CN112830791A - 一种高熵陶瓷及其制备方法和应用 - Google Patents

一种高熵陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN112830791A
CN112830791A CN202110088774.4A CN202110088774A CN112830791A CN 112830791 A CN112830791 A CN 112830791A CN 202110088774 A CN202110088774 A CN 202110088774A CN 112830791 A CN112830791 A CN 112830791A
Authority
CN
China
Prior art keywords
powder
entropy
equal
less
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110088774.4A
Other languages
English (en)
Inventor
郭伟明
许亮
张岩
张威
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202110088774.4A priority Critical patent/CN112830791A/zh
Publication of CN112830791A publication Critical patent/CN112830791A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明属于陶瓷材料技术领域,公开了一种高熵陶瓷及其制备方法和应用。该高熵陶瓷分子式为(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2,其中0.1≤a≤0.9,0.1≤b≤0.9,0.1≤c≤0.9,0.1≤d≤0.9,0.1≤e≤0.9,0.1≤f≤0.9,0≤g≤0.9,0≤h≤0.9且a+b+c+d+e+f+g+h=1;Me1‑Me8为Hf、Mo、Zr、Nb、Ti、V、W、Cr、Ta中的任意6~8种;该高熵陶瓷是将金属氧化物HfO2、MoO3、ZrO2、Nb2O5、TiO2、V2O5、WO3、Cr2O3、Ta2O5中的任意6~8种和B4C、碳粉加入溶剂经球磨混合得到混合粉体,经压模后所得坯体升温至1400~1600℃,采用放电等离子烧结将所得高熵粉体升温至1000~1400℃时充入保护气氛,然后升温至1900~2100℃,加压10~100MPa煅烧制得。高熵陶瓷的相对密度>98%,硬度为35~40GPa,热导率为0.1~1W/(mK)。

Description

一种高熵陶瓷及其制备方法和应用
技术领域
本发明属于陶瓷材料技术领域,更具体地,涉及一种高熵陶瓷及其制备方法和应用。
背景技术
“高熵”是近年来出现的新的材料设计理论,目前已成为材料研究领域的一大热点,其概念最初由高熵合金发展而来。高熵陶瓷是一种无机非金属材料,一般由4种以上的等比例或近等比例金属元素和若干种非金属元素结合而成的单相陶瓷材料。
高熵陶瓷具有高强度、硬度、优异的耐磨性、优异的耐高温强度、良好的结构稳定性和良好的耐蚀性和抗氧化性。由于组分的增加,用于探索和发现新材料的组合空间大大增加,但是大多数成分不会形成均一的单相。
高熵陶瓷由于组分的增加,陶瓷体系的构型熵增加,导致其吉布斯自由能下降,使得陶瓷体系更为稳定,性能表现出优异的稳定性。另外,由于各种原子随机分布在晶格点阵中,每个原子周围的环境以及占位均不一样,使得晶格内部有更多的晶格畸变和缺陷,滑移困难,性能提高。已报道文献中多为4元或5元的高熵陶瓷,6元及6元以上的高熵陶瓷少见报道。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种高熵陶瓷。该陶瓷具有超多组元,均一固溶体相、组元稳定、硬度高及热导率低的优点。
本发明另一目的在于提供上述高熵的陶瓷的制备方法。
本发明再一目的在于提供上述高熵的陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种高熵陶瓷,所述高熵陶瓷分子式为(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2,其中0.1≤a≤0.9,0.1≤b≤0.9,0.1≤c≤0.9,0.1≤d≤0.9,0.1≤e≤0.9,0.1≤f≤0.9,0≤g≤0.9,0≤h≤0.9且a+b+c+d+e+f+g+h=1;Me1-Me8为Hf、Mo、Zr、Nb、Ti、V、W、Cr、Ta中的任意6~8种;该高熵陶瓷是将金属氧化物HfO2、MoO3、ZrO2、Nb2O5、TiO2、V2O5、WO3、Cr2O3、Ta2O5中的任意6~8种和B4C、碳粉加入溶剂经球磨混合得到混合粉体,经压模后所得坯体放入石墨坩埚中,升温至1400~1600℃保温,进行真空热处理得到高熵粉体;采用放电等离子烧结将高熵粉体升温至1000~1400℃时充入保护气氛,然后升温至1900~2100℃,加压10~100MPa煅烧制得。
优选地,所述a+b+c+d+e+f+g+h=1,且a、b、c、d、e、f、g和h为等摩尔。
优选地,所述金属氧化物的纯度为99.0~99.9wt%,金属氧化物的粒径为0.1~10μm;所述B4C粉和碳粉的纯度为97~99.99wt.%,粒径为1~2μm。
优选地,所述高熵粉体的纯度99.0~99.9wt%,粒径为0.1~1μm;所述高熵粉体的氧含量为0.01~0.1wt%,碳含量为0.01~0.5wt%。
优选地,所述溶剂为乙醇、丙醇、甲醇或丙酮。
优选地,所述保护气氛为N2或Ar。
优选地,所述升温至1400~1600℃的升温速率为5~15℃/min;所述保温时间为0.5~2h;所述升温至1000~1400℃的升温速率为100~400℃/min,所述升温至1900~2100℃时的升温速率为100~400℃/min。
优选地,所述陶瓷的相对密度>98%,硬度为35~40GPa,热导率为0.1~1W/(mK)。
所述的高熵陶瓷的制备方法,包括如下具体步骤:
S1.将金属氧化物HfO2、MoO3、ZrO2、Nb2O5、TiO2、V2O5、WO3、Cr2O3、Ta2O5中的任意6~8种和B4C、碳粉加入溶剂和球磨介质,在球磨机上混合10~48h,干燥后得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~15℃/min的速率升温至1400~1600℃保温0.5~2h,真空热处理,获得(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2高熵粉体;
S3.将(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2高熵粉体放入石墨模具中,采用放电等离子烧结以100~400℃/min的速率升温至1000~1400℃并充入保护气氛,再以100~400℃/min的速率升温至1900~2100℃,保温10~30min,加压10~100MPa煅烧,制得(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2高熵陶瓷。
所述的高熵陶瓷在高温核反应堆、航空航天领域中的应用。所述的高温为>2000℃,超硬(>35GPa)低热导率(<1W/(mK))。
本发明的高熵陶瓷是以6~8种氧化物为原料,经过硼热碳热还原反应,制备出(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2高熵粉体,Me1、Me2、Me3、Me4、Me5、Me6、Me7、Me8金属间相互固溶,经放电等离子烧结后,由于其冷却速度快,很难出现固溶析出相,制备出单相的(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2高熵陶瓷。其组分均一,性能稳定,且一种粉末具有多组元的性质。
与现有技术相比,本发明具有以下有益效果:
1.本发明的高熵陶瓷由于其具有6种或6种以上的组元,很难烧结出单相固溶体陶瓷,在高混合熵的条件下,材料的分相倾向性被抑制,仅出现简单的单一物相。相比于4元或者5元高熵陶瓷,组元更多,提高了高熵陶瓷的构型熵,使得体系吉布斯自由能降低,陶瓷性能更加稳定。
2.本发明通过固相反应制备出的高熵粉体,由于其粉末粒径小,纯度高,烧结驱动力大,易于烧出单相固溶体陶瓷。
3.本发明合成的高熵陶瓷粉末,相比于多种硼化物经高能球磨后获得的混合粉末,避免了高能球磨过程球磨介质的污染,从而降低高熵陶瓷粉末的污染,烧结出的高熵陶瓷性能更为优异,具有超硬(>35GPa)和低热导率(<1W/(mK))。
4.本发明的高熵陶瓷由于组元增多,各组元发生固溶,由于原子半径的差异,出现了大量的晶格畸变,其性能优于各单一组元材料,其具有更高的声子散射,相比于各组元陶瓷,拥有更低的热导率(0.1~1W/(mK))。
说明附图
图1为实施例1制得的(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵粉体和陶瓷的XRD图谱。
图2为实施例1制得的(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵陶瓷的断口形貌。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以HfO2(粉末的纯度99%,粒径1μm)、MoO3(粉末的纯度99%,粒径3μm)、ZrO2(粉末的纯度99.8%,粒径1μm)、Nb2O5(粉末的纯度99.8%,粒径5μm)、TiO2(粉末的纯度99%,粒径0.5μm)、V2O5(粉末的纯度99.6%,粒径1μm)和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1600℃保温1h,真空热处理获得(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵粉体。
3.将(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵粉体放入石墨模具中,采用放电等离子烧结以150℃/min的速率升温至1000℃并充入Ar保护气氛,再以150℃/min的速率升温至2000℃,保温10min,加压30MPa煅烧,制得(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵陶瓷。
图1为实施例1制得的(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵粉体和陶瓷的XRD图谱。其中,(a)为(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵陶瓷粉末,(b)为(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/ 6V1/6)B2高熵陶瓷。从图1中可以看出,本实例制得的(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵陶瓷粉末中没有检测到HfO2、MoO3、ZrO2、Nb2O5、TiO2、V2O5相,只有(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵陶瓷粉末相和少量未固溶的HfB2相。与HfB2标准PDF卡片65-8678和ZrB2标准PDF卡片65-8704对比可知,(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2的峰向高角度偏移,高熵固熔体为均一的固熔体相,说明高熵固熔体粉末经过SPS烧结后仍为均一的固熔体相。图2为本实例经SPS烧结后(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6V1/6)B2高熵陶瓷的断口形貌,从图2可以看出,所制得的高熵陶瓷比较致密,只存在少量气孔,实现了高熵陶瓷的致密化烧结。
通过激光粒度分析测得本实施例固溶体粉末的粉末粒径为0.39μm,用碳氧分析仪测得固溶体粉末的含氧量为0.01wt%,固溶体粉末的碳含量为0.03wt%,制备得到的具有多元高熵的陶瓷材料形成单一的固溶体,其相对密度为98%,硬度为35GPa,热导率为0.3W/(mK)。
实施例2
1.以HfO2(粉末的纯度99%,粒径1μm)、MoO3(粉末的纯度99%,粒径3μm)、ZrO2(粉末的纯度99.8%,粒径1μm)、Nb2O5(粉末的纯度99.8%,粒径5μm)、TiO2(粉末的纯度99%,粒径0.5μm)、WO3(粉末的纯度99.5%,粒径4μm)和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以15℃/min的速率升温至1400℃保温1h,真空热处理获得(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6W1/6)B2高熵粉体。
3.将(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6W1/6)B2高熵粉体放入石墨模具中,采用放电等离子烧结以200℃/min的速率升温至1400℃并充入Ar保护气氛,再以200℃/min的速率升温至2100℃,保温30min,加压45MPa煅烧,制得(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6W1/6)B2高熵陶瓷。
通过激光粒度分析测得本实施例固溶体粉末的粉末粒径为0.62μm,用碳氧分析仪测得固溶体粉末的含氧量为0.02wt%,固溶体粉末的碳含量为0.02wt%,制备得到的具有多元高熵的陶瓷材料形成单一的固溶体,其相对密度为98%,硬度为35GPa,热导率为0.6W/(mK)。
实施例3
1.以HfO2(粉末的纯度99%,粒径1μm)、MoO3(粉末的纯度99%,粒径3μm)、ZrO2(粉末的纯度99.8%,粒径1μm)、Nb2O5(粉末的纯度99.8%,粒径5μm)、TiO2(粉末的纯度99%,粒径0.5μm)、Cr2O3(粉末的纯度99.5%,粒径3μm)和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以5℃/min的速率升温至1500℃保温2h,真空热处理获得(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6Cr1/6)B2高熵粉体。
3.将(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6Cr1/6)B2高熵粉体放入石墨模具中,采用放电等离子烧结以300℃/min的速率升温至1200℃并充入Ar保护气氛,再以100℃/min的速率升温至2000℃保温20min,加压50MPa煅烧,制得(Hf1/6Mo1/6Zr1/6Nb1/6Ti1/6Cr1/6)B2高熵陶瓷。
通过激光粒度分析测得本实施例固溶体粉末的粉末粒径为0.39μm,用碳氧分析仪测得固溶体粉末的含氧量为0.01wt%,固溶体粉末的碳含量为0.03wt%,制备得到的具有多元高熵的陶瓷材料形成单一的固溶体,其相对密度为98%,硬度为36GPa,热导率为0.5W/(mK)。
实施例4
1.以HfO2(粉末的纯度99%,粒径1μm)、MoO3(粉末的纯度99%,粒径3μm)、ZrO2(粉末的纯度99.8%,粒径1μm)、Nb2O5(粉末的纯度99.8%,粒径5μm)、TiO2(粉末的纯度99%,粒径0.5μm)、V2O5(粉末的纯度99.6%,粒径1μm)、WO3(粉末的纯度99.5%,粒径4μm)和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1500℃保温0.5h,真空热处理获得(Hf1/7Mo1/7Zr1/7Nb1/7Ti1/7V1/7W1/7)B2高熵粉体。
3.将(Hf1/7Mo1/7Zr1/7Nb1/7Ti1/7V1/7W1/7)B2高熵粉体放入石墨模具中,采用放电等离子烧结以150℃/min的速率升温至1200℃并充入Ar保护气氛,再以150℃/min的速率升温至1950℃,保温15min,加压35MPa煅烧,制得(Hf1/7Mo1/7Zr1/7Nb1/7Ti1/7V1/7W1/7)B2高熵陶瓷。
通过激光粒度分析测得本实施例固溶体粉末的粉末粒径为0.26μm,用碳氧分析仪测得固溶体粉末的含氧量为0.01wt%,固溶体粉末的碳含量为0.06wt%,制备得到的具有多元高熵的陶瓷材料形成单一的固溶体,其相对密度为99%,硬度为40GPa,热导率为0.4W/(mK)。
实施例5
1.以HfO2(粉末的纯度99%,粒径1μm)、MoO3(粉末的纯度99%,粒径3μm)、ZrO2(粉末的纯度99.8%,粒径1μm)、Nb2O5(粉末的纯度99.8%,粒径5μm)、TiO2(粉末的纯度99%,粒径0.5μm)、Ta2O5(粉末的纯度99.6%,粒径1μm)、WO3(粉末的纯度99.5%,粒径4μm)和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2.将混合粉体模压后的坯体放入石墨坩埚中,以15℃/min的速率升温至1400℃保温1h,真空热处理获得(Hf1/7Mo1/7Zr1/7Nb1/7Ti1/7Ta1/7W1/7)B2高熵粉体。
3.将(Hf1/7Mo1/7Zr1/7Nb1/7Ti1/7Ta1/7W1/7)B2高熵粉体放入石墨模具中,采用放电等离子烧结以250℃/min的速率升温至1000℃并充入Ar保护气氛,再以150℃/min的速率升温至1900℃,保温10min,加压20MPa煅烧,制得(Hf1/7Mo1/7Zr1/7Nb1/7Ti1/7Ta1/7W1/7)B2高熵陶瓷。
通过激光粒度分析测得本实施例固溶体粉末的粉末粒径为0.23μm,用碳氧分析仪测得固溶体粉末的含氧量为0.01wt%,固溶体粉末的碳含量为0.07wt%,制备得到的具有多元高熵的陶瓷材料形成单一的固溶体,其相对密度为99%,硬度为39GPa,热导率为0.8W/(mK)。
本发明合成的高熵陶瓷粉末,相比于多种硼化物经高能球磨后获得的混合粉末,避免了高能球磨过程球磨介质的污染,从而降低高熵陶瓷粉末的污染,烧结出的高熵陶瓷性能更为优异,所述陶瓷的相对密度>98%,硬度为35~40GPa,热导率为0.1~1W/(mK)。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高熵陶瓷,其特征在于,所述高熵陶瓷分子式为(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2,其中0.1≤a≤0.9,0.1≤b≤0.9,0.1≤c≤0.9,0.1≤d≤0.9,0.1≤e≤0.9,0.1≤f≤0.9,0≤g≤0.9,0≤h≤0.9且a+b+c+d+e+f+g+h=1;Me1-Me8为Hf、Mo、Zr、Nb、Ti、V、W、Cr、Ta中的任意6~8种;该高熵陶瓷是将金属氧化物HfO2、MoO3、ZrO2、Nb2O5、TiO2、V2O5、WO3、Cr2O3、Ta2O5中的任意6~8种和B4C、碳粉加入溶剂经球磨混合得到混合粉体,经压模后所得坯体放入石墨坩埚中,升温至1400~1600℃保温,进行真空热处理得到高熵粉体;采用放电等离子烧结将高熵粉体升温至1000~1400℃时充入保护气氛,然后升温至1900~2100℃,加压10~100MPa煅烧制得。
2.根据权利要求1所述的高熵陶瓷,其特征在于,所述a+b+c+d+e+f+g+h=1,且a、b、c、d、e、f、g和h为等摩尔。
3.根据权利要求1所述的高熵陶瓷,其特征在于,所述金属氧化物的纯度为99.0~99.9wt%,金属氧化物的粒径为0.1~10μm;所述B4C粉和碳粉的纯度为97~99.99wt.%,其粒径为1~2μm。
4.根据权利要求1所述的高熵陶瓷,其特征在于,所述高熵粉体的纯度99.0~99.9wt%,粒径为0.1~1μm;所述高熵粉体的氧含量为0.01~0.1wt%,碳含量为0.01~0.5wt%。
5.根据权利要求1所述高熵陶瓷,其特征在于,所述溶剂为乙醇、丙醇、甲醇或丙酮。
6.根据权利要求1所述的高熵陶瓷,其特征在于,所述保护气氛为N2或Ar。
7.根据权利要求1所述的高熵陶瓷,其特征在于,所述升温至1400~1600℃的升温速率为5~15℃/min;所述保温时间为0.5~2h;所述升温至1000~1400℃的升温速率为100~400℃/min;所述升温至1900~2100℃时的升温速率为100~400℃/min。
8.根据权利要求1所述的高熵陶瓷,其特征在于,所述陶瓷的相对密度>98%,硬度为35~40GPa,热导率为0.1~1W/(mK)。
9.根据权利要求1-8任一项所述的高熵陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.将金属氧化物HfO2、MoO3、ZrO2、Nb2O5、TiO2、V2O5、WO3、Cr2O3、Ta2O5中的任意6~8种和B4C、碳粉加入溶剂和球磨介质,在球磨机上混合10~48h,干燥后得混合粉体;
S2.将混合粉体模压后的坯体放入石墨坩埚中,以5~15℃/min的速率升温至1400~1600℃保温0.5~2h,真空热处理,获得(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2高熵粉体;
S3.将(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2高熵粉体放入石墨模具中,采用放电等离子烧结以100~400℃/min的速率升温至1000~1400℃并充入保护气氛,再以100~400℃/min的速率升温至1900~2100℃,保温10~30min,加压10~100MPa煅烧,制得(Me1aMe2bMe3cMe4dMe5eMe6fMe7gMe8h)B2高熵陶瓷。
10.权利要求1~8任一项所述的高熵陶瓷在高温核反应堆、航空航天领域中的应用。
CN202110088774.4A 2021-01-22 2021-01-22 一种高熵陶瓷及其制备方法和应用 Pending CN112830791A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110088774.4A CN112830791A (zh) 2021-01-22 2021-01-22 一种高熵陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110088774.4A CN112830791A (zh) 2021-01-22 2021-01-22 一种高熵陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112830791A true CN112830791A (zh) 2021-05-25

Family

ID=75930924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110088774.4A Pending CN112830791A (zh) 2021-01-22 2021-01-22 一种高熵陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112830791A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603490A (zh) * 2021-07-22 2021-11-05 中广核研究院有限公司 高熵陶瓷惰性基弥散燃料芯块及其制备方法
CN114276147A (zh) * 2021-11-24 2022-04-05 东华大学 一种弥散强化高熵十二硼化物基复合材料及其制备方法
CN114507074A (zh) * 2022-03-14 2022-05-17 北京理工大学 一种高熵过渡-稀土金属二硼化物陶瓷材料及其制备方法
CN114933478A (zh) * 2022-05-23 2022-08-23 中国科学院兰州化学物理研究所 一种高硬自润滑单相高熵陶瓷材料及其制备方法
CN115595024A (zh) * 2021-07-08 2023-01-13 武汉苏泊尔炊具有限公司(Cn) 复合不粘涂料及其制备方法和烹饪器具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002879A (zh) * 2019-03-22 2019-07-12 广东工业大学 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN111533559A (zh) * 2020-03-30 2020-08-14 东华大学 一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110002879A (zh) * 2019-03-22 2019-07-12 广东工业大学 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN111533559A (zh) * 2020-03-30 2020-08-14 东华大学 一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
项厚政等: "高熵氧化物的制备及应用研究进展", 《过程工程学报》, vol. 20, no. 03, 15 August 2019 (2019-08-15), pages 245 - 253 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595024A (zh) * 2021-07-08 2023-01-13 武汉苏泊尔炊具有限公司(Cn) 复合不粘涂料及其制备方法和烹饪器具
CN115595024B (zh) * 2021-07-08 2023-10-31 武汉苏泊尔炊具有限公司 复合不粘涂料及其制备方法和烹饪器具
CN113603490A (zh) * 2021-07-22 2021-11-05 中广核研究院有限公司 高熵陶瓷惰性基弥散燃料芯块及其制备方法
CN114276147A (zh) * 2021-11-24 2022-04-05 东华大学 一种弥散强化高熵十二硼化物基复合材料及其制备方法
CN114507074A (zh) * 2022-03-14 2022-05-17 北京理工大学 一种高熵过渡-稀土金属二硼化物陶瓷材料及其制备方法
CN114507074B (zh) * 2022-03-14 2023-01-17 北京理工大学 一种高熵过渡-稀土金属二硼化物陶瓷材料及其制备方法
CN114933478A (zh) * 2022-05-23 2022-08-23 中国科学院兰州化学物理研究所 一种高硬自润滑单相高熵陶瓷材料及其制备方法
CN114933478B (zh) * 2022-05-23 2023-08-25 中国科学院兰州化学物理研究所 一种高硬自润滑单相高熵陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN110002879B (zh) 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN109516811B (zh) 一种具有多元高熵的陶瓷及其制备方法和应用
CN112830791A (zh) 一种高熵陶瓷及其制备方法和应用
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
Li et al. Spark plasma sintering of TiC–ZrC composites
CN112830790B (zh) 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用
CN114315359B (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN110698204B (zh) 一种max相陶瓷的制备方法
CN112679213B (zh) 一种超多元高熵陶瓷及其制备方法和应用
Chockalingam et al. Microwave sintering of β-SiAlON–ZrO2 composites
CN102976760A (zh) 添加稀土氧化物的硼化锆-碳化硅复相陶瓷材料及其制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
Guo et al. Pressureless sintering of zirconium diboride ceramics with boron additive
Luo et al. Low-temperature densification by plasma activated sintering of Mg2Si-added Si3N4
CN112062576A (zh) 一种石墨烯增韧的高熵硅化物陶瓷及其制备方法和应用
CN106747433B (zh) 氧化锆基纳米陶瓷工模具材料及其制备方法
CN104909764B (zh) 一种改性复相塞隆陶瓷、其制备方法及用途
Dai et al. Demonstrating low‐temperature sintering of boron carbide powders
CN115557793B (zh) 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN104844214A (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN112830792B (zh) 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用
CN111943682B (zh) 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用
Kaplan Akarsu et al. Comparative study of reactive and nonreactive spark plasma sintering routes for the production of TaB2‐TaC composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210525

RJ01 Rejection of invention patent application after publication