CN109320236B - 一种高储能密度和充放电性能的复合材料及其制备方法 - Google Patents

一种高储能密度和充放电性能的复合材料及其制备方法 Download PDF

Info

Publication number
CN109320236B
CN109320236B CN201811331840.0A CN201811331840A CN109320236B CN 109320236 B CN109320236 B CN 109320236B CN 201811331840 A CN201811331840 A CN 201811331840A CN 109320236 B CN109320236 B CN 109320236B
Authority
CN
China
Prior art keywords
energy storage
composite material
charge
storage density
high energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811331840.0A
Other languages
English (en)
Other versions
CN109320236A (zh
Inventor
翟继卫
李峰
江涛
吴双昊
沈波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201811331840.0A priority Critical patent/CN109320236B/zh
Publication of CN109320236A publication Critical patent/CN109320236A/zh
Application granted granted Critical
Publication of CN109320236B publication Critical patent/CN109320236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高储能密度和充放电性能的复合材料及其制备方法,该复合材料的化学式为(Bi0.32Sr0.42Na0.20.06)TiO3/MgO,其中□表示空位。与现有技术相比,本发明不含铅,是一种环境友好型材料,与反铁电材料和其他弛豫性材料相比较,本发明公开的体系具有很大的储能密度(储能密度2.09J/cm3)和充放电性能(电流密度~1671A/cm2,功率密度~150MW/cm3),并且具有极短的放电时间(~0.15μs)。特别地,该种材料的储能密度和充放电特性具有很好的温度稳定性。这些优良的性质有利于脉冲式电容器的应用,尤其是高温状态下的电容器的应用。

Description

一种高储能密度和充放电性能的复合材料及其制备方法
技术领域
本发明属于电介质储能材料技术领域,尤其是涉及一种高储能密度和充放电性能的复合材料及其制备方法。
背景技术
由于石油及化石燃料的储备容量有限,自然能源面临枯竭以及环境保护的压力,近年来电容器、电化学电池等能源材料备受关注。每一种材料都有劣势和优势,最大的问题是探索一种可靠、低价、储能密度高且有效的材料。电池一般具有较高的储能密度,但是由于受其载流子迁移速率的限制使得电池的功率密度较低。电池的充放电周期较长,充放电速度缓慢,且大部分电池的工作温度范围十分有限。电介质储能电容器的能量密度很高,但仍然受到储能密度较低的限制。然而,电介质储能电容器充放电速度快,能形成强大的电流,且能较好地适用高温高压的工作环境,在脉冲功率系统的使用中得到了广泛的研究与应用。
陶瓷储能电容器具有充放电速度快、适用于极端环境等优点,具有非常广的适用范围。在民用方面,在新能源的发电系统以及混合电动汽车的逆变设备中,储能电容器都是不可缺少的部分;在军事应用方面,由于其具有耐高压,且可以瞬间放电和工作在高温恶劣环境等优势,可应用于脉冲功率技术中。脉冲功率技术在国防、军事领域有重要作用,如电磁炮、坦克、舰艇推进系统、电化学发射平台等领域。
F.Gao等人首次在Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3体系中报道了其储能特性。在5.6kV/mm的电场强度下,材料的储能密度WRec~0.59J/cm3。Q.Xu等人将第三组元NaTaO3加入到Bi0.5Na0.5TiO3-BaTiO3基体中,通过诱发铁电弛豫转变,获得了优良的能量存储性能WRec~1.2J/cm3和η~74.1%(E=10kV/mm)。为了降低材料的Pr值,另一种可行的办法就是引入缺陷偶极子
Figure BDA0001860217660000011
Mn2+与氧空位的作用形成缺陷偶极子,并且提供了一个缺陷偶极子矢量,它将充当一个内电场,当撤除外电压时,它将材料中的畴翻转到原来的状态,这样可将Pr最小化。W.P.Cao等人将
Figure BDA0001860217660000021
引入到BNT-BaTiO3-SrTiO3三元体系中,因此获得了较大的WRec~1.06J/cm3,并且该WR表现出很好的温度稳定性。为了提高材料的BDS,我们可以通过工艺来改善其微观结构。Y.P.Pu等人采用冷等静压和微波烧结获得了致密化的BNT-BaTiO3-BaSnO3三元陶瓷体系,并且获得了较高的WRec~2.35J/cm3和η~71%。Q.Xu等人通过湿化学法来合成了BNT-BaTiO3-KNbO3体系,结果显示采用此工艺后,材料的BDS大幅度提升并获得了较高的储能密度WRec~1.72J/cm3。等离子烧结(SPS)能够获得高强度和结构均匀的陶瓷。对于BNT-BaTiO3-BiFeO3体系来说,普通烧结制度下材料的WR仅为0.77J/cm3,而当采用热压烧结,材料的储能密度大幅度提升WRec~1.3J/cm3。同样,热压烧结也可以来使陶瓷体系致密化,从而提高其储能性能。但是从上述的文献的报道来看,其储能密度仍然较低,有待于进一步的提高。特别地,钛酸铋钠体系的充放电特性还有待于进一步的探究,这对脉冲电容器的应用是十分重要的。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种高储能密度和充放电性能的复合材料及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种高储能密度和充放电性能的复合材料,该复合材料为0-3型复合材料,其化学式为(Bi0.32Sr0.42Na0.20.06)TiO3/MgO,其中□表示空位。采用以下步骤制备得到:
(1)以纯度为大于99wt%想Bi2O3,Na2CO3,SrCO3,TiO2和MgO为原料;
(2)按化学式(Bi0.32Sr0.42Na0.20.06)TiO3进行称料,加入无水乙醇进行球磨,出料,烘干;
(3)烘干的粉料进行煅烧处理;
(4)向煅烧后的粉料加入不同重量的MgO,然后进行二次球磨,出料,烘干,然后加入PVA进行造粒再压制成型得到直径为~10mm,厚度为~1mm的陶瓷圆片作为陶瓷胚体;
(5)对得到的陶瓷坯体进行排胶处理;
(6)排胶后的陶瓷坯体进行热压烧结,自然冷却到室温后,采用不同粒度的砂纸进行打磨,得到表面光亮平整的薄陶瓷片,即为高储能密度和充放电性能的复合材料。
两次球磨均在行星式球磨机中进行,在尼龙罐中加入无水乙醇和二氧化锆球作为球磨介质,但是两次球磨的时间不同,第一次球磨时间为6~8小时,第二次球磨时间为8~12小时。
步骤(2)及步骤(4)的出料在鼓风干燥箱中进行烘干,烘干的温度为100~120℃。
步骤(3)中在马弗炉中煅烧处理两次,每次在800~850℃温度下保温2h。
步骤(4)中加入MgO的量占粉料的0-8wt%,但不为0,在4~8MPa的压力下压制成型。
步骤(5)在马弗炉中进行排胶,控制温度为500~700℃保温5~10h。
步骤(6)在1000~1100℃温度下进行热压烧结,升温速度3℃/min,并且在最高温保温2h并保压60~100MPa,采用的热压模具为Al2O3模具,且传热传压介质为ZrO2粉料。
还包括在制备得到复合材料的两边镀金作为电极,以此来进行电学性能的表征,在马弗炉中进行加热,在200~300℃范围内保温0.5~1h,使得金电极与陶瓷接触更加紧密。
本发明制备得到的复合材料与反铁电材料和其他弛豫性材料相比较,本发明公开的体系具有很大的储能密度(储能密度2.09J/cm3)和充放电性能(电流密度~1671A/cm2,功率密度~150MW/cm3),并且具有极短的放电时间(~0.15μs)。特别地,该种材料的储能密度和充放电特性具有很好的温度稳定性。这些优良的性质有利于脉冲式电容器的应用,尤其是高温状态下的电容器的应用。
与现有技术相比,本发明制备得到的复合材料不含有害物质铅,在生产,使用和废弃的过程中不会对环境造成危害,是一种环境友好型的储能和电容器材料。同时,由于弛豫性材料的介电弥散特性和铋基钙钛矿陶瓷的优点,储能密度(~2.09J/cm3)和储能有效率(~84%)都能达到较大的值,并且具有较好的温度稳定性。特别地,该0-3型复合材料室温下具有优越的充放电性能,电流密度和功率密度分别高达1671A/cm2和52MW/cm3。另外,通过充放电测试系统评价得出,90%的能量仅在~0.15μs时间内就可放出,显示其超快的充放电速率。本发明公开的性能要明显高出目前所报道的铅基反铁电陶瓷和其他弛豫性陶瓷材料。
附图说明
图1为实施例1制得的0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料XRD图谱及SEM图谱;
图2为实施例2制得的0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料的介电温谱;
图3为实施例3制得的0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料的电滞回线;
图4为实施例4制得的0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料室温下欠阻尼曲线;
图5为实施例5制得的0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料室温下过阻尼阻尼曲线和时间~放电密度关系。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
(1)选取纯度为大于99%的原料Bi2O3,Na2CO3,SrCO3,TiO2和MgO作为0-3型复合材料的原料。按化学式(Bi0.32Sr0.42Na0.20.06)TiO3进行称料,在尼龙罐中加入无水乙醇和二氧化锆球进行球磨,出料,烘干。球磨时间为8小时,烘干温度为120℃。将烘干后的粉料装入刚玉坩埚中,压实后盖上坩埚盖,放入马弗炉中进行煅烧,5℃/min升到850℃,保温2小时,冷却到室温后取出用研钵研磨,再次倒入刚玉坩埚中压实煅烧,升温速率及保温时间同第一次。
(2)将质量分数为3wt%MgO原料掺入到步骤(1)得到的粉料,并进行二次球磨,出料,烘干。烘干温度与步骤(1)相同,球磨时间为12小时。将烘干的粉料加入适量的5%PVA进行造粒,并在6MPa的压力下压制成型,得到直径为10mm,厚度为1mm的陶瓷圆片。
(3)将步骤(2)得到的陶瓷坯体放入马弗炉中进行排胶,2℃/min升到在600℃后保温10小时。
(4)将步骤(3)得到的排胶后的陶瓷坯体在1080℃温度下进行热压烧结,升温速度3℃/min,并且在最高温保温2个小时且保持的压力为80Mpa。随后自然冷却到室温,得到0-3型复合材料。
(5)将烧出来的陶瓷片用研钵磨成粉状后进行XRD测试,扫描速率5度/min。
(6)将烧出来的陶瓷片掰开,喷金后进行断面SEM的测试。
图1为的实施例1所制得的0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料的XRD衍射图谱,结果如图1所示,除了典型的钙钛矿相之外,还出现了MgO和MgTiO3的衍射峰(MgTiO3相的出现主要是烧结过程中MgO与基体材料反应所导致的)。内附该组分的SEM图表明制得的陶瓷片结构紧密,MgO均匀的分布在陶瓷基体中。
实施例2
(1)选取纯度为大于99%的原料Bi2O3,Na2CO3,SrCO3,TiO2和MgO作为0-3型复合材料的原料。按化学式(Bi0.32Sr0.42Na0.20.06)TiO3进行称料,在尼龙罐中加入无水乙醇和二氧化锆球进行球磨,出料,烘干。球磨时间为8小时,烘干温度为120℃。将烘干后的粉料装入刚玉坩埚中,压实后盖上坩埚盖,放入马弗炉中进行煅烧,5℃/min升到850℃,保温2小时,冷却到室温后取出用研钵研磨,再次倒入刚玉坩埚中压实煅烧,升温速率及保温时间同第一次。
(2)将质量分数为3wt%MgO原料掺入到步骤(1)得到的粉料,并进行二次球磨,出料,烘干。烘干温度与步骤(1)相同,球磨时间为12小时。将烘干的粉料加入适量的5%PVA进行造粒,并在6MPa的压力下压制成型,得到直径为10mm,厚度为1mm的陶瓷圆片。
(3)将步骤(2)得到的陶瓷坯体放入马弗炉中进行排胶,2℃/min升到在600℃后保温10小时。
(4)将步骤(3)得到的排胶后的陶瓷坯体在1080℃温度下进行热压烧结,升温速度3℃/min,并且在最高温保温2个小时且保持的压力为80Mpa。随后自然冷却到室温,得到0-3型复合材料。
(5)将步骤(4)得到的烧结后的陶瓷片用不同粒度的砂纸进行打磨,得到表面光亮平整的陶瓷薄片。在陶瓷的两面均匀地披上高温银浆,随后放入马弗炉中进行排胶,5℃/min升到600℃后保温10分钟。
图2为的实施例2所制得0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料的介电温谱,弥散型的相变对于提高温度稳定性起到非常重要的作用。
实施例3
(1)选取纯度为大于99%的原料Bi2O3,Na2CO3,SrCO3,TiO2和MgO作为0-3型复合材料的原料。按化学式(Bi0.32Sr0.42Na0.20.06)TiO3进行称料,在尼龙罐中加入无水乙醇和二氧化锆球进行球磨,出料,烘干。球磨时间为8小时,烘干温度为120℃。将烘干后的粉料装入刚玉坩埚中,压实后盖上坩埚盖,放入马弗炉中进行煅烧,5℃/min升到850℃,保温2小时,冷却到室温后取出用研钵研磨,再次倒入刚玉坩埚中压实煅烧,升温速率及保温时间同第一次。
(2)将质量分数为3wt%MgO原料掺入到步骤(1)得到的粉料,并进行二次球磨,出料,烘干。烘干温度与步骤(1)相同,球磨时间为12小时。将烘干的粉料加入适量的5%PVA进行造粒,并在6MPa的压力下压制成型,得到直径为10mm,厚度为1mm的陶瓷圆片。
(3)将步骤(2)得到的陶瓷坯体放入马弗炉中进行排胶,2℃/min升到在600℃后保温10小时。
(4)将步骤(3)得到的排胶后的陶瓷坯体在1080℃温度下进行热压烧结,升温速度3℃/min,并且在最高温保温2个小时且保持的压力为80Mpa。随后自然冷却到室温,得到0-3型复合材料。
(5)将步骤(4)得到的烧结后的陶瓷片用不同粒度的砂纸进行打磨,得到表面光亮平整的陶瓷薄片。在陶瓷的两面进行喷金获得金电极,其中电极直径为2mm,随后进行电滞回线测试。
图3为的实施例3所制得0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料的电滞回线P-E。从P-E曲线上可以看出该材料具有较大的饱和极化强度和击穿场强,并且剩余极化强度较低,有利于能量存储密度和效率的提高。
实施例4
(1)选取纯度为大于99%的原料Bi2O3,Na2CO3,SrCO3,TiO2和MgO作为0-3型复合材料的原料。按化学式(Bi0.32Sr0.42Na0.20.06)TiO3进行称料,在尼龙罐中加入无水乙醇和二氧化锆球进行球磨,出料,烘干。球磨时间为8小时,烘干温度为120℃。将烘干后的粉料装入刚玉坩埚中,压实后盖上坩埚盖,放入马弗炉中进行煅烧,5℃/min升到850℃,保温2小时,冷却到室温后取出用研钵研磨,再次倒入刚玉坩埚中压实煅烧,升温速率及保温时间同第一次。
(2)将质量分数为3wt%MgO原料掺入到步骤(1)得到的粉料,并进行二次球磨,出料,烘干。烘干温度与步骤(1)相同,球磨时间为12小时。将烘干的粉料加入适量的5%PVA进行造粒,并在6MPa的压力下压制成型,得到直径为10mm,厚度为1mm的陶瓷圆片。
(3)将步骤(2)得到的陶瓷坯体放入马弗炉中进行排胶,2℃/min升到在600℃后保温10小时。
(4)将步骤(3)得到的排胶后的陶瓷坯体在1080℃温度下进行热压烧结,升温速度3℃/min,并且在最高温保温2个小时且保持的压力为80Mpa。随后自然冷却到室温,得到0-3型复合材料。
(5)将步骤(4)得到的烧结后的陶瓷片用不同粒度的砂纸进行打磨,得到表面光亮平整的陶瓷薄片。在陶瓷的两面进行喷金获得金电极(其中电极直径为2mm,厚度为0.18mm),随后进行欠阻尼充放电性能测试。
图4为的实施例4所制得的在18kV/mm电场的作用下,0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料欠阻尼状态图。从图上可以得出该材料具有很大的电流密度和功率密度,有利于脉冲式电容器的应用。
实施例5
(1)选取纯度为大于99%的原料Bi2O3,Na2CO3,SrCO3,TiO2和MgO作为0-3型复合材料的原料。按化学式(Bi0.32Sr0.42Na0.20.06)TiO3进行称料,在尼龙罐中加入无水乙醇和二氧化锆球进行球磨,出料,烘干。球磨时间为8小时,烘干温度为120℃。将烘干后的粉料装入刚玉坩埚中,压实后盖上坩埚盖,放入马弗炉中进行煅烧,5℃/min升到850℃,保温2小时,冷却到室温后取出用研钵研磨,再次倒入刚玉坩埚中压实煅烧,升温速率及保温时间同第一次。
(2)将质量分数为3wt%MgO原料掺入到步骤(1)得到的粉料,并进行二次球磨,出料,烘干。烘干温度与步骤(1)相同,球磨时间为12小时。将烘干的粉料加入适量的5%PVA进行造粒,并在6MPa的压力下压制成型,得到直径为10mm,厚度为1mm的陶瓷圆片。
(3)将步骤(2)得到的陶瓷坯体放入马弗炉中进行排胶,2℃/min升到在600℃后保温10小时。
(4)将步骤(3)得到的排胶后的陶瓷坯体在1080℃温度下进行热压烧结,升温速度3℃/min,并且在最高温保温2个小时且保持的压力为80Mpa。随后自然冷却到室温,得到0-3型复合材料。
(5)将步骤(4)得到的烧结后的陶瓷片用不同粒度的砂纸进行打磨,得到表面光亮平整的陶瓷薄片。在陶瓷的两面进行喷金获得金电极(其中电极直径为2mm,厚度为0.18mm),随后进行过阻尼充放电性能测试。在RLC电路中,选取电阻值为518Ω的电阻来测试过阻尼下的充放电状态。
图5为实施例5所制得的在18kV/mm电场的作用下,0-3型(Bi0.32Sr0.42Na0.20.06)TiO3-3%wtMgO复合材料过阻尼阻尼曲线和时间~放电密度关系。从图上可以得出该材料的放电时间很短,释放90%的能量仅需要0.15μs,说明其具有极快的放电速率,有利于脉冲电容器的应用。
表1为铅基反铁电陶瓷及其他弛豫性材料和本发明报道的0-3型复合材料储能及其充放电性能的对比。
表1
Figure BDA0001860217660000081
从表1中可以看出相对于其他材料而言,本发明公开的材料具有很大的电流密度、功率密度和很短的放电时间,有利于实际化应用。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

1.一种高储能密度和充放电性能的复合材料,其特征在于,该复合材料的化学式为(Bi0.32Sr0.42Na0.20.06)TiO3/MgO,其中□表示空位;
采用以下步骤制备得到:
(1)以Bi2O3,Na2CO3,SrCO3,TiO2和MgO为原料;
(2)按化学式(Bi0.32Sr0.42Na0.20.06)TiO3进行称料,加入无水乙醇进行球磨,出料,烘干;
(3)烘干的粉料进行煅烧处理;
(4)向煅烧后的粉料加入MgO,然后进行二次球磨,出料,烘干,然后加入PVA进行造粒再压制成型得到陶瓷坯体;
(5)对得到的陶瓷坯体进行排胶处理;
(6)排胶后的陶瓷坯体进行热压烧结,冷却后经过打磨得到高储能密度和充放电性能的复合材料。
2.一种高储能密度和充放电性能的复合材料的制备方法,其特征在于,该方法采用以下步骤:
(1)以Bi2O3,Na2CO3,SrCO3,TiO2和MgO为原料;
(2)按化学式(Bi0.32Sr0.42Na0.20.06)TiO3进行称料,加入无水乙醇进行球磨,出料,烘干;
(3)烘干的粉料进行煅烧处理;
(4)向煅烧后的粉料加入MgO,然后进行二次球磨,出料,烘干,然后加入PVA进行造粒再压制成型得到陶瓷坯体;
(5)对得到的陶瓷坯体进行排胶处理;
(6)排胶后的陶瓷坯体进行热压烧结,冷却后经过打磨得到高储能密度和充放电性能的复合材料。
3.根据权利要求2所述的一种高储能密度和充放电性能的复合材料的制备方法,其特征在于,两次球磨均在行星式球磨机中进行,在尼龙罐中加入无水乙醇和二氧化锆球作为球磨介质。
4.根据权利要求2所述的一种高储能密度和充放电性能的复合材料的制备方法,其特征在于,第一次球磨时间为6~8小时,第二次球磨时间为8~12小时。
5.根据权利要求2所述的一种高储能密度和充放电性能的复合材料的制备方法,其特征在于,步骤(2)及步骤(4)的烘干在鼓风干燥箱中进行烘干,烘干的温度为100~120℃。
6.根据权利要求2所述的一种高储能密度和充放电性能的复合材料的制备方法,其特征在于,步骤(3)中在马弗炉中煅烧处理两次,每次在800~850℃温度下保温2h。
7.根据权利要求2所述的一种高储能密度和充放电性能的复合材料的制备方法,其特征在于,步骤(4)中加入MgO的量占粉料的0-8wt%,但不为0,在4~8 MPa的压力下压制成型。
8.根据权利要求2所述的一种高储能密度和充放电性能的复合材料的制备方法,其特征在于,步骤(5)在马弗炉中进行排胶,控制温度为500~700℃保温5~10h。
9.根据权利要求2所述的一种高储能密度和充放电性能的复合材料的制备方法,其特征在于,步骤(6)在1000~1100℃温度下进行热压烧结,升温速度3℃/min,并且在最高温保温2h并保压60~100MPa。
10.根据权利要求2所述的一种高储能密度和充放电性能的复合材料的制备方法,其特征在于,还包括在制备得到复合材料的两边镀金作为电极,在马弗炉中进行加热,在200~300℃范围内保温0.5~1h。
CN201811331840.0A 2018-11-09 2018-11-09 一种高储能密度和充放电性能的复合材料及其制备方法 Active CN109320236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811331840.0A CN109320236B (zh) 2018-11-09 2018-11-09 一种高储能密度和充放电性能的复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811331840.0A CN109320236B (zh) 2018-11-09 2018-11-09 一种高储能密度和充放电性能的复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109320236A CN109320236A (zh) 2019-02-12
CN109320236B true CN109320236B (zh) 2021-09-03

Family

ID=65260636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811331840.0A Active CN109320236B (zh) 2018-11-09 2018-11-09 一种高储能密度和充放电性能的复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109320236B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436920B (zh) * 2019-08-26 2020-06-16 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN111995391A (zh) * 2020-08-11 2020-11-27 同济大学 高储能密度电容器用低烧反铁电陶瓷材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064580A1 (en) * 2013-09-03 2015-03-05 Ut-Battelle, Llc Nitride- and oxide-modified electrode compositions and their methods of making
CN104909744A (zh) * 2015-05-26 2015-09-16 中国科学技术大学 一种介电材料及其制备方法
CN107253857A (zh) * 2017-06-26 2017-10-17 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150064580A1 (en) * 2013-09-03 2015-03-05 Ut-Battelle, Llc Nitride- and oxide-modified electrode compositions and their methods of making
CN104909744A (zh) * 2015-05-26 2015-09-16 中国科学技术大学 一种介电材料及其制备方法
CN107253857A (zh) * 2017-06-26 2017-10-17 陕西科技大学 一种无铅高储能密度陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Enhanced energy-storage performance and dielectric temperature stability of (1-x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics;Bin Hu et al.;《Ceramics International》;20180320;第44卷;第10968-10974页 *
MgO对(Sr·K)·TiO3-Bi2O3·TiO2系介质陶瓷微观结构与介电性能的影响;金放鸣等;《电瓷避雷器》;19911231(第2期);第18-21页 *

Also Published As

Publication number Publication date
CN109320236A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
CN109354492B (zh) 铋基无铅高储能密度陶瓷材料及其制备方法
CN108439981B (zh) 一种宽温区介电稳定性和高储能密度的铌酸银基反铁电材料及其制备方法
CN110204335B (zh) 一种同时具有高储能密度和效率的陶瓷材料及其制备方法
CN108751982B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN110540423A (zh) 钛酸铋钠基高储能密度和功率密度陶瓷及制备方法和应用
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN112919903B (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN112919907B (zh) 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN113716956A (zh) 一种锆钛酸锶固溶改性钛酸铋钠基陶瓷材料及其制备方法
CN112390645A (zh) 一种在高电场下具有高储能密度和高功率密度的钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN113004032A (zh) 一种类线性高储能高效率无铅弛豫陶瓷及其制备方法
CN109320236B (zh) 一种高储能密度和充放电性能的复合材料及其制备方法
CN114736016B (zh) 一种宽温度稳定性的高储能密度钛酸铋钾基钙钛矿陶瓷及制备方法
CN111704463A (zh) 电介质陶瓷材料及其制备方法
CN108409319B (zh) 高储能密度及充放电性能的无铅陶瓷材料及其制备方法
CN115093211A (zh) 一种高储能高击穿的铁酸铋-钛酸锶基陶瓷材料及其制备方法
CN111018516A (zh) 钛酸钡基高储能密度电子陶瓷及其制备方法
CN112521145B (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN113620702A (zh) 一种Yb3+掺杂的巨介电常数低损耗陶瓷及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN112266247A (zh) 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN112142466B (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN109293353B (zh) 一种高储能密度和高储能效率的无铅BiFeO3基铁电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant