CN113817946B - 一种HEA-SiC高温吸波材料及其制备方法 - Google Patents

一种HEA-SiC高温吸波材料及其制备方法 Download PDF

Info

Publication number
CN113817946B
CN113817946B CN202010705528.4A CN202010705528A CN113817946B CN 113817946 B CN113817946 B CN 113817946B CN 202010705528 A CN202010705528 A CN 202010705528A CN 113817946 B CN113817946 B CN 113817946B
Authority
CN
China
Prior art keywords
sic
temperature
hea
ball milling
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010705528.4A
Other languages
English (en)
Other versions
CN113817946A (zh
Inventor
蒋进明
王军
王甲富
王雯洁
王爱霞
屈绍波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Engineering University of PLA
Original Assignee
Air Force Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Force Engineering University of PLA filed Critical Air Force Engineering University of PLA
Priority to CN202010705528.4A priority Critical patent/CN113817946B/zh
Publication of CN113817946A publication Critical patent/CN113817946A/zh
Application granted granted Critical
Publication of CN113817946B publication Critical patent/CN113817946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/065Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on SiC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers

Abstract

本发明公开了一种HEA‑SiC高温吸波材料及其制备方法,制备方法包括以下步骤:将铁磁性高熵合金粉体、SiC陶瓷和烧结助剂混合后在无氧条件下分段烧结,得到HEA‑SiC高温吸波材料。通过将铁磁性HEA与SiC陶瓷混合后烧结,既利于SiC陶瓷的低温致密化烧结,又可以大幅降低现有铁磁性吸波材料的比重,两种材料均是优异的高温结构材料,且在高温环境下无明显的化学反应,具有力学强度高、耐温性好、抗氧化能力突出等优异特点。该材料既可在铁磁性金属居里点温度以下环境,利用电导损耗、介电损耗和磁损耗等多种耗散机制来增强电磁波的吸收,还能在高温下继续利用电导损耗和介电损耗来吸收电磁波,保证材料的宽温域吸波功能。

Description

一种HEA-SiC高温吸波材料及其制备方法
技术领域
本发明涉及无机材料技术领域,特别涉及一种HEA-SiC高温吸波材料及其制备方法。
背景技术
为提高装备高温部件的隐身能力,高温吸波材料技术是目前航空航天装备与先进材料发展的重要研究方向。
根据电磁波吸收损耗的机理差异,吸波材料可分为电导损耗型、介电损耗型和磁损耗型,其中,磁损耗仅作用于材料的居里温度以下,因此高温吸波材料常指电导损耗型和介电损耗型材料。目前,电导损耗型吸波材料主要指含碳(C)类材料,介电损耗型吸波材料则主要是以氧化锌(ZnO)和SiC为代表的半导体材料。但含C类的吸波材料高温抗氧化性能不足,SiC类介电损耗性吸波材料效能不高,现有的高温吸波材料技术与装备高温部件隐身需求严重不匹配。高熵合金(HEA)具有优异的机械强度,并且耐温能力和抗氧化性能突出,铁磁性HEA可作为电磁吸波功能材料,但材料的比重较大,在质量要求苛刻的航空材料领域应用严重受限。公开号为CN109762519A的中国发明专利申请公布了一种高熵合金/氧化物复合纳米吸波材料的制备方法。但金属离散分布在氧化物中的复合体系在高温下会必然出现强烈的氧化反应,进而导致材料的吸波隐身功能退化。
综上,为适应武器装备高温部件隐身性能的发展需求,必须开发新的高温吸波材料。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种工艺设备要求简单、成本低的HEA-SiC高温吸波材料的制备方法,所制得的HEA-SiC高温吸波材料具有耐高温和抗氧化的优点。
为解决上述技术问题,本发明采用以下技术方案:
一种HEA-SiC高温吸波材料的制备方法,其特征在于,包括以下步骤:将铁磁性高熵合金粉体、SiC陶瓷和烧结助剂混合后在无氧条件下分段烧结,得到所述HEA-SiC高温吸波材料。
上述的HEA-SiC高温吸波材料的制备方法,优选的,各原料的质量分数为:铁磁性高熵合金粉体、SiC陶瓷和烧结助剂的质量比为:铁磁性高熵合金粉体5%-40%,SiC陶瓷50%-90%,烧结助剂1%-20%。
上述的HEA-SiC高温吸波材料的制备方法,优选的,所述铁磁性高熵合金粉体由Fe、Co、Ni、Mo、Al、Si、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo和W中的至少四种金属单质粉体等摩尔混合后球磨而成。
上述的HEA-SiC高温吸波材料的制备方法,优选的,各金属单质粉体的纯度均≥99.5%,粒径为5-80μm。
上述的HEA-SiC高温吸波材料的制备方法,优选的,铁磁性高熵合金粉体球磨的条件为:球磨在惰性气氛下进行,球磨转速为200-400rpm,球料比为6-15∶1,球磨过程中单次旋转以30min为限,停止5-10min后,再以反方向旋转形式进行球磨,以此循环,球磨总时间为10h-100h。
上述的HEA-SiC高温吸波材料的制备方法,优选的,所述SiC陶瓷为SiC颗粒、SiC晶须和SiC纤维中的至少一种。
上述的HEA-SiC高温吸波材料的制备方法,优选的,所述烧结助剂为CaO、MgO、MnO2、Al2O3、Y2O3和La2O3中的至少一种。
上述的HEA-SiC高温吸波材料的制备方法,优选的,所述铁磁性高熵合金粉体、SiC陶瓷和烧结助剂通过球磨混合得到烧结原料,所述烧结原料球磨的条件为:球磨在保护气氛下进行,球磨转速为200-400rpm,球料比为1-4∶1,球磨时间为6h-24h。
上述的HEA-SiC高温吸波材料的制备方法,优选的,所述分段烧结的具体过程为:惰性气氛保护下升温至500-1000℃,保温处理1-3h后,升温至1600-2000℃煅烧,保温处理0.5~3h后,最后随炉冷却。分段煅烧的作用在于:低温煅烧有利于烧结助剂预热扩散,在随后的高温煅烧中起到更好的粘接效果,在高温区缓解金属-陶瓷的界面应力。
上述的HEA-SiC高温吸波材料的制备方法,优选的,所述烧结采用热压烧结或无压烧结,所述热压烧结的压力为30~60Mpa。
作为一个总的发明构思,本发明还提供一种上述的制备方法所制得的HEA-SiC高温吸波材料。
SiC是具有密度低(~3.2g/cm3)、强度高(~800MPa)、且在高温氧化环境下,可在表面生成致密的SiO2玻璃相阻挡氧的继续渗透,是一种优异的耐高温、抗氧化陶瓷,但SiC高的共价键导致其致密化烧结困难。另外,SiC作为一种典型的半导体材料,其介电损耗能力不足导致吸波效能不高,综合来看,难以直接作为高温吸波材料。HEA是近年的前沿热点材料,同样具有突出的抗高温氧化和耐蚀性,且铁磁性高熵合金具有较好的磁损耗能力,在电磁吸波领域具有极大的应用潜力。但磁损耗仅可作用于材料的居里温度以下,难以在600℃高温环境下作用,且高熵合金比重太大(密度≥8g/cm3),在质量要求苛刻的航空材料领域应用严重受限,故而作为高温吸波材料的研究较少。本发明通过将铁磁性HEA与SiC陶瓷混合后烧结,通过调控铁磁性HEA的组成,优化磁损耗能力和抗高温氧化能力;调控铁磁性HEA与SiC材料的配比,开发轻量化HEA-SiC复合材料,优化金属-陶瓷异质材料的界面反应结合,促进HEA-SiC复合材料的低温致密化烧结,并利用电损耗、磁损耗和介电损耗的综合效能提升吸波能力。两种高温结构材料的有机复合,既可以解决现有铁磁性吸波材料的比重过大的应用难题,还有望实现SiC陶瓷的低温致密化烧结,激发磁电耦合效应实现高温宽频吸波功能,发展新型的耐高温吸波材料。
与现有技术相比,本发明的优点在于:
1、本发明通过将铁磁性HEA与SiC陶瓷混合后烧结,既利于SiC陶瓷的低温致密化烧结,又可以大幅降低现有铁磁性吸波材料的比重,两种材料均是优异的高温结构材料,且在高温环境下无明显的化学反应,具有力学强度高、耐温性好、抗氧化能力突出等优异特点。
2、本发明的HEA-SiC耐高温吸波材料,可设计性强,既可在铁磁性金属居里点温度以下环境,利用电导损耗、介电损耗和磁损耗等多种耗散机制来增强电磁波的吸收,还能在高温下继续利用电导损耗和介电损耗来吸收电磁波,保证材料的宽温域吸波功能。
3、本发明使用固相烧结法制备HEA-SiC耐高温吸波材料,工艺参数可控性好,易于实现,分段烧结技术可以保证烧结助剂的在低温区的充分扩散,在高温区缓解金属-陶瓷的界面应力,可制备高性能的结构材料和功能涂层,工程化优势明显。
附图说明
图1为本发明实施例1制备的HEA-SiC耐高温吸波材料的反射率测试图。
具体实施方式
以下结合具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
实施例1:
一种本实施例的FeCoNiMo-SiC耐高温吸波材料的制备方法,包括以下步骤:
(1)制备FeCoNiMo粉体:将市售纯度≥99.5%,粒径为70μm的Fe、Co、Ni、Mo粉体按等摩尔比例进行高能球磨,球磨转速为300rpm,球料比为7∶1,球磨过程中单次旋转以30min为限,停止5分钟后,再以反方向旋转形式进行球磨,以此循环,球磨总时间为80h,全程实施氩气保护。
(2)球磨混合FeCoNiMo-SiC复合粉体:按照质量分数比例35:55:10分别称取步骤(1)所得FeCoNiMo粉体,市售纯度≥99%、粒径为20μm的SiC粉体,以及市售纯度≥99%、粒径为0.5μm的Al2O3粉体,各成分质量分数分别为:35wt.%FeCoNiMo,55wt.%SiC,10wt.%Al2O3。球磨混合时转速为400rpm,球料比为1∶1,球磨时间为24h,全程实施氩气保护。
(3)烧结FeCoNiMo-SiC复合材料:将步骤(2)所得产物进行高温分步烧结,氩气氛保护下升温至500℃,保温处理3h后,升温至1600℃高温煅烧,施加压力60MPa,保温处理3h后,最后随炉冷却,得到HEA-SiC耐高温吸波材料。
本实施例所得的FeCoNiMo-SiC耐高温吸波材料,三点弯曲强度为643.3±41.2MPa,参见图1,在X波段反射率均低于-8dB,对该材料进行了800℃高温氧化实验,经10h空气氧化,增重仅为2.64%,材料的综合性能优异,具有较好的应用前景。
实施例2:
一种本实施例的FeCoNiMoAlTiSi-SiC耐高温吸波材料的制备方法,包括以下步骤:
(1)制备FeCoNiMoAlTiSi粉体:将市售纯度≥99.5%,粒径为20μm的Fe、Co、Ni、Mo、Al、Ti、Si粉体按等摩尔比例进行高能球磨,球磨转速为300rpm,球料比为15∶1,球磨过程中单次旋转以30min为限,停止10分钟后,再以反方向旋转形式进行球磨,以此循环,球磨总时间为10h,全程实施氩气保护。
(2)球磨混合FeCoNiMoAlTiSi-SiC复合粉体:按照质量分数比例5:92:3分别称取步骤(1)所得FeCoNiMoAlTiSi粉体,市售纯度≥99%、粒径为1μm的SiC粉体,以及市售纯度≥99%、粒径为0.2μm的Al2O3粉体,成分质量分数分别为:5wt.%FeCoNiMoAl,92wt.%SiC,3wt.%Al2O3。球磨混合时转速为300rpm,球料比为4∶1,球磨时间为6h,全程实施氩气保护。
(3)烧结FeCoNiMoAlTiSi-SiC复合材料:将步骤(2)所得产物在基底材料涂覆后进行高温分步烧结,氩气氛保护下升温至1000℃,保温处理1h后,升温至2000℃高温煅烧,保温处理1h后,最后随炉冷却,得到FeCoNiMoAlTiSi-SiC耐高温吸波涂层材料。
本实施例所得FeCoNiMoAlTiSi-SiC耐高温吸波涂层材料,厚度为1mm,在X波段反射率低于-10dB的有效带宽大于3GHz,对该涂层材料进行了1000℃高温氧化实验,经10h空气氧化,增重仅为1.72%,材料的综合性能优异,具有较好的应用前景。
以上所述,仅是本申请的较佳实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (5)

1.一种HEA-SiC高温吸波材料的制备方法,其特征在于,包括以下步骤:将铁磁性高熵合金粉体、SiC陶瓷和烧结助剂球磨混合后在无氧条件下分段烧结,得到所述HEA-SiC高温吸波材料;
各原料的质量分数为:铁磁性高熵合金粉体5%-40%,SiC陶瓷50%-90%,烧结助剂1%-20%;
所述铁磁性高熵合金粉体中的金属元素包括Fe、Co、Ni,且还包括Mo、Al、Si、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo和W中的至少一种,各金属元素的单质粉体等摩尔球磨混合形成所述铁磁性高熵合金粉体;
所述分段烧结的具体过程为:惰性气氛保护下升温至500-1000℃,保温处理1-3h后,升温至1600-2000℃煅烧,保温处理0.5~3h后,最后随炉冷却;
铁磁性高熵合金粉体球磨的条件为:球磨在惰性气氛下进行,球磨转速为200-400rpm,球料比为6-15∶1,球磨过程中单次旋转以30min为上限,停止5-10min后,再以反方向旋转形式进行球磨,以此循环,球磨总时间为10h-100h;
所述烧结助剂为CaO、MgO、MnO2、Al2O3、Y2O3和La2O3中的至少一种;
所述铁磁性高熵合金粉体、SiC陶瓷和烧结助剂球磨的条件为:球磨在保护气氛下进行,球磨转速为200-400rpm,球料比为1-4∶1,球磨时间为6h-24h。
2.根据权利要求1所述的HEA-SiC高温吸波材料的制备方法,其特征在于,各金属单质粉体的纯度均≥99.5%,粒径为5-80μm。
3.根据权利要求1所述的HEA-SiC高温吸波材料的制备方法,其特征在于,所述SiC陶瓷为SiC颗粒、SiC晶须和SiC纤维中的至少一种。
4.根据权利要求1-3任一项所述的HEA-SiC高温吸波材料的制备方法,其特征在于,所述烧结采用热压烧结或无压烧结,所述热压烧结的压力为30~60MPa。
5.一种如权利要求1-4任一项所述的制备方法所制得的HEA-SiC高温吸波材料。
CN202010705528.4A 2020-07-21 2020-07-21 一种HEA-SiC高温吸波材料及其制备方法 Active CN113817946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010705528.4A CN113817946B (zh) 2020-07-21 2020-07-21 一种HEA-SiC高温吸波材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010705528.4A CN113817946B (zh) 2020-07-21 2020-07-21 一种HEA-SiC高温吸波材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113817946A CN113817946A (zh) 2021-12-21
CN113817946B true CN113817946B (zh) 2022-05-17

Family

ID=78912148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010705528.4A Active CN113817946B (zh) 2020-07-21 2020-07-21 一种HEA-SiC高温吸波材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113817946B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309586B (zh) * 2021-12-31 2024-01-26 西安稀有金属材料研究院有限公司 一种高熵合金/炭黑复合电磁吸波材料及其制备方法
CN115433011B (zh) * 2022-10-10 2023-08-18 北方民族大学 一种高熵碳化物(VNbTaMoW)C5-SiC复相陶瓷

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250735A (ja) * 2003-02-18 2004-09-09 Kyocera Corp 複合構造体
CN104193345A (zh) * 2014-08-20 2014-12-10 中南大学 基于3d打印技术制备吸波陶瓷部件的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250735A (ja) * 2003-02-18 2004-09-09 Kyocera Corp 複合構造体
CN104193345A (zh) * 2014-08-20 2014-12-10 中南大学 基于3d打印技术制备吸波陶瓷部件的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: Adjusting electromagnetic performance by ball milling time and annealing";Yuping Duan et al;《Journal of Alloys and Compounds》;20180921;第773卷;第194-201页 *

Also Published As

Publication number Publication date
CN113817946A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
CN113817946B (zh) 一种HEA-SiC高温吸波材料及其制备方法
CN110157226B (zh) 一种耐高温吸波涂料及其制备方法
CN112830769B (zh) 一种高发射率高熵陶瓷粉体材料及涂层制备方法
CN102758164B (zh) 一种耐温热喷涂雷达吸波涂层及其喷涂粉末制备方法
CN110117764B (zh) 一种热障/高温低红外发射率一体化涂层、带涂层的金属复合材料及其制备方法
CN102049514B (zh) 氧化铝陶瓷纳米金属化膏剂用粉料及其制备方法
CN111996408B (zh) 一种氧化物陶瓷粒子增强Cu基复合材料的制备方法
CN113735590B (zh) 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
CN114988895A (zh) 一种抗冲击热循环与耐cmas腐蚀的复相共析环境障涂层及其制备方法
CN112662978B (zh) 一种钨铜合金材料用涂层及其制备方法
CN100532319C (zh) 一种钼刚玉陶瓷材料及低温烧结方法
CN113816774A (zh) 一种高纯氧化铝刚玉陶瓷金属化方法
CN100509692C (zh) 一种钨刚玉陶瓷材料及低温烧结方法
CN113964546A (zh) 一种HEA-SiC吸波超结构材料及其制备方法
CN116283251B (zh) 一种氧化铝陶瓷及其制备方法与应用
CN101591196B (zh) 宽频陶瓷基复合材料用釉层材料及其制备方法
CN110872713B (zh) 一种y/y2o3金属陶瓷防护涂层的冷喷涂制备方法
CN108998789B (zh) 一种表面包覆Mn-Co尖晶石涂层的合金连接体及其制备方法
CN114478043B (zh) 一种基于液相烧结的碳化硅陶瓷的连接方法
CN108998689A (zh) 一种耐高温金属陶瓷吸波材料及其制备方法
CN114478019B (zh) 一种TiC改性MoSi2基复合涂层及其制备方法
CN110699566B (zh) CaMn7O12增强低膨胀高热导铜基复合材料及其制备方法
CN110519870B (zh) 一种石墨烯/贱金属合金导电材料、电阻浆料、发热体及其制备和应用
Li Preparation and properties of plasma sprayed NiCr spinel infrared radiation ceramic coatings
CN1256457C (zh) 一种Al2O3/W复合材料的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant