CN109023338B - 一种铌合金表面耐高温多组元硅化物涂层及其制备方法 - Google Patents

一种铌合金表面耐高温多组元硅化物涂层及其制备方法 Download PDF

Info

Publication number
CN109023338B
CN109023338B CN201810696860.1A CN201810696860A CN109023338B CN 109023338 B CN109023338 B CN 109023338B CN 201810696860 A CN201810696860 A CN 201810696860A CN 109023338 B CN109023338 B CN 109023338B
Authority
CN
China
Prior art keywords
coating
niobium alloy
equal
temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810696860.1A
Other languages
English (en)
Other versions
CN109023338A (zh
Inventor
张平
冯培忠
陈正
沈承金
任宣儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201810696860.1A priority Critical patent/CN109023338B/zh
Publication of CN109023338A publication Critical patent/CN109023338A/zh
Application granted granted Critical
Publication of CN109023338B publication Critical patent/CN109023338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种铌合金表面耐高温多组元硅化物涂层及其制备方法,该涂层的组成相为[(Nb1‑x‑yTixCry)1‑z,Rz]Si2,R为金属元素Mo,W,Zr,Hf,Ta中的一种或多种,其中x,y,z分别表示对应元素的摩尔数,且0.05≤x≤0.2,0.05≤y≤0.3,0.05≤z≤0.4;首先按摩尔比为[(Nb1‑x‑ yTixCry)1‑z,Rz]:Si=1:2.01~2.1的比例,分别称取各金属单质粉末和硅单质粉末,投入混料机中充分混合12~24h;用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结;将烧结后的涂层试样在真空或保护气氛下进行均匀化热处理,即可。本发明提出了放电等离子烧结+均匀化热处理的复合制备工艺,工艺简单、涂层组织均匀、成分可控,涂层在1200‑1600℃下具有优良的抗高温氧化能力。

Description

一种铌合金表面耐高温多组元硅化物涂层及其制备方法
技术领域
本发明涉及一种金属材料表面高温抗氧化涂层及其制备方法,特别是一种铌合金表面耐高温涂层及其制备方法。
背景技术
铌合金以其高熔点、低密度以及良好的高低温力学性能,被认为是航空、航天与核工业中高温结构件的重要候选材料,但其抗氧化性能较差,而在表面制备防护涂层是提高铌合金抗氧化性能的最有效途径。硅化物涂层是最适用于铌合金的高温抗氧化涂层体系。
目前国内外研究的铌合金高温抗氧化硅化物涂层主要有两大体系,即 Si-Ti-Cr/Si-Fe-Cr基硅化物涂层体系和难熔硅化物(NbSi2,MoSi2)涂层体系。如中国专利CN101200801公开了一种在铌合金表面首先采用真空料浆烧结制备钼层,然后再包埋渗硅制备MoSi2涂层的方法,该涂层在1650℃静态抗氧化时间可达25小时;中国专利CN102719713A公开了一种通过将含有Si、Mo、Ti、 HfO2和Al等多种合金元素的涂层料浆涂覆于铌合金上,然后在高温真空下熔烧制备高温抗氧化硅化物涂层的方法,该涂层有效解决了铌合金在800℃以上,尤其是在1100℃上下大气环境中剧烈氧化问题;中国专利CN104561882A公开了一种采用高能等离子喷涂工艺在铌合金表面制备具有底涂层 Mo1-xWx(Si1-y-zAlyBz)2+面涂层Mo1-xWx(Si1-y-zAlyBz)2-(10-20)wt.%HfSi2的双层结构的涂层,该涂层在1500-1800℃具有优异的抗高温氧化性能。由此可见,多组元硅化物涂层是铌合金表面高温防护涂层的未来发展方向。尽管其中一些体系已经成功地应用到航空航天领域中铌合金高温保护上,但是简化涂层制备工艺流程,提高涂层组织均匀性、成分结构的可控性以及制备更高性能的保护涂层一直是铌合金表面抗氧化硅化物涂层研究的重点。
放电等离子烧结工艺是近年来备受重视的一种新的粉末冶金烧结技术,具有在加压过程中烧结的特点,脉冲电流产生的等离子体及烧结过程中的加压有利于降低粉末的烧结温度。同时低电压、高电流的特征,能使粉末快速烧结致密。它的工艺优势十分明显:加热均匀,升温速度快,烧结温度低,烧结时间短,生产效率高,产品组织细小均匀,能保持原材料的自然状态,可以得到高致密度的材料。目前已有科研工作者尝试采用放电等离子烧结工艺在铌合金表面制备抗氧化涂层,但涂层组织致密性欠缺,且涂层中存在较大的内应力,高温氧化过程中容易产成大的裂纹,甚至严重时会发生涂层崩落,从而失去保护作用。
发明内容
本发明的目的是提供一种铌合金表面耐高温多组元硅化物涂层,组织结构均匀,组成成分可控,具有良好的抗高温氧化能力。
本发明的目的是提供上述铌合金表面耐高温多组元硅化物涂层的制备方法,制备工艺简单。
为实现上述目的,本发明采用的技术方案如下:
一种铌合金表面耐高温多组元硅化物涂层,该涂层的组成相为 [(Nb1-x- yTixCry)1-z,Rz]Si2,R为金属元素Mo,W,Zr,Hf,Ta中的一种或多种,其中 x,y,z分别表示对应元素的摩尔数,且0.05≤x≤0.2,0.05≤y≤0.3,0.05≤z≤0.4。
本发明提供的铌合金表面耐高温多组元硅化物涂层的制备方法,具体实施步骤如下:
(1)首先按摩尔比[(Nb1-x-yTixCry)1-z,Rz]:Si=1:2.01~2.1的比例,分别称取各金属单质粉末和硅单质粉末,投入混料机中充分混合12~24h;R为金属元素Mo,W,Zr,Hf,Ta中的一种或多种,其中x,y,z分别表示对应元素的摩尔数,且0.05≤x≤0.2,0.05≤y≤0.3,0.05≤z≤0.4;
(2)用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结;
(3)将烧结后的涂层试样再真空或保护气氛下进行均匀化热处理,即可形成耐高温多组元硅化物涂层。
进一步地,步骤(2)中,所述烧结的具体参数为:升温速率为50~100℃/s, 压力为25~50MPa,烧结温度为1250~1500℃,烧结时间为5~20min。
进一步地,步骤(3)中,所述热处理的具体参数为:温度为800~1250℃,时间为2~8h。
优选的,所述金属单质粉末和硅单质粉末的纯度≥99.0%,粒度≤50μm。
与现有技术相比,本发明具有如下有益效果:
1.本发明提出的铌合金表面耐高温多组元硅化物涂层,以NbSi2相为基体相,通过添加Ti,Cr,Mo,W,Zr,Hf,Ta等元素对其进行改性,其中Ti,Cr的添加可有效抑制单一NbSi2涂层的中温“pest”氧化现象且提高其室温韧性,而难熔金属Mo,W,Zr,Hf,Ta等元素的添加生成的MoSi2,WSi2,ZrSi2,HfSi2,TaSi2等高熔点硅化物相可进一步提高涂层的耐高温氧化能力。经1450℃氧化100h后涂层样品形成的表面氧化膜致密、完整,能较好地保护基体合金免于氧化。
2.本发明提出了放电等离子烧结+均匀化热处理的复合制备工艺,该工艺制备的涂层可进一步实现多组元涂层的组织成分可控,并有效降低涂层在烧结过程中产生的内应力,从而抑制涂层中裂纹的产生,提高涂层高温抗氧化性能。
附图说明
图1为本发明实施例3制备的铌合金表面耐高温[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2涂层的表面XRD图谱;
图2为本发明实施例3制备的铌合金表面耐高温[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2涂层的横截面BSE像;
图3为本发明实施例3制备的铌合金表面耐高温[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2涂层的元素面分布;其中(A)元素Nb;(B)元素Si;(C)元素Ti;(D)元素 Cr;(E)元素W。
具体实施方式
下面以在铌合金表面制备[(Nb1-x-yTixCry)1-z,Rz]Si2涂层为例,结合附图和具体实施方式对本发明作进一步详细说明。
以下实施例中各金属单质粉末和硅单质粉末的纯度≥99.0%,粒度≤50μm。
实施例1:制备[(Nb0.75Ti0.05Cr0.2)0.95,W0.05]Si2涂层
(1)首先按摩尔比[(Nb0.75Ti0.05Cr0.2)0.95,W0.05]:Si=1:2.03的比例,分别称取各金属单质粉末和硅单质粉末,投入混料机中充分混合12h;
(2)用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结,具体工艺参数为:升温速率为 100℃/s,压力为30MPa,经1400℃烧结5min;
(3)将烧结后的涂层试样在氩气保护气氛下进行均匀化热处理,温度为 1100℃,时间为4h,得到了主要由(Nb-Ti-Cr)Si2和少量WSi2组成的[(Nb0.75Ti0.05Cr0.2)0.95,W0.05]Si2涂层,涂层组织均匀,与基体结合呈冶金形式,成分分析表明涂层中各元素成分基本符合设计成分。
实施例2:制备[(Nb0.75Ti0.05Cr0.2)0.8,W0.2]Si2涂层
(1)首先按摩尔比[(Nb0.75Ti0.05Cr0.2)0.8,W0.2]:Si=1:2.03的比例,分别称取各金属单质粉末,投入混料机中充分混合18h;
(2)用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结,具体工艺参数为:升温速率为 100℃/s,压力为30MPa,经1450℃烧结5min;
(3)将烧结后的涂层试样在氩气保护气氛下进行均匀化热处理,温度为 1150℃,时间为4h,得到了主要由(Nb-Ti-Cr)Si2和WSi2组成的[(Nb0.75Ti0.05Cr0.2)0.8, W0.2]Si2涂层,涂层组织均匀,与基体结合呈冶金形式,成分分析表明涂层中各元素成分基本符合设计成分。
实施例3:制备[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2涂层
(1)首先按摩尔比[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]:Si=1:2.03的比例,分别称取各金属单质粉末,投入混料机中充分混合24h;
(2)用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结,具体工艺参数为:升温速率为 100℃/s,压力为30MPa,经1450℃烧结5min;
(3)将烧结后的涂层试样在氩气保护气氛下进行均匀化热处理,温度为 1200℃,时间为4h,即可形成耐高温多组元硅化物涂层。
利用X射线衍射仪(德国Bruker D8ADVANCE XRD)对本实施例所制备的[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2涂层的表面进行测试分析,结果如图1所示。
利用场发射扫描电子显微镜(日立SU8220)和背散射检测器(BSE)对本实施例所制备的[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2涂层的横截面进行成像分析,结果如图2所示,涂层厚度约为500μm,组织较致密,与基体合金界面为冶金结合形式。
利用电子探针显微分析仪(岛津EPMA-8050G)对本实施例所制备的[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2涂层进行元素面分析,结果如图3所示。
由表面XRD分析及电子探针元素面分布分析可知,该涂层主要是由(Nb-Ti-Cr)Si2和WSi2组成的[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2,各元素在涂层中的分布较均匀,实际成分基本符合设计成分。
本发明的铌合金表面①[(Nb0.75Ti0.05Cr0.2)]Si2,②[(Nb0.75Ti0.05Cr0.2)0.95, W0.05]Si2,③[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2涂层经1450℃氧化100h后的宏观形貌。从宏观照片来看,[(Nb0.75Ti0.05Cr0.2)]Si2涂层样品经1450℃氧化100h后表面形成了一层疏松的黄色氧化物,该氧化物容易脱落,对基体合金的保护性有限;而 [(Nb0.75Ti0.05Cr0.2)0.95,W0.05]Si2及[(Nb0.75Ti0.05Cr0.2)0.6,W0.4]Si2涂层样品氧化后形成的表面氧化膜致密、完整,能较好地保护基体合金免于氧化,且氧化100h后的单位面积增重仅分别为2.5mg/cm2和2.1mg/cm2,表现出良好的抗氧化能力。
实施例4:制备[(Nb0.75Ti0.2Cr0.05)0.85,Mo0.15]Si2涂层
(1)首先按摩尔比[(Nb0.75Ti0.2Cr0.05)0.85,Mo0.15]:Si=1:2.01的比例,分别称取各金属单质粉末,投入混料机中充分混合18h;
(2)用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结,具体工艺参数为:升温速率为 80℃/s,压力为25MPa,经1500℃烧结8min;
(3)将烧结后的涂层试样在氩气保护气氛下进行均匀化热处理,温度为 800℃,时间为6h,得到了主要由(Nb-Ti-Cr)Si2和少量MoSi2组成的 [(Nb0.75Ti0.2Cr0.05)0.85,Mo0.15]Si2涂层,涂层组织均匀,与基体结合呈冶金形式,成分分析表明涂层中各元素成分基本符合设计成分。
实施例5:制备[(Nb0.65Ti0.05Cr0.3)0.9,Zr0.1]Si2涂层
(1)首先按摩尔比[(Nb0.65Ti0.05Cr0.3)0.9,Zr0.1]:Si=1:2.05的比例,分别称取各金属单质粉末,投入混料机中充分混合12h;
(2)用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结,具体工艺参数为:升温速率为 50℃/s,压力为50MPa,经1450℃烧结10min;
(3)将烧结后的涂层试样在真空条件下进行均匀化热处理,温度为1000℃,时间为8h,得到了主要由(Nb-Ti-Cr)Si2和少量ZrSi2组成的[(Nb0.65Ti0.05Cr0.3)0.9, Zr0.1]Si2涂层,涂层组织均匀,与基体结合呈冶金形式,成分分析表明涂层中各元素成分基本符合设计成分。
实施例6:制备[(Nb0.7Ti0.1Cr0.2)0.95,Hf0.05]Si2涂层
(1)首先按摩尔比[(Nb0.7Ti0.1Cr0.2)0.95,Hf0.05]:Si=1:2.1的比例,分别称取各金属单质粉末,投入混料机中充分混合18h;
(2)用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结,具体工艺参数为:升温速率为 100℃/s,压力为40MPa,经1500℃烧结10min;
(3)将烧结后的涂层试样在氩气保护气氛下进行均匀化热处理,温度为 1200℃,时间为5h,得到了主要由(Nb-Ti-Cr)Si2和少量HfSi2及单质Si组成的[(Nb0.7Ti0.1Cr0.2)0.95,Hf0.05]Si2涂层,涂层组织均匀,与基体结合呈冶金形式,成分分析表明涂层中各元素成分基本符合设计成分。
实施例7:制备[(Nb0.65Ti0.2Cr0.15)0.7,Ta0.3]Si2涂层
(1)首先按摩尔比[(Nb0.65Ti0.2Cr0.15)0.7,Ta0.3]:Si=1:2.1的比例,分别称取各金属单质粉末,投入混料机中充分混合24h;
(2)用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结,具体工艺参数为:升温速率为 50℃/s,压力为40MPa,经1450℃烧结15min;
(3)将烧结后的涂层试样在氩气保护气氛下进行均匀化热处理,温度为 1250℃,时间为2h,得到了主要由(Nb-Ti-Cr)Si2,TaSi2和少量单质Si组成的[(Nb0.65Ti0.2Cr0.15)0.7,Ta0.3]Si2涂层,涂层组织均匀,与基体结合呈冶金形式,成分分析表明涂层中各元素成分基本符合设计成分。

Claims (4)

1.一种铌合金表面耐高温多组元硅化物涂层,其特征在于,该涂层的组成相为[(Nb 1-x- y Ti x Cr y ) 1-z ,R z ]Si2,R为金属元素Mo, W, Zr, Hf, Ta中的一种或多种,其中x, y, z分别表示对应元素的摩尔数,且0.05≤x≤0.2,0.05≤y≤0.3,0.05≤z≤0.4;该涂层通过以下步骤制备得到:
(1)首先按摩尔比[(Nb 1-x-y Ti x Cr y ) 1-z ,R z ]:Si=1:2.01~2.1分别称取各金属单质粉末和硅单质粉末,投入混料机中充分混合12~24h;R为金属元素Mo, W, Zr, Hf, Ta中的一种或多种,其中x, y, z分别表示对应元素的摩尔数,且0.05≤x≤0.2, 0.05≤y≤0.3,0.05≤z≤0.4;
(2)用混合好的多组元金属粉末将铌合金工件包埋后放在石墨坩埚中,然后将石墨坩埚置入放电等离子烧结炉中进行烧结;
(3)将烧结后的涂层试样在真空或保护气氛下进行均匀化热处理,即可形成耐高温多组元硅化物涂层。
2.根据权利要求1所述的一种铌合金表面耐高温多组元硅化物涂层,其特征在于,步骤(2)中,所述烧结的具体参数为:升温速率为50~100℃/s,压力为25~50MPa,烧结温度为1250~1500℃,烧结时间为5~20min。
3.根据权利要求1或2所述的一种铌合金表面耐高温多组元硅化物涂层,其特征在于,步骤(3)中,所述热处理的具体参数为:温度为800~1250℃,时间为2~8h。
4.根据权利要求1或2所述的一种铌合金表面耐高温多组元硅化物涂层,其特征在于,所述金属单质粉末和硅单质粉末的纯度 ≥ 99.0%,粒度 ≤ 50μm。
CN201810696860.1A 2018-06-29 2018-06-29 一种铌合金表面耐高温多组元硅化物涂层及其制备方法 Active CN109023338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810696860.1A CN109023338B (zh) 2018-06-29 2018-06-29 一种铌合金表面耐高温多组元硅化物涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810696860.1A CN109023338B (zh) 2018-06-29 2018-06-29 一种铌合金表面耐高温多组元硅化物涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN109023338A CN109023338A (zh) 2018-12-18
CN109023338B true CN109023338B (zh) 2020-04-03

Family

ID=65521859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810696860.1A Active CN109023338B (zh) 2018-06-29 2018-06-29 一种铌合金表面耐高温多组元硅化物涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN109023338B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913870A (zh) * 2019-04-30 2019-06-21 江苏理工学院 一种铌合金表面MoSi2涂层的制备方法
CN111155080B (zh) * 2020-01-03 2021-12-21 西北工业大学 一种耐高温硅化物腐蚀的防护涂层材料及涂层制备方法
CN112962012B (zh) * 2021-01-31 2021-12-28 湖南科技大学 一种集抗氧化和阻界面扩散于一体的复合防护涂层及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112857B (zh) * 2015-07-24 2017-08-25 航天材料及工艺研究所 一种发动机推力室身部制备铱和硅化物组合涂层的方法

Also Published As

Publication number Publication date
CN109023338A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109023338B (zh) 一种铌合金表面耐高温多组元硅化物涂层及其制备方法
Shi et al. Enhancing copper infiltration into alumina using spark plasma sintering to achieve high performance Al2O3/Cu composites
CN112830769B (zh) 一种高发射率高熵陶瓷粉体材料及涂层制备方法
CN113185295A (zh) 一种制备max相高熵陶瓷材料的方法
CN110698204B (zh) 一种max相陶瓷的制备方法
CN114525438B (zh) 钨铜复合材料及其制备方法
JP6908248B2 (ja) 被覆SiCナノ粒子を用いたSiCセラミックス及びその製造方法
CN112830790A (zh) 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用
Guo et al. Ultrafast high-temperature sintering to avoid metal loss toward high-performance and scalable cermets
CN113373364A (zh) 颗粒增强难熔高熵复合材料及其制备方法
CN115073174A (zh) 一种致密高熵稀土铌酸盐高温陶瓷材料、制备方法及应用
Zhu et al. Fabrication and microstructure of ZrO 2-Ni functional gradient material by powder metallurgy
KR102084452B1 (ko) Mo-Si-B 합금의 제조 방법
CN105803283A (zh) 一种Nb-Si-Ti-W-Cr合金棒材及其制备方法
CN107790730A (zh) 一种在Nb‑Si基合金上制备高温抗氧化涂层的方法
Qi et al. Effect of TiC particles size on the oxidation resistance of TiC/hastelloy composites applied for intermediate temperature solid oxide fuel cell interconnects
CN108866415B (zh) 一种高强韧低氧钼合金及制备方法
Qi et al. The oxidation resistance optimization of titanium carbide/hastelloy (Ni-based alloy) composites applied for intermediate-temperature solid oxide fuel cell interconnects
CN116275010A (zh) 一种原位氮化物增强3d打印镍基高温合金粉末
Sun et al. Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders
CN106270532A (zh) 氧化钇‑钨梯度材料及其制备方法和在制造合金熔炼用坩埚中的应用
CN113816747A (zh) TiC增强MAX相高熵陶瓷基复合材料及其制备方法
Qi et al. Integrated preparation and enhanced performance of high-melting-point ZrC–Mo multilayer graded materials
JPH0499146A (ja) 粉末焼結材料およびその製造方法
Ke et al. Preparation and properties of supersonic atmospheric plasma sprayed TiB2− SiC coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant