坯;
步骤3:将所述陶瓷生坯进行烧结,以1000~1350℃的烧结温度进行烧结,保温小于等于10小时,烧结完成后随炉降温,得到无铅脉冲电介质储能复合陶瓷材料。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤2中每次球磨的条件为:以锆球为球磨介质,以无水乙醇为球磨溶剂,其中球磨介质、球磨溶剂和球磨原料的质量比为10:4:3~10:3:2,所述球磨时间为0~24小时。
5.根据权利要求4所述的制备方法,其特征在于,所述步骤2中所述预烧的条件为:0~10℃/min升温到700~1150℃保温小于等于10小时。
6.根据权利要求5所述的制备方法,其特征在于,所述步骤2中所述的过筛为过40~200目筛,取40~200目筛下物。
7.根据权利要求6所述的制备方法,其特征在于,所述步骤2中所述造粒的工序中使用的粘结剂为含0~10%质量分数聚乙烯醇的水溶液,加入粘结剂的量为所述陶瓷粉体质量的0~20%。
8.根据权利要求7所述的制备方法,其特征在于,所述步骤2中所述干压成型的压力在0~40MPa之间,保持压力0~10分钟;所述冷等静压的压力为0~300MPa,保持压力的时间为0~30分钟。
9.根据权利要求8所述的制备方法,其特征在于,所述步骤3中所述烧结的条件为:以0~10℃/min升温到1150~1350℃保温小于等于10小时。
10.一种脉冲电介质电容器,其特征在于,其采用如权利要求1或2所述的无铅脉冲电介质储能复合陶瓷材料作为功能材料。
CN202111447880.3A 2021-11-29 2021-11-29 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用 Active CN114163231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111447880.3A CN114163231B (zh) 2021-11-29 2021-11-29 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111447880.3A CN114163231B (zh) 2021-11-29 2021-11-29 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114163231A true CN114163231A (zh) 2022-03-11
CN114163231B CN114163231B (zh) 2022-12-09

Family

ID=80482147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111447880.3A Active CN114163231B (zh) 2021-11-29 2021-11-29 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114163231B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093211A (zh) * 2022-07-19 2022-09-23 陕西科技大学 一种高储能高击穿的铁酸铋-钛酸锶基陶瓷材料及其制备方法
CN116444266A (zh) * 2023-04-03 2023-07-18 昆明理工大学 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1699277A (zh) * 2005-05-24 2005-11-23 南京大学 一种高性能(1-x)BaTiO3-xNaNbO3微波介电薄膜及其制备
US20130250482A1 (en) * 2012-03-22 2013-09-26 Holy Stone Enterprise Co., Ltd. Dielectric Ceramic Material and Multilayer Ceramic Capacitor Using the Same
CN103979954A (zh) * 2014-05-13 2014-08-13 哈尔滨工业大学 一种AlN改性具有高压电和高力学性能的钛酸钡基复合陶瓷材料及其制备方法
CN106587969A (zh) * 2016-12-05 2017-04-26 苏州洛特兰新材料科技有限公司 一种低介电常数绝缘复合陶瓷材料及其制备方法
CN112979305A (zh) * 2019-12-18 2021-06-18 三星电机株式会社 介电陶瓷组合物的制造方法及由其制造的介电陶瓷组合物
CN113526950A (zh) * 2021-08-12 2021-10-22 陕西科技大学 一种高储能高效率的NaNbO3掺杂BaTiO3基氧化物陶瓷材料、制备方法及应用
CN113666743A (zh) * 2021-08-31 2021-11-19 西安工业大学 一种knn基透明储能陶瓷材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1699277A (zh) * 2005-05-24 2005-11-23 南京大学 一种高性能(1-x)BaTiO3-xNaNbO3微波介电薄膜及其制备
US20130250482A1 (en) * 2012-03-22 2013-09-26 Holy Stone Enterprise Co., Ltd. Dielectric Ceramic Material and Multilayer Ceramic Capacitor Using the Same
CN103979954A (zh) * 2014-05-13 2014-08-13 哈尔滨工业大学 一种AlN改性具有高压电和高力学性能的钛酸钡基复合陶瓷材料及其制备方法
CN106587969A (zh) * 2016-12-05 2017-04-26 苏州洛特兰新材料科技有限公司 一种低介电常数绝缘复合陶瓷材料及其制备方法
CN112979305A (zh) * 2019-12-18 2021-06-18 三星电机株式会社 介电陶瓷组合物的制造方法及由其制造的介电陶瓷组合物
CN113526950A (zh) * 2021-08-12 2021-10-22 陕西科技大学 一种高储能高效率的NaNbO3掺杂BaTiO3基氧化物陶瓷材料、制备方法及应用
CN113666743A (zh) * 2021-08-31 2021-11-19 西安工业大学 一种knn基透明储能陶瓷材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093211A (zh) * 2022-07-19 2022-09-23 陕西科技大学 一种高储能高击穿的铁酸铋-钛酸锶基陶瓷材料及其制备方法
CN116444266A (zh) * 2023-04-03 2023-07-18 昆明理工大学 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法
CN116444266B (zh) * 2023-04-03 2023-11-21 昆明理工大学 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法

Also Published As

Publication number Publication date
CN114163231B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
Liu et al. Glass–ceramic dielectric materials with high energy density and ultra-fast discharge speed for high power energy storage applications
CN111763082B (zh) 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用
CN114163231B (zh) 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用
CN109336588B (zh) 一种高温稳定高介低损耗高绝缘无铅陶瓷电容器材料及制备
CN110204335B (zh) 一种同时具有高储能密度和效率的陶瓷材料及其制备方法
Lv et al. Enhancing the dielectric and energy storage properties of lead-free Na0. 5Bi0. 5TiO3–BaTiO3 ceramics by adding K0. 5Na0. 5NbO3 ferroelectric
CN115991599B (zh) 一种高熵钙钛矿氧化物掺杂陶瓷、制备方法及其应用
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN114394833B (zh) 钨青铜结构高储能密度及功率密度无铅储能介质陶瓷材料
CN115073167A (zh) 一种Sm3+和NaNbO3共同修饰钛酸铋钠基铁电陶瓷材料及其制备方法
CN112521145B (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
Xu et al. High-temperature dielectrics in BNT-BT-based solid solution
CN109320236B (zh) 一种高储能密度和充放电性能的复合材料及其制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
Zhang et al. Enhanced energy-storage properties in lead-free (Bi0. 5Na0. 5) TiO3-based dielectric ceramics via glass additive and viscous polymer rolling process
CN113004026A (zh) Ltcc微波介质陶瓷材料及其制造方法
CN114560695B (zh) 一种高储能密度和高储能效率的复合陶瓷材料制备方法
CN116143515B (zh) 一种knn基无铅弛豫铁电储能陶瓷材料及其制备方法
CN116789450B (zh) 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用
CN116751053B (zh) 一种高储能陶瓷介质材料及制备方法
CN115872735B (zh) 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用
CN116003128B (zh) 一种具有超高储能效率的knn基无铅铁电储能陶瓷材料及其制备方法
CN115536387B (zh) 一种具有高储能密度的高熵弛豫铁电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant