CN112830769B - 一种高发射率高熵陶瓷粉体材料及涂层制备方法 - Google Patents

一种高发射率高熵陶瓷粉体材料及涂层制备方法 Download PDF

Info

Publication number
CN112830769B
CN112830769B CN202110073088.XA CN202110073088A CN112830769B CN 112830769 B CN112830769 B CN 112830769B CN 202110073088 A CN202110073088 A CN 202110073088A CN 112830769 B CN112830769 B CN 112830769B
Authority
CN
China
Prior art keywords
emissivity
entropy ceramic
entropy
powder material
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110073088.XA
Other languages
English (en)
Other versions
CN112830769A (zh
Inventor
高明浩
栾胜家
王远鸿
周恬伊
朱宏博
常辉
徐娜
张甲
侯万良
常新春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202110073088.XA priority Critical patent/CN112830769B/zh
Publication of CN112830769A publication Critical patent/CN112830769A/zh
Application granted granted Critical
Publication of CN112830769B publication Critical patent/CN112830769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及高温防护材料及涂层领域,具体为一种高发射率高熵陶瓷粉体材料及涂层制备方法,有助于高效散热以避免基体材料超温失效。通过高熵化思想设计一种成分为CraNibTixSmyAl(1‑a‑b‑x‑y)O(3+x‑b)/2(下标为原子比)的高发射率高熵陶瓷粉体材料,采用“固相烧结+机械破碎”的方法制备喷涂粉末,并利用大气等离子喷涂制备高发射率涂层。该成分体系高发射率涂层耐温能力超过1100℃,在1150℃×5min、水淬条件下循环30次以上,无涂层剥落、起皮等现象,室温条件发射率高达0.96,1200℃发射率达到0.92。

Description

一种高发射率高熵陶瓷粉体材料及涂层制备方法
技术领域
本发明涉及高温防护材料及涂层领域,具体为一种高发射率高熵陶瓷粉体材料及涂层制备方法,获得的材料及涂层可应用于飞行器外壳、医用靶材等高温壁面,有助于高效散热以避免基体材料超温失效。
背景技术
陶瓷涂层的种类非常丰富,应用领域广泛,其中有一类高发射率涂层,通常涂覆在高温壁面上,促进表面热量散失,从而起到保护基材的作用。高发射率涂层材料主要由耐火材料、高发射率添加剂和粘结剂三部分构成,典型的耐火材料包括氧化锆、氧化铝、二氧化硅等;典型的高发射率添加剂主要是过渡金属氧化物,如:氧化铬、氧化钴、氧化铁和氧化镍等。某些涂层体系中,耐火组元和高发射率添加剂是同一种材料。
航天飞行器外壁面具有显著的气动加热现象,飞行器在大气层中高速飞行的同时,外壁面与空气及空气中的粒子产生剧烈摩擦,导致飞行器壁面温度迅速升高,如果不采取防护措施,热量会直接传导至飞行器内部结构件中,导致内部温度超高造成破坏。在飞行器外壳表面涂覆高发射率涂层,涂层在气动加热过程中吸收热量,并以红外辐射的形式向飞行器外部散失热量,从而有效控制内部结构温度。Cr2O3基陶瓷涂层发射率高,并能在温度1100℃以下稳定运行,然而更高温度条件下会短时间内失效,主要原因在于使用温度超过1100℃时氧化铬会蒸发。单一组分涂层材料已经无法满足不断攀升的使用温度,并且高温环境下的发射率非常有限。
在金属材料领域人们对高熵的概念已经很熟悉了,高熵合金通常由五种及以上的元素组元按照等原子比或接近于等原子比合金化得到。高熵合金具有一些传统合金所无法比拟的优异性能,如:高强度、高硬度、高耐磨耐腐蚀性。在非金属材料领域,由多组元氧化物通过烧结法制备的高熵化陶瓷,同样表现出优异性能。高熵陶瓷具有高熔点、高硬度、较好耐蚀性等优点,在超高温材料和功能材料等领域应用前景广阔。
发明内容
本发明的目的在于提供一种高发射率高熵陶瓷粉体材料及涂层制备方法,高发射率高熵陶瓷粉体材料的化学成分、杂质含量及粒度等均满足使用要求,制备的防护涂层耐温能力超过1100℃,室温发射率不小于0.9,1200℃发射率不小于0.85。
本发明的技术方案是:
一种高发射率高熵陶瓷粉体材料,按原子比计,该材料的化学成分为CraNibTixSmyAl(1-a-b-x-y)O(3+x-b)/2,其中:a=0.58~0.69,b=0.20~0.24,x=0.08~0.09,y=0~0.02。
所述的高发射率高熵陶瓷粉体材料,该材料通过固相烧结法和机械破碎法进行制备,先将金属氧化物按照质量百分数:NiO 20~24%,TiO2 8~9%,Sm2O3 0.5~4%,Al2O3 2~5%,Cr2O3余量,进行混合配制后在球磨机中研磨6~10h,再在20~22MPa下将粉末压制成陶瓷块体,将陶瓷块体在1550±50℃条件下烧结3~5h,最后通过机械破碎法制备成高发射率高熵陶瓷粉体材料。
所述的高发射率高熵陶瓷粉体材料,该材料的粒度组成为:-800目:≤10%;-200目~+800目:≥85%;+200目:≤5%。
所述的高发射率高熵陶瓷粉体材料,该材料的松装密度为1.5~2.5g/cm3
所述的高发射率高熵陶瓷粉体材料,该材料的粉体颗粒呈等轴状或多面体型。
所述的高发射率高熵陶瓷粉体材料,该材料的成品率为65~70%。
一种高发射率高熵陶瓷涂层制备方法,采用大气等离子喷涂将高发射率高熵陶瓷粉体材料喷涂在覆有MCrAlY粘结层的基体表面;首先,采用大气等离子喷涂在基体表面制备MCrAlY粘结层,喷涂参数:主气(Ar)流量98~102SCFH,辅气(H2)流量5.5~8SCFH,功率31~34kW;然后,采用大气等离子喷涂在MCrAlY粘结层表面制备高发射率高熵陶瓷涂层,喷涂参数:主气(Ar)流量97~104SCFH,辅气(H2)流量5.5~9SCFH,功率35~38kW。
所述的高发射率高熵陶瓷涂层制备方法,基体与粘结层界面镶嵌砂粒面积为界面总面积的≯5%,粘结层孔隙率≯5%,高发射率高熵陶瓷涂层孔隙率为5~15%。
所述的高发射率高熵陶瓷涂层制备方法,高发射率高熵陶瓷涂层外观呈均匀的灰黑色,涂层完整、连续,无裂纹、剥落、缺口和边缘翘起缺陷。
所述的高发射率高熵陶瓷涂层制备方法,高发射率高熵陶瓷涂层的室温发射率不小于0.9,1200℃发射率不小于0.85。
本发明设计思想及原理如下:
氧、氮、碳及硼的化合物是最早发现的高发射率材料,但是单一材料高温条件下红外发射率不理想:发生高温氧化,高温烧结降低发射率;红外波段内具有频率选择性,无法在全波段内保持较高发射率。过渡金属氧化物是另一类常见的高发射率材料,NiO、Co2O3、MnO2、Cr2O3等过渡金属氧化物中存在较多的电子层,根据电子跃迁机制将有更多机会产生短波红外辐射,但是波段相应范围依然有限。通过多种组元复合使材料高熵化,可实现优势互补,扩展波段响应范围。多种金属氧化物或矿化物复合,增加了晶格中的缺陷,原子半径不同,降低晶格震动的对称性,导致晶体中偶极矩变化,可实现难以发生的跃迁,拓宽辐射波段范围,提高发射率。过渡族氧化物与氧化稀土互相掺杂,形成杂质能级,使电子跃迁更容易发生。因此,采取高熵化的设计思想,设计制备多组元氧化物复合陶瓷涂层对提高发射率,拓宽响应波段是有效的。
本发明的优点及有益效果是:
采用本发明所述方法制得的高发射率高熵陶瓷粉末呈等轴状,化学成分和杂质含量得到有效控制,粉末的粒度分布、松装密度均满足大气等离子喷涂要求。本发明所述高发射率高熵陶瓷涂层外观呈现均匀灰黑色,涂层完整、连续,无裂纹、剥落、缺口和边缘翘起等缺陷;室温发射率不小于0.9,1200℃发射率不小于0.85,发射率测试结果优异,广泛适用于飞行器蒙皮、医用靶材等高温壁面的散热,在热防护领域具有广阔应用前景。
附图说明
图1实施例1中高发射率高熵陶瓷粉末形貌扫描电镜照片。
图2实施例1中高发射率高熵陶瓷涂层组织金相照片。
图3实施例2中高发射率高熵陶瓷涂层热震试验前后照片。
图4实施例2中高发射率高熵陶瓷涂层XRD图谱。图中,横坐标2θ代表衍射角(°),纵坐标Intensity代表相对强度(a.u.)。
具体实施方式
在具体实施过程中,本发明通过高熵化思想设计一种高发射率高熵陶瓷粉体材料,其成分为CraNibTixSmyAl(1-a-b-x-y)O(3+x-b)/2(下标为原子比),其中:a=0.58~0.69,b=0.20~0.24,x=0.08~0.09,y=0~0.02。采用“固相烧结+机械破碎”的方法制备喷涂粉末,并利用大气等离子喷涂制备高发射率涂层。该成分体系的高发射率高熵陶瓷涂层耐温能力超过1100℃,在1150℃×5min、水淬条件下循环30次以上,无涂层剥落、起皮等现象,室温条件发射率高达0.96,1200℃发射率达到0.92。
如表1所示,高发射率高熵陶瓷粉体材料的化学成分及杂质含量如下:
表1
Figure BDA0002906617250000031
采用固相烧结加机械破碎的方法制备粉末材料,采用大气等离子喷涂制备高发射率高熵陶瓷涂层,具体工艺过程如下:
步骤1:高发射率陶瓷粉体材料配制:将Cr2O3、NiO、TiO2、Sm2O3和Al2O3粉末按照表1化学成分混合配制;向混合粉末中加入无水乙醇,并倒入行星式球磨机中研磨8h,将研磨后的陶瓷粉末放入烘干机中烘干24h。
步骤2:压块烧结:将烘干后的粉末填入长宽尺寸为150mm×50mm的模具中,使用粉末压块机将粉末压制定型,压制强度为20~22MPa,获得陶瓷块体;将陶瓷块体放入高温炉中,炉温升至1550±50℃,持续烧结4h,并随炉冷却。
步骤3:机械破碎:将步骤2得到的烧结块体通过机械破碎法制备成粉末,采用干筛分法对粉末粒度进行控制,粒度组成满足表2要求。
表2高发射率高熵陶瓷粉末粒度组成
粒度 -800目 -200目~+800目 +200目
含量(wt%) ≤10% ≥85% ≤5%
步骤4:涂层制备:采用大气等离子喷涂将步骤1~3制备的高发射率高熵陶瓷粉末喷涂在覆有MCrAlY(M为Co或Ni)粘结层的工件表面,喷涂工艺参数如表3所示。
表3高发射率高熵陶瓷涂层喷涂工艺参数
Figure BDA0002906617250000041
为了保证杂质含量满足要求,优选的原料纯度为:
(1)氧化铬(Cr2O3):≥99.5wt%;(2)氧化镍(NiO):≥99.5wt%;(3)氧化钛(TiO2):≥99.8wt%;(4)氧化钐(Sm2O3)≥99.5wt%;(5)氧化铝(Al2O3):≥99.8wt%;
采用本发明所述方法制备的高发射率高熵陶瓷粉体材料化学成分和杂质含量均在要求范围内,粉末粒度均匀,满足大气等离子喷涂要求。
下面,通过实施例和附图对本发明进一步详细阐述。
实施例1
本实施例中,在飞行器蒙皮表面喷涂高发射率高熵陶瓷涂层,具体步骤如下:
步骤1:将Cr2O3、NiO、TiO2、Sm2O3和Al2O3粉末混合配制,向混合粉末中加入无水乙醇,并倒入行星式球磨机中研磨8h,将研磨后的陶瓷粉末放入烘干机中烘干24h,获得高发射率高熵陶瓷粉体材料。按重量百分比计,高发射率高熵陶瓷粉体材料的化学成分及杂质含量如下:NiO 22%,TiO2 9%,Sm2O3 2%,Al2O3 3%,Fe2O3 0.12%,SiO2 0.15%,CaO0.08%,Cr2O3余量。
步骤2:将烘干后的粉末填入长宽尺寸为150mm×50mm的模具中,使用粉末压块机将粉末压制定型,压制强度为20~22MPa,获得陶瓷块体;将陶瓷块体放入高温炉中,炉温升至1550±50℃,持续烧结4h,并随炉冷却。
步骤3:将步骤2得到的烧结块体通过机械破碎法制备成粉末,采用干筛分法对粉末粒度进行控制;本实施例中,-800目的粉末占5wt%,-200目~+800目的粉末占92wt%,+200目的粉末占3wt%。
如图1所示,从实施例1中高发射率高熵陶瓷粉末形貌扫描电镜照片可以看出,陶瓷粉体呈等轴状或多面体型,尺寸均匀,喷涂过程中提供良好的填充性。
步骤4:对飞行器蒙皮表面进行清洗除油,采用无水乙醇进行脱水,用石油醚去除油污。
步骤5:采用压入式吹砂机对蒙皮表面进行吹砂处理;使用36~80目白刚玉砂,风压为0.2~0.6MPa,吹砂角度为45~80°,吹砂距离80~150mm,保证所有待喷涂面均经过吹砂处理,吹砂后基体表面粗糙度为≮0.5μm。
步骤6:采用大气等离子喷涂在飞行器蒙皮表面制备粘结层,工艺参数:主气Ar流量100SCFH,辅气H2流量6SCFH,功率32kW。本实施例中,粘结层材料为NiCrAlY,粘结层厚度80μm。
步骤7:采用大气等离子喷涂在粘结层表面制备高发射率高熵陶瓷涂层,工艺参数:主气Ar流量100SCFH,辅气H2流量7SCFH,功率36kW,高发射率高熵陶瓷涂层厚度120μm。
步骤8:对高发射率高熵陶瓷涂层的金相组织进行观察,飞行器蒙皮表面/粘结层界面砂粒镶嵌面积为界面总面积的2.3%,粘结层孔隙率为3.5%,高发射率高熵陶瓷涂层孔隙率为9.8%。
如图2所示,从实施例1中高发射率高熵陶瓷涂层组织金相照片可以看出,多孔结构可以保证涂层在具有高发射率同时降低热导率,起到隔热作用。
实施例2
本实施例中,对实施例1中制备的高发射率高熵陶瓷涂层进行热震和发射率测试:
步骤1:热震性能测试:将箱式电阻炉温度调整至1150±10℃,按照实施例1相同工艺参数喷涂高发射率高熵陶瓷涂层试片;将试片放置于电阻炉的均温区,保温5min,随后将试片放入室温25℃水中,接着将试片重新放入电阻炉中开始下一个循环;如图3所示,热震前后照片,经过30次循环后,涂层无分离、裂纹、起皮和剥落等缺陷,表明该涂层耐温能力超过1100℃。
步骤2:物相结构标定:对步骤1中制备的高发射率高熵陶瓷涂层进行X射线衍射测试,并对涂层中物相结构进行标定。如图4所示,本发明中高发射率高熵陶瓷涂层物相主要由NiCrO4尖晶石构成,有助于发射率提高。
步骤3:发射率测试:采用步骤1中相同的试片进行发射率测试,测试方法为黑体辐射源比对法,室温和1200℃的发射率如表4所示。
表4涂层发射率测试结果
室温(25℃) 1200℃
发射率 0.96±0.04 0.92±0.02
实施例结果表明,本发明提供一种高发射率高熵陶瓷粉体材料,并制备一种高发射率高熵陶瓷涂层,高熵陶瓷涂层使用温度超过1100℃,并能保证室温发射率不小于0.9,1200℃发射率不小于0.85,有助于高效散热以避免基体材料超温失效。

Claims (9)

1.一种高发射率高熵陶瓷粉体材料,其特征在于,按原子比计,该材料的化学成分为CraNibTixSmyAl(1-a-b-x-y)O(3+x-b)/2,其中:a=0.58~0.69,b=0.20~0.24,x=0.08~0.09,y=0.009~0.02,高发射率高熵陶瓷涂层的室温发射率不小于0.9,1200℃发射率不小于0.85。
2.按照权利要求1所述的高发射率高熵陶瓷粉体材料,其特征在于,该材料通过固相烧结法和机械破碎法进行制备,先将金属氧化物按照质量百分数:NiO 20~24%,TiO2 8~9%,Sm2O3 0.5~4%,Al2O3 2~5%,Cr2O3 余量,进行混合配制后在球磨机中研磨6~10h,再在20~22MPa下将粉末压制成陶瓷块体,将陶瓷块体在1550±50℃条件下烧结3~5h,最后通过机械破碎法制备成高发射率高熵陶瓷粉体材料。
3.按照权利要求2所述的高发射率高熵陶瓷粉体材料,其特征在于,该材料的粒度组成为:-800目:≤10wt%;-200目~+800目:≥85wt%;+200目:≤5wt%。
4.按照权利要求2所述的高发射率高熵陶瓷粉体材料,其特征在于,该材料的松装密度为1.5~2.5g/cm3
5.按照权利要求2所述的高发射率高熵陶瓷粉体材料,其特征在于,该材料的粉体颗粒呈等轴状或多面体型。
6.按照权利要求2所述的高发射率高熵陶瓷粉体材料,其特征在于,该材料的成品率为65~70%。
7.一种使用权利要求1至6之一所述材料的高发射率高熵陶瓷涂层制备方法,其特征在于,采用大气等离子喷涂将高发射率高熵陶瓷粉体材料喷涂在覆有MCrAlY粘结层的基体表面,M为Co或Ni;首先,采用大气等离子喷涂在基体表面制备MCrAlY粘结层,喷涂参数:主气Ar流量98~102 SCFH,辅气H2流量5.5~8 SCFH,功率31~34 kW;然后,采用大气等离子喷涂在MCrAlY粘结层表面制备高发射率高熵陶瓷涂层,喷涂参数:主气Ar流量97~104 SCFH,辅气H2流量5.5~9 SCFH,功率35~38 kW。
8.按照权利要求7所述的高发射率高熵陶瓷涂层制备方法,其特征在于,粘结层孔隙率≯5%,高发射率高熵陶瓷涂层孔隙率为5~15%。
9.按照权利要求7所述的高发射率高熵陶瓷涂层制备方法,其特征在于,高发射率高熵陶瓷涂层外观呈均匀的灰黑色,涂层完整、连续,无裂纹、剥落、缺口和边缘翘起缺陷。
CN202110073088.XA 2021-01-20 2021-01-20 一种高发射率高熵陶瓷粉体材料及涂层制备方法 Active CN112830769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110073088.XA CN112830769B (zh) 2021-01-20 2021-01-20 一种高发射率高熵陶瓷粉体材料及涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110073088.XA CN112830769B (zh) 2021-01-20 2021-01-20 一种高发射率高熵陶瓷粉体材料及涂层制备方法

Publications (2)

Publication Number Publication Date
CN112830769A CN112830769A (zh) 2021-05-25
CN112830769B true CN112830769B (zh) 2021-10-22

Family

ID=75928997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110073088.XA Active CN112830769B (zh) 2021-01-20 2021-01-20 一种高发射率高熵陶瓷粉体材料及涂层制备方法

Country Status (1)

Country Link
CN (1) CN112830769B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354394B (zh) * 2021-07-15 2023-03-24 中国科学院兰州化学物理研究所 一种具有高太阳能吸收率和红外发射率高熵氧化物的制备方法
CN113387684A (zh) * 2021-07-15 2021-09-14 中国科学院兰州化学物理研究所 一种具有良好红外辐射性能高熵氧化物的制备方法
CN113429213A (zh) * 2021-07-16 2021-09-24 中钢集团洛阳耐火材料研究院有限公司 一种具有尖晶石结构的高发射率红外节能高熵材料的制备方法
CN113511693B (zh) * 2021-07-19 2023-03-14 中国科学院兰州化学物理研究所 一种彩色尖晶石型高熵氧化物(NiFeCrM)3O4合成方法
CN113461415B (zh) * 2021-07-19 2022-08-30 中国科学院兰州化学物理研究所 一种水热法制备高熵氧化物材料(MAlFeCuMg)3O4的方法
CN113372088B (zh) * 2021-07-23 2023-01-13 中国科学院兰州化学物理研究所 一种以高熵氧化物为功能颜料制备水性陶瓷功能涂料的方法
CN114988896A (zh) * 2022-06-28 2022-09-02 北京理工大学 一种高发射率涂层及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442852A (ja) * 1990-06-08 1992-02-13 Kojundo Chem Lab Co Ltd 赤外線放射組成物
CN1099738A (zh) * 1993-08-31 1995-03-08 郝建明 耐高温节能无机涂层料及制备方法
EP1141168A1 (en) * 1998-12-07 2001-10-10 Young Keun Kim Composition of multipurpose far-infrared radiation material
CN103589201A (zh) * 2013-11-20 2014-02-19 北京恩吉赛威节能科技有限公司 高发射率红外节能辐射涂料及其制备方法
CN105861972A (zh) * 2016-04-15 2016-08-17 航天材料及工艺研究所 一种氧化铬-氧化钛基高温高发射率涂层及其制备方法
CN106928832A (zh) * 2017-04-21 2017-07-07 河南嘉和节能科技有限公司 一种耐高温防红外辐射节能涂料
CN111825436A (zh) * 2020-07-27 2020-10-27 重庆科技学院 一种四元复合陶瓷涂层配方及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442852A (ja) * 1990-06-08 1992-02-13 Kojundo Chem Lab Co Ltd 赤外線放射組成物
CN1099738A (zh) * 1993-08-31 1995-03-08 郝建明 耐高温节能无机涂层料及制备方法
EP1141168A1 (en) * 1998-12-07 2001-10-10 Young Keun Kim Composition of multipurpose far-infrared radiation material
CN103589201A (zh) * 2013-11-20 2014-02-19 北京恩吉赛威节能科技有限公司 高发射率红外节能辐射涂料及其制备方法
CN105861972A (zh) * 2016-04-15 2016-08-17 航天材料及工艺研究所 一种氧化铬-氧化钛基高温高发射率涂层及其制备方法
CN106928832A (zh) * 2017-04-21 2017-07-07 河南嘉和节能科技有限公司 一种耐高温防红外辐射节能涂料
CN111825436A (zh) * 2020-07-27 2020-10-27 重庆科技学院 一种四元复合陶瓷涂层配方及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Study on nanocrystalline Cr2O3 films deposited by arc ion plating: II. Mechanical and tribological properties;Tie-Gang,Wang etc.;《Surface & Coatings Technology》;20111018;第2638-2644页 *

Also Published As

Publication number Publication date
CN112830769A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
CN112830769B (zh) 一种高发射率高熵陶瓷粉体材料及涂层制备方法
CN106588021B (zh) 一种碳化硅陶瓷及其制备方法
CN110157226B (zh) 一种耐高温吸波涂料及其制备方法
CN108715987B (zh) 一种提高热障涂层结合强度的方法
CN112831747B (zh) 一种热防护涂层及其制备方法
CN108817384A (zh) 一种核壳结构颗粒增强铝基复合材料的制备方法
Li et al. Heat-induced interface-coupling behaviour of thermally sprayed Cu/ceramic coatings
Huang et al. Fabrication and property of novel double-layer coating deposited on polyimide matrix composites by atmospheric plasma spraying
CN109023338B (zh) 一种铌合金表面耐高温多组元硅化物涂层及其制备方法
CN107630184A (zh) 一种在铌或铌合金表面制备硅化铌涂层的方法
CN107675120A (zh) 一种在钼或钼合金表面制备硅化钼涂层的方法
CN113817946B (zh) 一种HEA-SiC高温吸波材料及其制备方法
CN109704780B (zh) 一种耐热冲击氮化硼-锶长石陶瓷基复合材料及其制备方法
CN110872713B (zh) 一种y/y2o3金属陶瓷防护涂层的冷喷涂制备方法
CN105506427B (zh) 一种钽合金表面改性复合Hf‑Ta涂层及其制备方法
CN108950456A (zh) 一种耐高温高红外发射率涂层的制备方法
CN114480999B (zh) 超高温长寿命热障涂层材料及超高温长寿命热障涂层的制备方法
Zhang et al. Plasma sprayed ferrite-based infrared radiation coating directly from transition metal oxides without high-temperature roasting
CN114075665B (zh) 一种钛合金表面NiSiAlY涂层及其制备方法
Li Preparation and properties of plasma sprayed NiCr spinel infrared radiation ceramic coatings
CN115368133A (zh) 一种高温陶瓷粉末的制备方法及应用
Chen et al. Preparation, microstructure and properties of NiO-Cr2O3-TiO2 infrared radiation coating
CN107971494A (zh) 一种粉末热压烧结制备Fe-6.5%Si软磁材料薄带材的方法
CN114315348A (zh) 一种全稳定四方ysz靶材及超长寿命eb-pvd涂层的制备方法
CN113683418A (zh) 一种用于热喷涂的钽酸盐球形粉体CaMoTa2O9及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant