CN112830790B - 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用 - Google Patents
一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用 Download PDFInfo
- Publication number
- CN112830790B CN112830790B CN202110087760.0A CN202110087760A CN112830790B CN 112830790 B CN112830790 B CN 112830790B CN 202110087760 A CN202110087760 A CN 202110087760A CN 112830790 B CN112830790 B CN 112830790B
- Authority
- CN
- China
- Prior art keywords
- solid solution
- hafnium
- niobium
- powder
- based ternary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58078—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3821—Boron carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3873—Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明属于陶瓷材料技术领域,公开了一种铪铌基三元固溶体硼化物导电陶瓷及其制备方法和应用,该导电陶瓷的分子式为(HfaNbbMec)B2,其中0.1≤a≤0.9,0<b<0.9,0<c<0.9且a+b+c=1;Me为Zr、Ta或Ti,该导电陶瓷是将HfO2、Nb、Me氧化物、B4C、碳粉加入溶剂经球磨混合得到混合粉体,经压模后所得坯体放入石墨坩埚中,升温至1400~1600℃保温,进行真空热处理,得到(HfaNbbMec)B2铪铌基三元固溶体硼化物粉体;采用放电等离子烧结将上述硼化物粉体升温至1000~1400℃时充入保护气氛,然后升温至1900~2100℃,压力为10~100MPa煅烧制得。
Description
技术领域
本发明属于陶瓷材料技术领域,更具体地,涉及一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用。
背景技术
过渡金属硼化物作为一种超高温陶瓷,具有高熔点、高硬度、优异的高温稳定性、耐腐蚀性和高温抗蠕变性等优点。其在航天发动机、超音速飞行器、炉体部件等恶劣环境中的应用具有极大的潜力。但由于其具有强的共价键和低的扩散系数,过渡金属硼化物很难烧结致密。制备致密的纯相过渡金属硼化物往往需要较高的温度和压力条件,但高温往往会导致晶粒粗化,降低陶瓷的机械性能。因此,为了促进过渡金属硼化物的致密化,许多学者常常通过添加烧结助剂来提高烧结驱动力,如Sciti等通过添加9vol%MoSi2,采用SPS在1700℃/100 MPa的条件下成功制备致密度为100%ZrB2陶瓷,但玻璃相MoSi2的存在可能会降低其固有机械强度和高温性能。除此之外,降低粉体粒径,提高粉体表面能,是增加粉体烧结活性,制备致密硼化物陶瓷的一种方法。除此之外,陶瓷的均匀性也在一定程度上影响其性能,外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示,使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示,在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高为9.26K,超导元素加入某些其他元素作合金成分,可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。三元合金,性能进一步提高,Nb-60Ti-4Ta的Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的Tc=9.8K,Hc=12.8特。之前报道高熵陶瓷中固溶NbB2会有偏析,由于其烧结温度或者保温时间不足,NbB2扩散较慢,均质的含NbB2的三元硼化物陶瓷预期会有更好的性能。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种铪铌基三元固溶体硼化物的导电陶瓷。该陶瓷的组织均匀,具有均一固溶体相、组元稳定、硬度高和导电率高的优点。
本发明另一目的在于提供上述铪铌基三元固溶体硼化物的导电陶瓷的制备方法。
本发明再一目的在于提供上述铪铌基三元固溶体硼化物的导电陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种铪铌基三元固溶体硼化物的导电陶瓷,所述导电陶瓷的分子式为(HfaNbbMec)B2,其中,0.1≤a≤0.9,0<b<0.9,0<c<0.9且a+b+c=1;Me为Zr、Ta或Ti,所述导电陶瓷是将HfO2、Nb、Me氧化物ZrO2、Ta2O5或TiO2中任意一种、B4C、碳粉加入溶剂经球磨混合得到混合粉体,经压模后所得坯体放入石墨坩埚中,升温至1400~1600℃保温,进行真空热处理,得到(HfaNbbMec)B2铪铌基三元固溶体硼化物粉体;采用放电等离子烧结将上述硼化物粉体升温至1000~1400℃时充入保护气氛,然后升温至1900~2100℃,压力为10~100MPa煅烧制得。
优选地,所述(HfaNbbMec)B2铪铌基三元固溶体硼化物粉末的纯度95~99.9wt%,粒径为2~7µm。
优选地,所述(HfaNbbMec)B2铪铌基三元固溶体硼化物粉体的氧含量为0.01~5wt%,碳含量为0.01~5wt%。
优选地,所述HfO2、ZrO2、Ta2O5和TiO2的纯度均为99.0~99.9wt%,粒径均为0.1~10µm;所述Nb的纯度为95~99wt%,粒径为10~20µm;所述B4C粉和碳粉的纯度均为97~99.99wt.%,粒径均为1~1.5 µm。
优选地,所述铪基三元固溶体硼化物陶瓷的相对密度为95~98%,硬度为20~30GPa,电阻率为1~5Ω。
优选地,所述溶剂为乙醇、丙醇、甲醇或丙酮。
优选地,所述保护气氛为N2或Ar。
优选地,所述升温至1400~1600℃的升温速率为5~15℃/min;所述保温时间为0.5~2h;所述升温至1000~1400℃的升温速率为100~400℃/min,所述升温至1900~2100℃时的升温速率为100~400℃/min。
所述的铪铌基三元固溶体硼化物的导电陶瓷的制备方法,包括如下具体步骤:
S1. 将HfO2、Nb、Me氧化物ZrO2、Ta2O5或TiO2中任意一种、B4C、碳粉加入溶剂和球磨介质,在球磨机上混合20~40h,干燥后得混合粉体;
S2. 将混合粉体模压后的坯体放入石墨坩埚中,以5~15℃/min的速率升温至1400~1600℃保温0.5~2h,真空热处理获得(HfaNbbMec)B2铪铌基三元固溶体硼化物粉体;
S3. (HfaNbbMec)B2铪铌基三元固溶体硼化物粉体放入石墨模具中,采用放电等离子烧结以100~400℃/min的速率升温至1000~1400℃并充入保护气氛,再以100~400℃/min的速率升温至1900~2100℃,保温10~30min,加压10~100MPa煅烧,制得(HfaNbbMec)B2铪铌基三元固溶体硼化物的导电陶瓷。
所述的铪铌基三元固溶体硼化物的导电陶瓷在电子零部件领域中的应用。
本发明的铪铌基三元固溶体硼化物导电陶瓷具有组织均匀,该陶瓷是以三种金属氧化物、Nb粉、B4C和C为原料,经过硼热碳热还原反应,制备出(HfaNbbMec)B2铪铌基三元固溶体硼化物粉末,该方法通过原位固溶制备铪基三元固溶体硼化物粉末,更容易形成单相,且粉末粒径小,纯度高,烧结驱动力大,更容易制备组织均匀(HfaNbbMec)B2铪铌基三元固溶体硼化物陶瓷,通过引入超导元素Nb,有效改善了(HfaNbbMec)B2铪铌基三元固溶体硼化物陶瓷的导电性能。
与现有技术相比,本发明具有以下有益效果:
1. 本发明制得的(HfaNbbMec)B2铪铌基三元固溶体硼化物陶瓷粉末,可以通过硼热碳热还原法将金属元素与金属氧化物固溶在一起,原位合成单相三元固溶体粉末,粉末粒径小(2~7µm),纯度高(氧含量为0.01~5wt%,碳含量为0.01~5wt%),烧结驱动力大,易于烧出单相固溶体陶瓷。
2. 本发明制备的(HfaNbbMec)B2铪铌基三元固溶体硼化物陶瓷,由于其粉末粒径烧结驱动力大,制备的(HfaNbbMec)B2铪铌基三元固溶体硼化物陶瓷的组织均匀。
3. 本发明制备的(HfaNbbMec)B2铪铌基三元固溶体硼化物陶瓷,由放电等离子烧结制备,由于烧结时间短,且快速冷却,(HfaNbbMec)B2铪铌基三元固溶体硼化物陶瓷的晶粒尺寸细小,分布均匀,内部缺陷小,组织较均匀,具有高导电率(电阻率为1~5Ω),在导电领域有很高的应用前景。
说明附图
图1为实施例1制得的(Hf1/3Zr1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷的元素面扫描分布图;
图2为实施例5制得的(Hf1/3Ta1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷的元素面扫描分布图。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1. 以HfO2(粉末的纯度99%,粒径1μm)、ZrO2(粉末的纯度99.8%,粒径1μm)、Nb(粉末的纯度99%,粒径10μm)、和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2. 将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1600℃保温1h,真空热处理获得(Hf1/3Zr1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷粉末。
3. 将(Hf1/3Zr1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷粉末放入石墨模具中,采用放电等离子烧结以150℃/min的速率升温至1000℃并充入Ar保护气氛,再以150℃/min的速率升温至2000℃,保温10min,加压30MPa煅烧,制得(Hf1/3Zr1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷。
通过激光粒度分析测得本实施例的(Hf1/3Zr1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷粉末的粒径为5μm,用碳氧分析仪测得固溶体粉末的含氧量为0.01wt%,固溶体粉末的碳含量为0.03wt%,制备得到的(Hf1/3Zr1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷,其相对密度为98%,硬度为30GPa,四探针电阻仪测试的电阻为2Ω。
图1为实施例1制得的(Hf1/3Zr1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷的元素面扫描分布图;从图1中可知,各元素分布均匀,大粒径的Nb未造成组织的偏析,而且其还发挥了导电的优异性能,四探针电阻仪测试的(Hf1/3Zr1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷的电阻为1Ω。
实施例2
1. 以HfO2(粉末的纯度99%,粒径2μm)、TiO2(粉末的纯度99.8%,粒径2μm)、Nb(粉末的纯度99%,粒径10μm)、和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2. 将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1600℃保温1h,真空热处理获得(Hf1/3Ti1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷粉末。
3. 将(Hf1/3Ti1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷粉末放入石墨模具中,采用放电等离子烧结以150℃/min的速率升温至1000℃并充入Ar保护气氛,再以150℃/min的速率升温至2000℃,保温30min,加压50MPa煅烧,制得(Hf1/3Ti1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷。
通过激光粒度分析测得本实施例的(Hf1/3Ti1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷粉末的粒径为6μm,用碳氧分析仪测得固溶体粉末的含氧量为0.01wt%,固溶体粉末的碳含量为0.03wt%,制备得到的(Hf1/3Ti1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷,其相对密度为97%,硬度为28GPa,四探针电阻仪测试的电阻为3Ω。
实施例3
1. 以HfO2(粉末的纯度99%,粒径1μm)、TiO2(粉末的纯度99.8%,粒径1μm)、Nb(粉末的纯度99%,粒径10μm)、和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2. 将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1600℃保温1h,真空热处理获得(Hf1/4Ti1/4Nb1/2)B2铪铌基三元固溶体硼化物导电陶瓷粉末。
3. 将(Hf1/4Ti1/4Nb1/2)B2铪铌基三元固溶体硼化物导电陶瓷粉末放入石墨模具中,采用放电等离子烧结以150℃/min的速率升温至1000℃并充入Ar保护气氛,再以150℃/min的速率升温至2000℃,保温30min,加压50MPa煅烧,制得(Hf1/4Ti1/4Nb1/2)B2铪铌基三元固溶体硼化物的导电陶瓷。
通过激光粒度分析测得本实施例的(Hf1/4Ti1/4Nb1/2)B2铪铌基三元固溶体硼化物导电陶瓷粉末的粒径为7μm,用碳氧分析仪测得固溶体粉末的含氧量为0.01wt%,固溶体粉末的碳含量为0.03wt%,制得的(Hf1/4Ti1/4Nb1/2)B2铪铌基三元固溶体硼化物导电陶瓷,其相对密度为96%,硬度为28GPa,四探针电阻仪测试的电阻为1Ω。
实施例4
1. 以HfO2(粉末的纯度99%,粒径1μm)、TiO2(粉末的纯度99.8%,粒径1μm)、Nb(粉末的纯度95%,粒径20μm)、和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2. 将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1600℃保温1h,真空热处理获得(Hf1/2Ti1/4Nb1/4)B2铪铌基三元固溶体硼化物导电陶瓷粉末。
3. 将(Hf1/2Ti1/4Nb1/4)B2铪铌基三元固溶体硼化物导电陶瓷粉末放入石墨模具中,采用放电等离子烧结以150℃/min的速率升温至1000℃并充入Ar保护气氛,再以150℃/min的速率升温至2000℃,保温10min,加压40MPa煅烧,制得(Hf1/2Ti1/4Nb1/4)B2铪铌基三元固溶体硼化物导电陶瓷。
通过激光粒度分析测得本实施例的(Hf1/2Ti1/4Nb1/4)B2铪铌基三元固溶体硼化物导电陶瓷粉末的粒径为4.3μm,用碳氧分析仪测得固溶体粉末的含氧量为0.01wt%,固溶体粉末的碳含量为0.03wt%。
实施例5
1. 以HfO2(粉末的纯度99%,粒径1μm)、Ta2O5(粉末的纯度99.8%,粒径1μm)、Nb(粉末的纯度99%,粒径10μm)、和B4C(粉末的纯度99.9%,粒径0.5μm)、碳粉(粉末的纯度99%,粒径0.8μm)为原料,以乙醇为溶剂,以Si4N3为球磨介质,在球磨机上混合24h,干燥后得到混合粉体;
2. 将混合粉体模压后的坯体放入石墨坩埚中,以10℃/min的速率升温至1600℃保温1h,真空热处理获得(Hf1/3Ta1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷粉末。
3. 将(Hf1/3Ta1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷粉末放入石墨模具中,采用放电等离子烧结以150℃/min的速率升温至1000℃并充入Ar保护气氛,再以150℃/min的速率升温至2000℃,保温10min,加压30MPa煅烧,制得(Hf1/3Ta1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷;
通过激光粒度分析测得本实施例的(Hf1/3Ta1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷粉末的粒径为2μm,用碳氧分析仪测得固溶体粉末的含氧量为0.01wt%,固溶体粉末的碳含量为0.03wt%,制得的(Hf1/3Ta1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷,其相对密度为95%,硬度为20GPa,四探针电阻仪测试的电阻为5Ω。
图2为实施例5制得的(Hf1/3Ta1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷的元素面扫描分布图。从图2中可知,Nb元素出现偏析现象,组织分布不均匀,陶瓷的导电性较低,四探针电阻仪测试的(Hf1/3Ta1/3Nb1/3)B2铪铌基三元固溶体硼化物导电陶瓷的电阻为5Ω。
本发明制得的(HfaNbbMec)B2铪铌基三元固溶体硼化物陶瓷粉末,可以通过硼热碳热还原法将金属元素与金属氧化物固溶在一起,原位合成单相三元固溶体粉末,其粒径小(2~7µm),纯度高(氧含量为0.01~5wt%,碳含量为0.01~5wt%),烧结驱动力大,易于烧出单相固溶体陶瓷。(HfaNbbMec)B2铪铌基三元固溶体硼化物陶瓷的晶粒尺寸细小,分布均匀,内部缺陷小,组织较均匀,具有高导电率(电阻率为1~5Ω),在导电领域有很高的应用前景。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (5)
1.一种铪铌基三元固溶体硼化物的导电陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1. 将HfO2,Nb,Me氧化物ZrO2或TiO2,B4C,碳粉加入溶剂和球磨介质,在球磨机上混合20~40h,干燥后得混合粉体;所述HfO2、ZrO2和TiO2的纯度均为99.0~99.9wt%,粒径均为0.1~10µm;所述Nb的纯度为95~99wt%,粒径为10~20µm;B4C和碳粉的纯度均为97~99.99 wt.%,粒径均为1~1.5 µm;
S2. 将混合粉体模压后的坯体放入石墨坩埚中,以5~15℃/min的速率升温至1400~1600℃保温0.5~2h,真空热处理获得(HfaNbbMec)B2铪铌基三元固溶体硼化物粉体;所述(HfaNbbMec)B2铪铌基三元固溶体硼化物粉末的纯度95~99.9wt%,粒径为2~7µm;所述(HfaNbbMec)B2铪铌基三元固溶体硼化物粉体的氧含量为0.01~5wt%,碳含量为0.01~5wt%;
S3. (HfaNbbMec)B2铪铌基三元固溶体硼化物粉体放入石墨模具中,采用放电等离子烧结以100~400℃/min的速率升温至1000~1400℃时充入保护气氛,再以100~400℃/min的速率升温至1900~2100℃,保温10~30min,加压10~100MPa煅烧,制得(HfaNbbMec)B2铪铌基三元固溶体硼化物的导电陶瓷;所述导电陶瓷的分子式为(HfaNbbMec)B2,其中,0.1≤a≤0.9,0<b<0.9,0<c<0.9且a+b+c=1;Me为Zr或Ti;所述铪铌基三元固溶体硼化物陶瓷的相对密度为96~98%,硬度为28~30GPa,电阻率为1~3Ω。
2.根据权利要求1所述的铪铌基三元固溶体硼化物的导电陶瓷的制备方法,其特征在于,步骤S1中所述溶剂为乙醇、丙醇、甲醇或丙酮。
3.根据权利要求1所述的铪铌基三元固溶体硼化物的导电陶瓷的制备方法,其特征在于,步骤S3中所述保护气氛为N2或Ar。
4.一种铪铌基三元固溶体硼化物的导电陶瓷,其特征在于,所述导电陶瓷是由权利要求1-3任一项所述的方法制备得到。
5.权利要求4所述的铪铌基三元固溶体硼化物的导电陶瓷在电子零部件领域中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110087760.0A CN112830790B (zh) | 2021-01-22 | 2021-01-22 | 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110087760.0A CN112830790B (zh) | 2021-01-22 | 2021-01-22 | 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112830790A CN112830790A (zh) | 2021-05-25 |
CN112830790B true CN112830790B (zh) | 2022-11-22 |
Family
ID=75930921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110087760.0A Active CN112830790B (zh) | 2021-01-22 | 2021-01-22 | 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112830790B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112624740B (zh) * | 2020-12-26 | 2022-08-02 | 重庆材料研究院有限公司 | 一种高熵ntc热敏电阻陶瓷材料及其制备方法 |
CN114481230B (zh) * | 2022-02-25 | 2023-05-09 | 北京科技大学 | 一种高致密铪碳氧固溶体及其制备方法和一种电解制备金属铪的方法 |
CN114804888A (zh) * | 2022-05-06 | 2022-07-29 | 郑州大学 | 一种三元二硼化物固溶体基复合陶瓷的制备方法 |
CN115196968B (zh) * | 2022-06-10 | 2023-03-21 | 华南理工大学 | 一种高熵硼化物陶瓷粉体及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85109070A (zh) * | 1985-12-20 | 1987-06-24 | 北京有色金属研究总院 | 铌合金的制造方法 |
CN103950946A (zh) * | 2014-05-22 | 2014-07-30 | 安徽工业大学 | 一种硼化铌纳米粉体的制备方法 |
CN110002879A (zh) * | 2019-03-22 | 2019-07-12 | 广东工业大学 | 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用 |
-
2021
- 2021-01-22 CN CN202110087760.0A patent/CN112830790B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85109070A (zh) * | 1985-12-20 | 1987-06-24 | 北京有色金属研究总院 | 铌合金的制造方法 |
CN103950946A (zh) * | 2014-05-22 | 2014-07-30 | 安徽工业大学 | 一种硼化铌纳米粉体的制备方法 |
CN110002879A (zh) * | 2019-03-22 | 2019-07-12 | 广东工业大学 | 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
Dmytro DEMIRSKYI等.Synthesis of medium-entropy (Zr1/3Hf1/3Ta1/3)B2 using the spark plasma consolidation of diboride powders.《Journal of the Ceramic Society of Japan》.2020,第128卷(第11期),第977-980页. * |
Also Published As
Publication number | Publication date |
---|---|
CN112830790A (zh) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112830790B (zh) | 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用 | |
CN109678523B (zh) | 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用 | |
CN109516811B (zh) | 一种具有多元高熵的陶瓷及其制备方法和应用 | |
Li et al. | Spark plasma sintering of TiC–ZrC composites | |
CN109879669B (zh) | 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用 | |
CN105714139A (zh) | 铜-石墨烯复合材料及其制备方法 | |
WO2020042949A1 (zh) | 高度取向纳米max相陶瓷和max相原位自生氧化物纳米复相陶瓷的制备方法 | |
CN112830791A (zh) | 一种高熵陶瓷及其制备方法和应用 | |
CN112679213B (zh) | 一种超多元高熵陶瓷及其制备方法和应用 | |
Wang et al. | Microstructure and properties of hot pressed TiB2 and SiC reinforced B4C–based composites | |
CN104045350A (zh) | 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法 | |
CN113480315A (zh) | 一种高熵低硼化物陶瓷及其制备方法 | |
CN112811909A (zh) | 一种热压烧结制备高强度高热导率氮化铝的方法 | |
CN109665848B (zh) | 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用 | |
CN109354504B (zh) | 一种碳化硼基复合陶瓷烧结助剂及烧结工艺 | |
CN112830792B (zh) | 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用 | |
CN112011717B (zh) | 一种高强度低膨胀复合材料及制备方法 | |
CN109023338B (zh) | 一种铌合金表面耐高温多组元硅化物涂层及其制备方法 | |
Wang et al. | Spark plasma sintering of polycrystalline La0. 6Ce0. 3Pr0. 1B6–ZrB2 composites | |
CN109592983B (zh) | 一种高热导液相烧结碳化硅陶瓷及其制备方法 | |
CN111636006B (zh) | 一种铝硅合金石墨复合导热材料及其制备与应用 | |
CN117721357A (zh) | MAX/MXene复合增强金属基复合材料及制备方法 | |
Tabie et al. | Microstructure and mechanical properties of particle reinforced high-temperature titanium composites | |
CN104402450A (zh) | 一种基于热爆反应低温快速制备Ti2AlN陶瓷粉体的方法 | |
KR20240139972A (ko) | 인시츄 합성 2차원 카바이드 분산 강화 몰리브덴 합금의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |