CN116143515B - 一种knn基无铅弛豫铁电储能陶瓷材料及其制备方法 - Google Patents

一种knn基无铅弛豫铁电储能陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116143515B
CN116143515B CN202310062696.XA CN202310062696A CN116143515B CN 116143515 B CN116143515 B CN 116143515B CN 202310062696 A CN202310062696 A CN 202310062696A CN 116143515 B CN116143515 B CN 116143515B
Authority
CN
China
Prior art keywords
energy storage
knn
ball milling
based lead
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310062696.XA
Other languages
English (en)
Other versions
CN116143515A (zh
Inventor
李均
赵东鹏
姚嘉
柳鑫
周忠祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202310062696.XA priority Critical patent/CN116143515B/zh
Publication of CN116143515A publication Critical patent/CN116143515A/zh
Application granted granted Critical
Publication of CN116143515B publication Critical patent/CN116143515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种KNN基无铅弛豫铁电储能陶瓷材料及其制备方法,它涉及无铅弛豫铁电储能陶瓷材料及其制备方法,它是要解决现有的铁电储能陶瓷种类少、储能效率低、能源利用率低的技术问题。本发明的陶瓷材料为(1‑x)KNN‑xBi(Ni2/3Ta1/3)O3,x=0.1~0.2。制法:按化学计量比称取原料并球磨混合,再预烧,再经球磨压片、排胶后,在管式炉中烧结,即得。对本发明的材料施加外加电场,材料中铁电畴更易翻转,使得极化滞后大大减弱,电滞回线表现为细长型,因此能同时达到较高的极化和较低的损耗。材料的最大储能效率达99%,最大有效储能密度达1.083J/cm3,可用于电介质储能领域。

Description

一种KNN基无铅弛豫铁电储能陶瓷材料及其制备方法
技术领域
本发明涉及电介质储能材料领域。
背景技术
铁电储能陶瓷是通过将电介质极化,使其电极表面聚集大量电荷,从而形成电场以达到储能的目的。因为电场的形成没有发生化学反应,能量的积累过程也没有物质的扩散,所以铁电储能陶瓷的充放电速度极快。此外,全固态结构的铁电储能陶瓷相比于电池和电化学电容器而言,不会出现漏液、着火、爆炸等安全隐患,更加安全可靠。铁电储能陶瓷因其具有超高的功率密度、快速充放电能力、优异的机械和热性能、显著的抗疲劳性和安全性,在功率器件、医疗以及军事等领域都有广泛应用,日益成为科研工作者们研究的热点。
公开号为CN202010875278.9的中国专利《一种BNT基储能陶瓷材料及其制备方法与应用》公开了一种BNT基储能陶瓷材料及其制备方法。该发明公开了一种BNT基储能陶瓷材料及其制备方法与应用,其组分为(Bi0.5Na0.5Ti0.95Al0.025Nb0.025O3)(1-x)(SrSc0.5Nb0.5O3)x,其中x的取值范围为x=0-0.15,在这个取值范围内材料可获得的储能效率达75.36%。该材料通过掺杂,增加了样品的致密性,消除了部分缺陷,提高了耐击穿场强Eb,使陶瓷具有较高的储能密度和铁电性。但其很难同时提高有效储能密度和储能效率,其较高的储能密度却伴随着小于80%的低储能效率,能源利用率达不到更高的层次,不利于其在介电储能材料领域中的应用。
发明内容
本发明是要解决现有的铁电储能陶瓷种类少并且在低电场下难以实现有效储能密度和储能效率的同时提高,从而导致储能效率低、能源利用率低的技术问题,而提供一种KNN基无铅弛豫铁电储能陶瓷材料及其制备方法。
本发明的材料能够在低电场下实现较高的有效储能密度并且具有超高储能效率。该材料的铁电测试表明其是一种弛豫铁电材料,可以在施加外场的情况下将电介质极化,使其电极表面聚集大量电荷,从而形成电场以达到储能的目的。同时,材料的制备工艺简单,拓宽了该材料在无铅弛豫铁电储能领域的应用。
本发明的KNN基无铅弛豫铁电储能陶瓷材料的化学表达式为:(1-x)KNN-xBi(Ni2/ 3Ta1/3)O3,其中x=0.1~0.2。
上述的KNN基无铅弛豫铁电储能陶瓷材料的制备方法,按以下步骤进行:
一、按KNN基无铅弛豫铁电储能陶瓷的化学计量比称取K2CO3、Na2CO3、Nb2O5、Bi2O3、NiO和Ta2O5,其中KNN基无铅弛豫铁电储能陶瓷的化学式为(1-x)KNN-xBi(Ni2/3Ta1/3)O3,x=0.1~0.2;然后将称好的原料放入球磨罐中湿法球磨;球磨完成后烘干,再放入球磨罐中干法球磨,得到混合粉末;
二、将混合粉末放入氧化铝坩埚中,再将坩埚放在箱式炉中进行预烧,得到预烧粉;
三、向预烧粉中加入占预烧粉质量0.6%的MnO2作为烧结助剂,混合均匀后放入球磨罐中湿法球磨;球磨完成后烘干,再放入球磨罐中干法球磨,得到粗材料粉末;
四、向粗材料粉末中滴加聚乙烯醇缩丁醛酯溶液,研磨均匀、过筛、压片,得到块状坯体;
五、将块状坯体放入箱式炉中,升温至500~550℃保持4~5h进行排胶,得到排胶坯体;
六、将排胶坯体放入管式炉中,在空气气氛下,将管式炉以4~6℃/min的速率升温至980~1000℃,然后以1~2℃/min的升温速率升温至1160~1180℃并保持2h,再以1~2℃/min的速率降温至980~1000℃,然后以4~5℃/min的速度降温至450~500℃,最后自然冷却至室温,得到KNN基无铅弛豫铁电储能陶瓷材料。
更进一步地,步骤一中所述的x=0.12、0.15或0.18。
更进一步地,步骤一中所述的湿法球磨是将材料加入到行星式球磨机的球磨罐中,球料质量比为(3~6):1,再按1克材料加入3~6mL质量百分浓度为95%的乙醇,以400~500r/min的转速球磨10~14h。
更进一步地,步骤一中所述的烘干是在温度为90~100℃的烘箱中保持4~6小时。
更进一步地,步骤一中所述的干法球磨是将材料加入到行星式球磨机的球磨罐中,在球料质量比为(3~6):1的条件下,以400~500r/min的转速球磨10~15min。
更进一步地,步骤二中所述的预烧是:以4~5℃/min的速率升温至800~900℃并保持4~6h,然后以4~5℃/min的速率降温至450~550℃,再自然冷却至室温。
更进一步地,步骤四中所述的过筛,是过100目的筛。
更进一步地,步骤四中所述的压片是用压片机将过筛后的粉末在压力为4~4.5MPa的条件下压制120s~180s。
更进一步地,步骤四中所述的聚乙烯醇(PVA)溶液的质量百分浓度为8%;5g粗材料粉末中加入6~8滴质量百分浓度为8%聚乙烯醇(PVA)溶液。
本发明的KNN基无铅弛豫铁电储能陶瓷材料,首先选择固溶BiMeO3化合物,BiMeO3化合物的掺杂对陶瓷储能性能的优化十分明显,其原因在于:处于ABO3钙钛矿结构中A位的Bi3+与Pb2+的电子结构类似,Pb2+的6p轨道和O2-2p轨道之间杂化,Bi3+具有孤对电子6s2构型,其6s轨道与O2-的2p轨道之间发生杂化,赋予铋基电介质陶瓷高的极化率,故添加Bi3+可以改善A位离子的极性进而提高材料Pmax。同时,添加BiMeO3固溶物可以增加材料的弛豫特性,降低其Pr。然后,以适宜比例在BiMeO3化合物的B位掺杂Ni2+和Ta5+,Ni2+由于具有较小的离子半径(0.072nm),使得其在外场作用时具有更大的极化空间,故掺杂Ni2+可进一步提高材料Pmax;掺杂Ta5+是为引入高带隙离子,从而使得烧结得到的产品具有较高的电阻率,提升了样品的绝缘性,有效的减少了漏电流的产生,增大材料的击穿场强,提高材料储能特性;同时,本发明将Ni2+和Ta5+组合,共同掺杂进材料B位,此掺杂方式令B位离子与A位离子产生较大的价差,有利于诱导极性纳米微区的产生,使畴翻转的响应更快,从而降低材料Pr;另一方面,本材料掺杂的A、B位离子在取代Na+和K+时,Bi3+、Ni2+和Ta5+的较高价态将作用于由于阳离子空位引起的电荷不平衡,局部电荷不平衡会打破长程弹性场,从而导致晶粒生长的钉扎,使得材料具有更小的晶粒尺寸,提高材料击穿场强。本发明的KNN基无铅弛豫铁电储能陶瓷材料选择掺杂量x=0.12、0.15、0.18时,在该区间内的KNN基无铅弛豫铁电储能陶瓷储能效率达到95%~99%,有效储能密度达到0.883~1.083J/cm3
本发明的KNN基无铅弛豫铁电储能陶瓷材料本发明的材料能够在低电场下实现较高的有效储能密度并且具有超高储能效率。该材料的铁电测试表明其是一种弛豫铁电材料,可以在施加外场的情况下将电介质极化,使其电极表面聚集大量电荷,从而形成电场以达到储能的目的。本发明的KNN基无铅弛豫铁电储能陶瓷是采用传统固相烧结方法制备的,方法简单,对设备要求低。可用于无铅弛豫铁电储能陶瓷材料领域中。
附图说明
图1是实施例1制备的0.88KNN-0.12Bi(Ni2/3Ta1/3)O3的扫描电镜照片及其晶粒尺寸分布图;
图2是实施例2制备的0.85KNN-0.15Bi(Ni2/3Ta1/3)O3的扫描电镜照片及其晶粒尺寸分布图;
图3是实施例3制备的0.82KNN-0.18Bi(Ni2/3Ta1/3)O3的扫描电镜照片及其晶粒尺寸分布图;
图4是实施例1、2、3制备的KNN基无铅弛豫铁电储能陶瓷的XRD谱图;
图5是实施例1制备的0.88KNN-0.12Bi(Ni2/3Ta1/3)O3的εr(相对介电常数)和tanδ(介电损耗)随温度变化曲线;
图6是实施例2制备的0.85KNN-0.15Bi(Ni2/3Ta1/3)O3的εr和tanδ随温度变化曲线;
图7是实施例3制备的0.82KNN-0.18Bi(Ni2/3Ta1/3)O3的εr和tanδ随温度变化曲线;
图8是实施例1制备的0.88KNN-0.12Bi(Ni2/3Ta1/3)O3在其击穿电场下的电滞回线;
图9是实施例2制备的0.85KNN-0.15Bi(Ni2/3Ta1/3)O3在其击穿电场下的电滞回线;
图10是实施例3制备的0.82KNN-0.18Bi(Ni2/3Ta1/3)O3在其击穿电场下的电滞回线。
具体实施方式
用下面的实施例验证本发明的有益效果。
实施例1:本实施例的KNN基无铅弛豫铁电储能陶瓷的制备方法,按以下步骤进行:
一、按KNN基无铅弛豫铁电储能陶瓷材料0.88KNN-0.12Bi(Ni2/3Ta1/3)O3的化学计量比称取4.5608克K2CO3、3.4976克Na2CO3、17.5434克Nb2O5、4.3194克Bi2O3、0.8963克NiO和1.3257克Ta2O5,然后放入球磨罐中,球料质量比为4.7:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨10h;球磨完成后放在温度为90℃的烘箱中保持6小时烘干,将烘干后的样品再放入球磨罐中,球料质量比为4.8:1,以500r/min的转速球磨10min,得到混合粉末;
二、将混合粉末放入氧化铝坩埚中,再将坩埚放在箱式炉中,以5℃/min的速率升温至850℃并保持2h,然后以5℃/min的速率降温至500℃,再自然冷却至室温,得到预烧粉;
三、将预烧粉放入球磨罐中,加入0.1638克MnO2,球料质量比为5:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨14h;球磨完成后放在温度为90℃的烘箱中保持6小时烘干,烘干后再放入球磨罐中,球料质量比为5:1,以500r/min的转速球磨10min,得到粗材料粉末;
四、向5g粗材料粉末中滴加7滴质量百分浓度为8%的聚乙烯醇(PVA)溶液,在玛瑙研钵中研磨1小时,然后过100目筛,用压片机将过筛后的粉末在压力为4MPa的条件下压120秒,得到块状坯体;
五、将块状坯体放入箱式炉中,升温至500℃保持4h进行排胶,得到排胶坯体;
六、将排胶坯体放入管式炉中,在炉管中空气气氛进行烧结,同时将管式炉以5℃/min的速率升温至1000℃,再以2℃/min的速率升温至1170℃并保持2h,接着以2℃/min的速度降温至1000℃,再以5℃/min的速率降温至500℃,最后自然冷却至室温,得到KNN基无铅弛豫铁电储能陶瓷0.88KNN-0.12Bi(Ni2/3Ta1/3)O3
实施例2:本实施例与实施例1不同的是:
将步骤一操作替换为:按KNN基无铅弛豫铁电储能陶瓷材料0.85KNN-0.15Bi(Ni2/ 3Ta1/3)O3的化学计量比称取4.4053克K2CO3、3.3784克Na2CO3、16.9453克Nb2O5、5.3993克Bi2O3、1.1204克NiO和1.6571克Ta2O5,然后放入球磨罐中,球料质量比为4.7:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨10h;球磨完成后放在温度为90℃的烘箱中保持6小时烘干,将烘干后的样品再放入球磨罐中,球料质量比为4.8:1,以500r/min的转速球磨10min,得到混合粉末;
将步骤三的操作替换为:将预烧粉放入球磨罐中,加入0.1653克MnO2,球料质量比为5:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨14h;球磨完成后放在温度为90℃的烘箱中保持6小时烘干,烘干后再放入球磨罐中,球料质量比为5:1,以500r/min的转速球磨10min,得到粗材料粉末。
其它步骤与参数与实施例1相同,得到KNN基无铅弛豫铁电储能陶瓷材料0.85KNN-0.15Bi(Ni2/3Ta1/3)O3
实施例3:本实施例与实施例1不同的是:
将步骤一的操作替换为:按KNN基无铅弛豫铁电储能陶瓷材料0.82KNN-0.18Bi(Ni2/3Ta1/3)O3的化学计量比称取4.2498克K2CO3、3.2591克Na2CO3、16.3473克Nb2O5、6.4792克Bi2O3、1.3445克NiO和1.9885克Ta2O5,然后放入球磨罐中,球料质量比为4.7:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨10h;球磨完成后放在温度为90℃的烘箱中保持6小时烘干,将烘干后的样品再放入球磨罐中,球料质量比为4.8:1,以500r/min的转速球磨10min,得到混合粉末;
将步骤三的操作替换为:将预烧粉放入球磨罐中,加入0.1694克MnO2,球料质量比为5:1,再加入140mL质量百分浓度为95%的乙醇,以400r/min的转速球磨14h;球磨完成后放在温度为90℃的烘箱中保持6小时烘干,烘干后再放入球磨罐中,球料质量比为5:1,以500r/min的转速球磨10min,得到粗材料粉末。
其它步骤与参数与实施例1相同,得到KNN基无铅弛豫铁电储能陶瓷材料0.82KNN-0.18Bi(Ni2/3Ta1/3)O3
对实施例1、2、3制备的KNN基无铅弛豫铁电储能陶瓷进行扫描电镜测试和晶粒尺寸分析,实施例1的0.88KNN-0.12Bi(Ni2/3Ta1/3)O3的扫描电镜照片和晶粒尺寸分布图如图1所示,实施例2的0.85KNN-0.15Bi(Ni2/3Ta1/3)O3的扫描电镜照片和晶粒尺寸分布图如图2所示,实施例3的0.82KNN-0.18Bi(Ni2/3Ta1/3)O3的扫描电镜照片和晶粒尺寸分布图如图3所示。从图1、2、3可以看出,所有掺杂比例的陶瓷样品都具有清晰的晶界和相对致密的结构,Bi(Ni2/3Ta1/3)O3的加入可显著抑制晶粒的生长,且随掺杂量增加,孔隙率降低,陶瓷更致密,有利于更大的击穿场强。
对实施例1、2、3制备的KNN基无铅弛豫铁电储能陶瓷进行XRD分析,得到的XRD谱图如图4所示,从图4可以看出,各组分样品均呈现单一钙钛矿相,没有观察到第二相,证实Bi(Ni2/3Ta1/3)O3完全扩散到了KNN的主晶格之中,形成了均匀的固溶体、随掺杂量增加,46°附近分裂峰逐渐合并,(200)峰无明显分裂,晶相由四方相转变为立方相。随掺杂量增加,衍射峰向低角度移动,显示出晶胞体积的增加,这是由于A位中Bi3+(0.13nm)取代了k+(0.164nm)、Na+(0.139nm),B位的Nb5+(0.064nm)被Ni2+(0.072nm)、Ta5+(0.069nm)取代,故随掺杂量增加,晶格膨胀。
对实施例1、2、3制备的KNN基无铅弛豫铁电储能陶瓷进行介电性能测试,实施例1的0.88KNN-0.12Bi(Ni2/3Ta1/3)O3的εr和tanδ随温度变化曲线如图5所示,实施例2的0.85KNN-0.15Bi(Ni2/3Ta1/3)O3的εr和tanδ随温度变化曲线如图6所示,实施例3的0.82KNN-0.18Bi(Ni2/3Ta1/3)O3的εr和tanδ随温度变化曲线如图7所示。从图5、6、7可以看出,随掺杂量的增加,相变弥散愈加明显,且x=0.18时有明显的频率色散,峰值温度随频率的增加向高温移动,表明了其弛豫特性的增强;随掺杂量的增加,介电峰逐渐变得宽而平,这是由于A位和B位离子之间存在较大的价差导致畴尺寸的减小;随掺杂量的增加,Tm(介电常数的峰值温度)向低温移动,Tm-TB(去极化温度)温区变宽并逐渐接近室温,原因是Bi3+、Ni2+、Ta5+离子在A/B位上的掺杂取代会阻断铁电长程有序诱导极性纳米微区PNRs,Bi基氧化物的引入可显著降低KNN陶瓷的TS(KNN陶瓷从正交晶系到四方晶系转变的温度),导致(1-x)KNN-xBi(Ni2/3Ta1/3)O3陶瓷TS峰的消失和Tm峰向低温的渐移;随掺杂量的增加,εr不断降低,x=0.12时的中等介电常数(~1000)有利于高击穿场强;随掺杂量的增加,介电损耗依然保持着较低水平(<0.2)。
对实施例1、2、3制备的KNN基无铅弛豫铁电储能陶瓷进行铁电性能测试和储能特性分析,实施例1的0.88KNN-0.12Bi(Ni2/3Ta1/3)O3在其击穿电场下的电滞回线如图8所示,实施例2的0.85KNN-0.15Bi(Ni2/3Ta1/3)O3在其击穿电场下的电滞回线如图9所示,实施例3的0.82KNN-0.18Bi(Ni2/3Ta1/3)O3在其击穿电场下的电滞回线如图10所示。从图8、9、10可以看出,随掺杂量x增大,样品弛豫度增加,铁电长程有序被中断,铁电性减弱,Pm降低;随掺杂量x增大,铁电畴变小从而更易在电场下翻转,极化滞后更低,Pr降低,线愈加纤细;随掺杂量x增大,由于样品的平均粒径减小,陶瓷击穿强度增加。数据说明,Bi(Ni2/3Ta1/3)O3的引入虽然使陶瓷的最大极化强度有所减弱,但显著降低了样品的极化滞后,令电滞回线线形极其纤细,最终使得样品有效储能密度相较纯KNN陶瓷升高,储能效率大大增加。
将图5至图10中的对应数据相比较可知,掺杂量为x=0.12时,样品产生了最大的有效储能密度,最大的介电常数和较大的储能效率。掺杂量为x=0.18时,样品产生了最大的储能效率。(1-x)KNN-xBi(Ni2/3Ta1/3)O3(x=0.12、0.15、0.18)具有潜在优势应用于无铅弛豫铁电储能领域。
将0.88KNN-0.12Bi(Ni2/3Ta1/3)O3、0.85KNN-0.15Bi(Ni2/3Ta1/3)O3、0.82KNN-0.18Bi(Ni2/3Ta1/3)O3的储能性能测试结果列于表1中。
表1 (1-x)KNN-xBi(Ni2/3Ta1/3)O3陶瓷在不同掺杂比例下的有效储能密度和储能效率
x=0.12 x=0.15 x=0.18
有效储能密度(J/cm3) 1.083 0.925 0.883
储能效率(%) 95 98 99
通过对三组样品的储能性能测试发现,当掺杂量为x=0.12时,样品的有效储能密度(Wrec)达到1.083J/cm3,储能效率(η)达到95%。当掺杂量为x=0.18时,样品的有效储能密度(Wrec)达到0.883J/cm3,储能效率(η)达到99%。在无铅弛豫铁电储能领域具有潜在的应用价值。

Claims (8)

1.一种KNN基无铅弛豫铁电储能陶瓷材料,其特征在于该的陶瓷材料化学表达式为:(1-x)KNN-xBi(Ni2/3Ta1/3)O3,其中x=0.1~0.2;该KNN基无铅弛豫铁电储能陶瓷储能效率达到95%~99%,有效储能密度达到0.883~1.083 J/cm3
该KNN基无铅弛豫铁电储能陶瓷材料的制备方法,按以下步骤进行:
一、按KNN基无铅弛豫铁电储能陶瓷的化学计量比称取K2CO3、Na2CO3、Nb2O5、Bi2O3、NiO和Ta2O5,其中KNN基无铅弛豫铁电储能陶瓷的化学式为(1-x)KNN-xBi(Ni2/3Ta1/3)O3x=0.1~0.2;然后将称好的原料放入球磨罐中湿法球磨;球磨完成后烘干,再放入球磨罐中干法球磨,得到混合粉末;
二、将混合粉末放入氧化铝坩埚中,再将坩埚放在箱式炉中进行预烧,得到预烧粉;
三、向预烧粉中加入占预烧粉质量0.6%的MnO2作为烧结助剂,混合均匀后放入球磨罐中湿法球磨;球磨完成后烘干,再放入球磨罐中干法球磨,得到粗材料粉末;
四、向粗材料粉末中滴加聚乙烯醇溶液,研磨均匀、过筛、压片,得到块状坯体;
五、将块状坯体放入箱式炉中,升温至500~550℃保持4~5h进行排胶,得到排胶坯体;
六、将排胶坯体放入管式炉中,在空气气氛下,将管式炉以4~6℃/min的速率升温至980~1000℃,然后以1~2℃/min的升温速率升温至1160~1180℃并保持2h,再以1~2℃/min的速率降温至980~1000℃,然后以4~5℃/min的速度降温至450~500℃,最后自然冷却至室温,得到KNN基无铅弛豫铁电储能陶瓷材料。
2. 根据权利要求1所述的一种KNN基无铅弛豫铁电储能陶瓷材料,其特征在于,步骤一中所述的湿法球磨是:将材料加入到行星式球磨机的球磨罐中,球料质量比为(3~6):1,再按1克材料加入3~6mL质量百分浓度为95%的乙醇,以400~500 r/min的转速球磨10~14h。
3.根据权利要求1或2所述的一种KNN基无铅弛豫铁电储能陶瓷材料,其特征在于,步骤一中所述的烘干是在温度为90~100℃的烘箱中保持4~6小时。
4.根据权利要求1或2所述的一种KNN基无铅弛豫铁电储能陶瓷材料,其特征在于,步骤一中所述的干法球磨是:将材料加入到行星式球磨机的球磨罐中,在球料质量比为(3~6):1的条件下,以400~500r/min的转速球磨10~15min。
5.根据权利要求1或2所述的一种KNN基无铅弛豫铁电储能陶瓷材料,其特征在于,步骤二中所述的预烧是:以4~5℃/min的速率升温至800~900℃并保持4~6h,然后以4~5℃/min的速率降温至450~550℃,再自然冷却至室温。
6.根据权利要求1或2所述的一种KNN基无铅弛豫铁电储能陶瓷材料,其特征在于,步骤四中所述的过筛,是过100目的筛。
7.根据权利要求1或2所述的一种KNN基无铅弛豫铁电储能陶瓷材料,其特征在于,步骤四中所述的压片是用压片机将过筛后的粉末在压力为4~4.5MPa的条件下压制120s~180s。
8.根据权利要求1或2所述的一种KNN基无铅弛豫铁电储能陶瓷材料,其特征在于,步骤四中所述的聚乙烯醇溶液的质量百分浓度为8%;5g粗材料粉末中加入6~8滴质量百分浓度为8%聚乙烯醇溶液。
CN202310062696.XA 2023-01-18 2023-01-18 一种knn基无铅弛豫铁电储能陶瓷材料及其制备方法 Active CN116143515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310062696.XA CN116143515B (zh) 2023-01-18 2023-01-18 一种knn基无铅弛豫铁电储能陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310062696.XA CN116143515B (zh) 2023-01-18 2023-01-18 一种knn基无铅弛豫铁电储能陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116143515A CN116143515A (zh) 2023-05-23
CN116143515B true CN116143515B (zh) 2024-05-31

Family

ID=86355705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310062696.XA Active CN116143515B (zh) 2023-01-18 2023-01-18 一种knn基无铅弛豫铁电储能陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116143515B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022854A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ニオブ酸カリウムナトリウム系無鉛圧電セラミック及びその製造方法
CN112266247A (zh) * 2020-11-17 2021-01-26 济南大学 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN113213929A (zh) * 2021-06-04 2021-08-06 西安工业大学 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN113548892A (zh) * 2021-08-31 2021-10-26 同济大学 具有宽温区高压电性能的铌酸钾钠基透明陶瓷材料及其制备方法
CN113999004A (zh) * 2021-11-08 2022-02-01 西安电子科技大学 一种无铅高储能密度陶瓷材料及其制备方法
CN115353385A (zh) * 2022-08-30 2022-11-18 苏州攀特电陶科技股份有限公司 一种增强无铅压电陶瓷热稳定性的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022854A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ニオブ酸カリウムナトリウム系無鉛圧電セラミック及びその製造方法
CN112266247A (zh) * 2020-11-17 2021-01-26 济南大学 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN113213929A (zh) * 2021-06-04 2021-08-06 西安工业大学 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN113548892A (zh) * 2021-08-31 2021-10-26 同济大学 具有宽温区高压电性能的铌酸钾钠基透明陶瓷材料及其制备方法
CN113999004A (zh) * 2021-11-08 2022-02-01 西安电子科技大学 一种无铅高储能密度陶瓷材料及其制备方法
CN115353385A (zh) * 2022-08-30 2022-11-18 苏州攀特电陶科技股份有限公司 一种增强无铅压电陶瓷热稳定性的制备方法

Also Published As

Publication number Publication date
CN116143515A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
Li et al. Energy storage performance of BaTiO3-based relaxor ferroelectric ceramics prepared through a two-step process
Si et al. A new type of BaTiO3-based ceramics with Bi (Mg1/2Sn1/2) O3 modification showing improved energy storage properties and pulsed discharging performances
Li et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors
Wang et al. High recoverable energy storage density and large energy efficiency simultaneously achieved in BaTiO3–Bi (Zn1/2Zr1/2) O3 relaxor ferroelectrics
CN108329027B (zh) 一种具有双层“芯-壳”结构的细晶储能介质陶瓷材料及其制备方法
CN109650885A (zh) 一种掺镧铌酸银无铅反铁电储能陶瓷材料及其制备方法
CN111393149B (zh) 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN110436920B (zh) 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN115991599B (zh) 一种高熵钙钛矿氧化物掺杂陶瓷、制备方法及其应用
CN107459350B (zh) 一种介电储能反铁电陶瓷材料及其制备方法
Shiga et al. (Bi1/2K1/2) TiO3–SrTiO3 solid-solution ceramics for high-temperature capacitor applications
CN113526950A (zh) 一种高储能高效率的NaNbO3掺杂BaTiO3基氧化物陶瓷材料、制备方法及应用
CN114163231B (zh) 无铅脉冲电介质储能复合陶瓷材料及其制备方法和应用
CN111018516A (zh) 钛酸钡基高储能密度电子陶瓷及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN112142466B (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN116143515B (zh) 一种knn基无铅弛豫铁电储能陶瓷材料及其制备方法
Aggarwal et al. Modulation of polar dynamics with oxygen vacancies in Zn doped BaZr0. 1Ti0. 9O3
Du et al. Phase developments and dielectric responses of barium substituted four-layer CaBi4Ti4O15 Aurivillius
CN115368132A (zh) 一种钛酸钡基陶瓷材料及制备方法
CN116003128B (zh) 一种具有超高储能效率的knn基无铅铁电储能陶瓷材料及其制备方法
CN114716243A (zh) 一种高温稳定型钛酸铋钠-钛酸锶基介电储能陶瓷材料及其制备与应用
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN113800904A (zh) 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Jun

Inventor after: Zhao Dongpeng

Inventor after: Yao Jia

Inventor after: Liu Xin

Inventor after: Zhou Zhongxiang

Inventor before: Li Jun

Inventor before: Yao Jia

Inventor before: Chen Junrong

Inventor before: Wang Keyang

Inventor before: Huang Lin

Inventor before: Liu Xin

Inventor before: Zhou Zhongxiang

GR01 Patent grant
GR01 Patent grant