CN114031395B - BNT-BKT-BT-AlN复合压电材料及其制备和应用 - Google Patents

BNT-BKT-BT-AlN复合压电材料及其制备和应用 Download PDF

Info

Publication number
CN114031395B
CN114031395B CN202111361930.6A CN202111361930A CN114031395B CN 114031395 B CN114031395 B CN 114031395B CN 202111361930 A CN202111361930 A CN 202111361930A CN 114031395 B CN114031395 B CN 114031395B
Authority
CN
China
Prior art keywords
bnt
bkt
piezoelectric material
composite piezoelectric
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111361930.6A
Other languages
English (en)
Other versions
CN114031395A (zh
Inventor
张斗
周学凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202111361930.6A priority Critical patent/CN114031395B/zh
Publication of CN114031395A publication Critical patent/CN114031395A/zh
Application granted granted Critical
Publication of CN114031395B publication Critical patent/CN114031395B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于功能陶瓷材料领域,具体涉及BNT‑BKT‑BT‑AlN复合压电材料,其为具有以下化学式的固溶陶瓷材料:(1‑x)[(1‑a‑b)Bi0.5Na0.5TiO3‑aBi0.5K0.5TiO3‑bBaTiO3]‑xAlN;其中,x=0.001~0.05;a=0.1~0.2;b=0.01~0.10。本发明还提供了所述的材料的制备和应用。本发明研究发现,所述的全新的压电陶瓷材料可以兼具优异的压电系数d33、退极化温度Td性能。

Description

BNT-BKT-BT-AlN复合压电材料及其制备和应用
技术领域
本发明属于无铅压电陶瓷技术领域,具体涉及一种压电陶瓷材料。
背景技术
功能材料中,压电材料可以实现电能和机械能的相互转换,是许多电子元器件的关键组件,如传感器、微位移器、驱动器、换能器和能量收集器等。压电性能的温度稳定性在实际应用中至关重要。通常由于热退极化过程,压电响应会随温度的升高而降低。在许多场合下,如发动机和喷射阀中,压电器件需要能够承受较高的工作温度,因此需要抑制甚至消除压电材料的热退极化。压电材料的温度稳定性取决于其热退极化温度(Td)的大小,Td定义为升温过程中压电系数发生急剧降低的温度。在无铅压电陶瓷材料中,钛酸铋钠(Bi0.5Na0.5TiO3)具有高的自发极化强度Ps~40μC/cm2和居里温度Tc~320℃,压电应用前景良好,然而其较高的矫顽场Ec~7kV/mm使其难以极化,压电系数d33较低,同时在居里温度以下就发生的退极化限制了其上限使用温度。为了提高d33,一般是在 Bi0.5Na0.5TiO3基铁电材料中构造三方/四方准同型相界,但由于化学组成和电荷紊乱程度的增加,其退极化温度Td会随之减小。因此,研究人员一直在寻求增强 Bi0.5Na0.5TiO3体系热稳定性而不损害甚至改善压电活性的方法。离子掺杂、织构化、晶粒尺寸控制、淬火和复合材料设计等方法已经被用来提升Bi0.5Na0.5TiO3体系的Td。总的来说,B位受主掺杂、晶粒细化、陶瓷内部应力增强或者加入氧化物ZnO和Al2O3等能够提升Bi0.5Na0.5TiO3基铁电材料的Td,但是这些策略往往伴随着陶瓷铁电畴活性降低而使压电响应退化。Bi0.5Na0.5TiO3基铁电体的压电性和热稳定性难以兼容,严重阻碍其压电应用,因此亟需寻求一种能够提升Td而不会过度损害甚至可以提高d33的有效方法。
发明内容
针对现有压电陶瓷材料还存在压电系数d33、退极化温度Td难于兼顾的问题,本发明第一目的在于提供一种BNT-BKT-BT-AlN复合压电材料,旨在提供兼顾优异压电系数d33、退极化温度Td性能的新压电陶瓷材料。
本发明第二目的在于,提供所述的BNT-BKT-BT-AlN复合压电材料的制备方法,旨在降低杂相和缺陷,成功制备所述的全新材料。
本发明第三目的在于,提供所述的BNT-BKT-BT-AlN复合压电材料的应用。
本发明第四目的在于,提供包含所述BNT-BKT-BT-AlN复合压电材料的压电器件。
一种BNT-BKT-BT-AlN复合压电材料,为具有以下化学式的固溶陶瓷材料:
(1-x)[(1-a-b)Bi0.5Na0.5TiO3(简称BNT)-aBi0.5K0.5TiO3(简称BKT)-bBaTiO3 (简称BT)]-xAlN
其中,x=0.005~0.05;a=0.1~0.2;b=0.01~0.10。
本发明创新地采用AlN对BNT-BKT-BT三元基底进行固溶掺杂,并进一步基于基底以及x含量的联合控制,能够实现协同,能够使所述的全新固溶陶瓷实现行业内难于达成的兼顾优异压电系数d33、退极化温度Td的效果。
本发明中,所述的BNT-BKT-BT、AlN固溶杂化以及x含量的联合控制是协同改善压电系数d33、退极化温度Td效果的关键。研究还发现,对x进一步控制,有助于进一步改善所述新材料的协同性,有助于进一步改善压电系数d33、退极化温度Td效果。
本发明中,AlN完全固溶入BNT-BKT-BT,陶瓷中极性四方相和伪立方相共存。AlN的含量至关重要:随着AlN的添加陶瓷中极性四方相含量先增加后减小;AlN含量过低会导致陶瓷Td和d33优化效果不明显,含量过高反而会导致 Td和d33降低;同时随着AlN含量增加,陶瓷压电系数的温度稳定性先增强后减弱。作为优选,所述的x=0.005~0.02,优选为0.005~0.01。研究发现,在该优选的比例下,可以获得更优的压电系数d33、退极化温度Td兼顾效果。
本发明中,BNT-BKT-BT-AlN中,a=0.1~0.16,优选为0.1~0.12;
优选地,b=0.05~0.1。
本发明所述的BNT-BKT-BT-AlN复合压电材料,相结构为四方相和伪立方相的混合相结构。四方相含量50~70Wt.%,进一步优选为60~70Wt.%。优选地,具有层状纳米畴结构。
本发明优选的复合压电材料,其化学式为0.99(0.84BNT-0.11BKT -0.05BT)-0.01AlN(也称为0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN)。
本发明还提供了所述的所述的BNT-BKT-BT-AlN复合压电材料的制备方法,预先制备(1-a-b)Bi0.5Na0.5TiO3-aBi0.5K0.5TiO3-bBaTiO3,随后将其和AlN按所述的化学式进行混料,随后进行烧结固溶处理,即得。
本发明研究发现,为成功制备所述的材料,需要妥善解决不同合成过程相互干扰所致的杂相多,难于成功制备的问题。针对该制备难点,本发明研究发现,预先制备所述的BNT-BKT-BT三元基底,再和AlN按所述的比例进行固溶烧结,如此能够解决制备杂相问题,有助于改善制得的产物的纯度、致密性、降低缺陷,有助于发现所述的新材料在兼顾导致陶瓷Td和d33的效果。
本发明中,所述的(1-a-b)Bi0.5Na0.5TiO3-aBi0.5K0.5TiO3-bBaTiO3由能提供Bi、 Na、K、Ti、Ba元素的原料按所述的化学式混合(第一混料)后进行煅烧得到;
优选地,所述的原料为至少一种所述元素的氧化物、碳酸盐、碳酸氢盐、硝酸盐中的至少一种。
本发明中,可基于现有手段将各原料进行混合(第一混料)处理,优选为球磨。进一步优选,球磨的球磨的转速为200-300rpm,球磨时间为6-12h。
本发明中,煅烧的温度没有特别要求,例如可以为850-950℃,优选为 900~950℃;煅烧的时间优选为2-4h。
本发明中,所述的BNT-BKT-BT和AlN可通过常规手段进行混料(第二混料),例如,可通过球磨手段进行混料(第二混料)。优选地,所述的球磨的转速为300-400rpm,球磨时间为18-24h。
所述的球磨可以是干法球磨或者湿法球磨。
例如,可采用现有的设备进行湿法球磨,所述的湿法球磨的介质例如为无水乙醇,磨球优选为氧化锆球,在尼龙罐中球磨。球磨后进行可以在75-85℃烘干,然后过筛(筛网例如为200目筛网),取筛下物,制得混合的物料。
本发明中,可将混合的基质和AlN和粘结剂进行造球、成型后进行烧结制备。所述的造球以及成型均可以基于现有手段和设备实现。
本发明中,烧结过程包括第一段烧结和第二段烧结;
本发明中,所述的焙烧温度没有特别要求,例如,第一段烧结的温度为 550-650℃,优选为600~650℃,保温时间优选为2-4h;第二段烧结的温度为 1150-1180℃,保温时间优选为2-4h。
本发明优选地的制备方法,包括下述步骤:
步骤(1):BNT-BKT-BT制备:
首先根据(1-a-b)BNT-aBKT-bBT的化学计量比称取Bi2O3、Na2CO3、K2CO3、 BaCO3和TiO2粉末,获得混合物,将混合物进行第一次球磨获得混匀料A,混匀料A进行预烧获得BNT-BKT-BT预烧粉。第一次球磨的转速为200-300rpm,球磨时间为6-12h。所述预烧温度为850-950℃,预烧时间为2-4h。
步骤(2):压电材料制备:
然后根据所述的复合压电材料的化学计量比加入一定量的AlN粉末,进行第二次球磨,获得混匀料B,将混匀料B造粒,压制成型获得生坯,生坯排胶烧结后即获得钛酸铋钠基陶瓷材料。第二次球磨的转速为300-400rpm,球磨时间为18-24h。所述生坯排胶烧结的程序为,先以1-3℃/min的速率升温至550-650℃保温2-4h排胶,然后以4-6℃/min的速率升温至1150-1180℃保温2-4h烧结。优选的方案,将混匀料B造粒工艺为:在混匀料B中加入聚乙烯醇缩丁醛后通过研磨混匀料呈粒状,所述聚乙烯醇缩丁醛的加入量为混合物质量的2-4%。优选的方案,所述压制成型的所用压强为20-30Mpa,保压时间为3-8min,所得生坯的尺寸为8-12mm,厚度为1.0-1.4mm。
在本发明方案中,采用了最简单、成本最低的传统固相法,经过一次预烧,一次烧结而成,烧结温度十分关键,烧结温度过低会导致陶瓷烧结不完全,不能形成致密的陶瓷块体;烧结温度过高会导致陶瓷晶粒异常长大,陶瓷过烧。欠烧和过烧都会使陶瓷中出现大量缺陷,易击穿。
本发明还提供了所述的BNT-BKT-BT-AlN复合压电材料的应用,将其用作压电材料;
优选地,将其用于制备银电极。本发明中,可采用现有方式将所述的复合压电陶瓷材料制备所需要的器件,以银电极为例,对所述的复合压电材料进行打磨和抛光,在两面涂覆中温银浆,在500-600℃下保温25-35min烧成银电极。
本发明还提供了一种压电器件,包所述的BNT-BKT-BT-AlN复合压电材料。
本发明的有益效果:
1、本发明提供了一种全新的复合压电陶瓷材料,其兼顾优异的压电系数d33、退极化温度Td性能。
研究发现,所述的新复合材料,可以提升极性四方相含量,增大晶粒尺寸同时细化铁电畴,可将陶瓷d33由165pC/N增至234pC/N。还能够显著稳定陶瓷中的极性四方相,成功将陶瓷Td由97℃增至142℃。
本发明所述的压电材料,适于较高温度下的压电器件应用。
2、本发明通过预先制备BNT-BKT-BT,随后再和AlN固溶烧结,如此能够意外地成功制备所述的新陶瓷材料,有效降低杂相,改善结晶性,致密性,降低缺陷,改善晶粒尺寸的均匀性,所述的制备方法制得的材料能够表现出优异的压电系数d33、退极化温度Td性能。
附图说明
图1为实施例1中制备的0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN陶瓷的 X-射线衍射图谱、扫描电子显微镜图、透射电子显微镜图和压电系数d33随温度变化曲线。
图2为实施例2中制备的0.98(0.84BNT-0.11BKT-0.05BT)-0.02AlN陶瓷的 X-射线衍射图谱、扫描电子显微镜图和压电系数d33随温度变化曲线。
图3为实施例3中制备的0.95(0.84BNT-0.11BKT-0.05BT)-0.05AlN陶瓷的 X-射线衍射图谱、扫描电子显微镜图和压电系数d33随温度变化曲线。
图4为对比例1中制备的0.84BNT-0.11BKT-0.05BT陶瓷的X-射线衍射图谱、扫描电子显微镜图、透射电子显微镜图和压电系数d33随温度变化曲线。
图5为对比例2中制备的0.90(0.84BNT-0.11BKT-0.05BT)-0.10AlN陶瓷的 X-射线衍射图谱、扫描电子显微镜图、透射电子显微镜图和压电系数d33随温度变化曲线。
图6为对比例3中制备的0.99(0.84BNT-0.16BKT)-0.01AlN陶瓷的压电系数 d33随温度变化曲线。
图7为对比例4中制备的0.99(0.84BNT-0.11BKT-0.05BT)-0.01Al2O3陶瓷的压电系数d33随温度变化曲线。
图8为对比例5中制备的0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN陶瓷的压电系数d33随温度变化曲线。
具体实施方式
实施例1
0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN陶瓷的制备与表征
按照0.84BNT-0.11BKT-0.05BT的摩尔化学计量比称取Bi2O3、Na2CO3、 K2CO3、BaCO3和TiO2粉末混合均匀,将配好的料放入以无水乙醇为介质、氧化锆球为磨球的尼龙罐中开展第一次球磨,在250r/min的转速下球磨8h。再将球磨后的浆料于80℃烘干。烘干后的粉料过200目筛后置于氧化铝坩埚中,在900℃下预烧3h,得到0.84BNT-0.11BKT-0.05BT预烧粉。将0.84BNT-0.11BKT-0.05BT 预烧粉与AlN粉末按照摩尔比0.99:0.01称量,放入以无水乙醇为介质、氧化锆球为磨球的尼龙罐中进行第二次球磨,在350r/min的转速下球磨24h,再于 80℃烘干。将上述粉末过筛后,加入质量分数为3%的聚乙烯醇缩丁醛,充分研磨至粉料呈粒状,得到颗粒均匀的粉料,并在20Mpa的压强下保压5min压制成直径为10mm,厚度为1.2mm左右的圆柱生坯。将上述生坯置于氧化铝坩埚中,利用同等组分的预烧粉埋烧,首先以2℃/min的升温速率至600℃保温2h排胶 (第一段烧结),然后以5℃/min的升温速率至1160℃保温2h烧结(第二段烧结),随炉自然冷却,制得0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN陶瓷材料。
对0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN陶瓷材料进行晶相检测,检测手段为X-射线衍射分析(XRD)。如图1(a)所示,可以看出制备的陶瓷材料为纯钙钛矿结构,没有杂质相存在,且XRD结果中不存在三方晶格畸变,但四方晶格畸变明显,四方相与伪立方相共存,经过XRD结构精修和计算,四方相含量为65.5 wt%。
将所得0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN陶瓷材料进行扫描电子显微镜(SEM)检测,测试之前陶瓷经过抛光和热腐蚀处理。从图1(b)中可以看出,制备的陶瓷没有明显的缺陷、结晶性好、晶粒尺寸均匀且平均晶粒尺寸约为 670nm。
将所得0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN陶瓷材料进行透射电子显微镜(TEM)检测,测试之前陶瓷被研磨至厚度~70μm,再经过离子减薄得到供TEM测试所用薄区。从图1(c)可以看出,陶瓷中出现高密度的层状铁电畴结构,尺寸为30~50nm,是极性四方相的典型特征。
将烧结好的陶瓷片打磨至厚度为0.6mm,在两面涂覆中温银浆,在550℃下保温30min烧成银电极。上述被银后的陶瓷片被极化,并用于压电系数d33和温度稳定性测试。极化过程:在室温条件下,将陶瓷置于硅油中,在4kV/mm的直流电压下极化30min。放置24h后采用准静态d33测试仪测试d33系数。为了获得d33随温度的变化曲线,将极化后的样品在设定温度25-180℃下退火30min,测试剩余d33系数,从而获得退极化温度。从图1(d)中可以看出,0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN室温下的d33高达234pC/N,退极化温度达~140℃。
实施例2
0.98(0.84BNT-0.11BKT-0.05BT)-0.02AlN陶瓷的制备与表征
制备条件均与实施例1相同,只是将0.84BNT-0.11BKT-0.05BT预烧粉与 AlN粉末按照摩尔比0.99:0.02称量。
结构表征与性能测试过程与实施例1相同。XRD和SEM结果显示,加入 0.02AlN后陶瓷的四方晶格畸变仍然明显,四方相含量为64.2%,且平均晶粒尺寸增至~850nm。压电系数d33随温度变化曲线显示 0.98(0.84BNT-0.11BKT-0.05BT)-0.02AlN室温下的d33为197pC/N,退极化温度达~130℃。表征与测试结果如图2所示。
实施例3
0.95(0.84BNT-0.11BKT-0.05BT)-0.05AlN陶瓷的制备与表征
制备条件均与实施例1相同,只是将0.84BNT-0.11BKT-0.05BT预烧粉与 AlN粉末按照摩尔比0.95:0.05称量。
结构表征与性能测试过程与实施例1相同。XRD和SEM结果显示,加入 0.05AlN后陶瓷四方相含量为52.2%,且平均晶粒尺寸为~710nm。压电系数d33随温度变化曲线显示0.90(0.84BNT-0.11BKT-0.05BT)-0.10AlN室温下的d33为 192pC/N,退极化温度为~90℃。表征与测试结果如图3所示。
对比例1
0.84BNT-0.11BKT-0.05BT陶瓷的制备与表征
制备条件均与实施例1相同,只是第二次球磨的粉料仅为 0.84BNT-0.11BKT-0.05BT预烧粉。
结构表征与性能测试过程与实施例1相同。XRD和SEM结果显示, 0.84BNT-0.11BKT-0.05BT陶瓷的四方相含量为50.2wt%,平均晶粒尺寸为~560 nm。TEM结果显示,陶瓷中存在尺寸为70~100nm的层状铁电畴。压电系数d33随温度变化曲线显示0.84BNT-0.11BKT-0.05BT室温下的d33为165pC/N,退极化温度仅为~90℃。表征与测试结果如图4所示。
对比例2
0.9(0.84BNT-0.11BKT-0.05BT)-0.10AlN陶瓷的制备与表征
制备条件均与实施例1相同,只是将0.84BNT-0.11BKT-0.05BT预烧粉与 AlN粉末按照摩尔比0.90:0.10称量。
结构表征与性能测试过程与实施例1相同。XRD和SEM结果显示,加入 0.10AlN后陶瓷的四方晶格畸变明显减弱,四方相含量为37.7%,且平均晶粒尺寸下降至~530nm。TEM结果显示,陶瓷中层状铁电畴含量显著下降,纳米畴结构尺寸为5~10nm。压电系数d33随温度变化曲线显示 0.90(0.84BNT-0.11BKT-0.05BT)-0.10AlN室温下的d33为152pC/N,退极化温度仅为~60℃。表征与测试结果如图5所示。
对比例3
0.99(0.84BNT-0.16BKT)-0.01AlN陶瓷的制备与表征
制备条件均与实施例1相同,只是将0.84BNT-0.16BKT二元预烧粉与AlN 粉末按照摩尔比0.99:0.01称量。
性能测试过程与实施例1相同。压电系数d33随温度变化曲线显示 0.99(0.84BNT-0.16BKT)-0.01AlN室温下的d33仅为130pC/N,退极化温度为~130℃。测试结果如图6所示。
对比例4
0.99(0.84BNT-0.11BKT-0.05BT)-0.01Al2O3陶瓷的制备与表征
制备条件均与实施例1相同,只是将0.84BNT-0.11BKT-0.05BT预烧粉与 Al2O3粉末按照摩尔比0.99:0.01称量。
性能测试过程与实施例1相同。压电系数d33随温度变化曲线显示 0.99(0.84BNT-0.11BKT-0.05BT)-0.01Al2O3室温下的d33为187pC/N,但退极化温度仅为~80℃。测试结果如图7所示。
对比例5
直接按照0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN化学式进行配粉预烧,再进行陶瓷制备。
按照0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN的摩尔化学计量比称取Bi2O3、Na2CO3、K2CO3、BaCO3、TiO2和AlN粉末混合均匀,进行球磨-烘干-预烧,条件与实施例1相同。将0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN预烧粉球磨-烘干-压制-烧结,条件与实施例1相同,制得 0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN陶瓷。
性能测试过程与实施例1相同。压电系数d33随温度变化曲线显示按照此步骤制得得0.99(0.84BNT-0.11BKT-0.05BT)-0.01AlN室温下的d33为178pC/N,但退极化温度为~110℃。测试结果如图8所示。
实施例4
和实施例1相比,区别仅在于,x为0.005,制备 0.995(0.84BNT-0.11BKT-0.05BT)-0.005AlN。制备过程和参数均同实施例1。按实施例1方式进行性能测定,结果为:d33为225pC/N,退极化温度为~130℃
实施例5
和实施例1相比,区别仅在于,调控三元基质的摩尔比为0.8:0.1:0.1,制备 0.99(0.8BNT-0.1BKT-0.BT)-0.01AlN陶瓷。制备过程和参数均同实施例1。按实施例1方式进行性能测定,结果为:d33为206pC/N,退极化温度为~140℃
实施例6
和实施例1相比,区别仅在于,预烧结的温度为950℃;煅烧的时间为3h。第一段烧结的温度为650℃,保温时间优选为2h;第二段烧结的温度为1180℃,保温时间优选为3h。其他步骤以及参数同实施例1。按实施例1方式进行性能测定,结果为:d33为218pC/N,退极化温度为~140℃。

Claims (10)

1.一种BNT-BKT-BT-AlN复合压电材料,其特征在于,为具有以下化学式的固溶陶瓷材料:
(1-x)[(1-a-b)Bi0.5Na0.5TiO3-aBi0.5K0.5TiO3-bBaTiO3]-xAlN
其中,x=0.005~0.02;a=0.1~0.12;b=0.05~0.1;
其相结构为四方相和伪立方相的混合相;四方相含量50~70 Wt.%;且具有层状纳米畴结构;
所述的BNT-BKT-BT-AlN复合压电材料的制备方法为:
预先制备(1-a-b)Bi0.5Na0.5TiO3-aBi0.5K0.5TiO3-bBaTiO3,随后将其和AlN按所述的化学式进行混料,随后进行烧结固溶处理,即得;
所述的(1-a-b)Bi0.5Na0.5TiO3-aBi0.5K0.5TiO3-bBaTiO3由能提供Bi、Na、K、Ti、Ba元素的原料按所述的化学式混合后进行煅烧得到;其中,煅烧的温度为850-950℃;
烧结过程包括第一段烧结和第二段烧结;其中,第一段烧结的温度为550-650℃;第二段烧结的温度为1150-1180℃。
2.如权利要求1所述的BNT-BKT-BT-AlN复合压电材料,其特征在于,所述的x=0.005~0.01。
3.一种权利要求1~2任一项所述的BNT-BKT-BT-AlN复合压电材料的制备方法,其特征在于,预先制备(1-a-b)Bi0.5Na0.5TiO3-aBi0.5K0.5TiO3-bBaTiO3,随后将其和AlN按所述的化学式进行混料,随后进行烧结固溶处理,即得;
所述的(1-a-b)Bi0.5Na0.5TiO3-aBi0.5K0.5TiO3-bBaTiO3由能提供Bi、Na、K、Ti、Ba元素的原料按所述的化学式混合后进行煅烧得到;其中,煅烧的温度为850-950℃;
烧结过程包括第一段烧结和第二段烧结;其中,第一段烧结的温度为550-650℃;第二段烧结的温度为1150-1180℃。
4.如权利要求3所述的BNT-BKT-BT-AlN复合压电材料的制备方法,其特征在于,所述的原料为至少一种所述元素的氧化物、碳酸盐、碳酸氢盐、硝酸盐中的至少一种。
5.如权利要求3所述的BNT-BKT-BT-AlN复合压电材料的制备方法,其特征在于,煅烧的时间为2-4 h。
6.如权利要求3所述的BNT-BKT-BT-AlN复合压电材料的制备方法,其特征在于,采用球磨手段进行混料以及混合步骤;
混合阶段的球磨的转速为200-300rpm,球磨时间为6-12h;
混料阶段的转速为300-400rpm,球磨时间为18-24h。
7.如权利要求3所述的BNT-BKT-BT-AlN复合压电材料的制备方法,其特征在于,第一段烧结的保温时间为2-4h;第二段烧结的保温时间为2-4h。
8.一种权利要求1~2任一项所述的BNT-BKT-BT-AlN复合压电材料或权利要求3~7任一项制备方法制得的BNT-BKT-BT-AlN复合压电材料的应用,其特征在于,将其用作压电材料。
9.如权利要求8所述的应用,对所述的BNT-BKT-BT-AlN复合压电材料进行打磨和抛光,在两面涂覆中温银浆,在500-600℃下保温25-35min烧成银电极。
10.一种压电器件,其特征在于,包含权利要求1~2任一项所述的BNT-BKT-BT-AlN复合压电材料或权利要求3~7任一项制备方法制得的BNT-BKT-BT-AlN复合压电材料。
CN202111361930.6A 2021-11-17 2021-11-17 BNT-BKT-BT-AlN复合压电材料及其制备和应用 Active CN114031395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111361930.6A CN114031395B (zh) 2021-11-17 2021-11-17 BNT-BKT-BT-AlN复合压电材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111361930.6A CN114031395B (zh) 2021-11-17 2021-11-17 BNT-BKT-BT-AlN复合压电材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN114031395A CN114031395A (zh) 2022-02-11
CN114031395B true CN114031395B (zh) 2022-11-11

Family

ID=80137925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111361930.6A Active CN114031395B (zh) 2021-11-17 2021-11-17 BNT-BKT-BT-AlN复合压电材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN114031395B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286380B (zh) * 2022-08-04 2023-03-03 北京大学深圳研究院 一种具有高退极化温度的bnkt-bt基复合陶瓷材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106365632A (zh) * 2016-08-31 2017-02-01 淄博高新技术产业开发区先进陶瓷研究院 三元体系的无铅压电陶瓷材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106365632A (zh) * 2016-08-31 2017-02-01 淄博高新技术产业开发区先进陶瓷研究院 三元体系的无铅压电陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Enhanced piezoelectric and mechanical properties of AlN-modified BaTiO3 composite ceramics;Dan Xu等;《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》;20140331;第16卷(第26期);第13078-13085页 *

Also Published As

Publication number Publication date
CN114031395A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN109942292B (zh) 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
CN103636018A (zh) 压电材料
CN108546125B (zh) 一种面向高温环境应用的压电陶瓷材料及其制备方法
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN110436920B (zh) 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN113307619A (zh) 一种铁酸铋-钛酸铅-铌镁酸铋三元体系高温压电陶瓷的制备方法
CN114031395B (zh) BNT-BKT-BT-AlN复合压电材料及其制备和应用
CN113666743A (zh) 一种knn基透明储能陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN110498681B (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
CN112225550B (zh) 一种压电陶瓷材料、其制备方法及压电陶瓷传感器
CN111170736B (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
CN115286386B (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
CN114276128B (zh) 一种降低铁酸铋-钛酸钡压电陶瓷漏电流以及提高其高温电阻率的方法
CN114292102B (zh) 一种铁酸铋-钛酸钡基无铅压电陶瓷材料及其制备方法
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN115376825A (zh) 一种兼具高储能密度和储能效率的nn基储能陶瓷块体材料及其制备方法
CN112062559B (zh) 一种反铁电陶瓷材料及其低温烧结方法
CN114478007A (zh) 一种具有良好工艺容忍性的高压电及高介电性能的铌酸钠基陶瓷材料及其制备方法与应用
CN114180952A (zh) 掺杂型铁酸铋-钛酸钡基无铅压电陶瓷材料的制备方法
CN113402273A (zh) 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法
JP3077054B2 (ja) 耐熱導電性セラミックス
CN114478027B (zh) 一种消除铁酸铋-钛酸钡基压电陶瓷核壳结构的方法
CN114507070B (zh) 一种掺杂改性的铌酸铋钙基陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant