CN113735590B - 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品 - Google Patents

一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品 Download PDF

Info

Publication number
CN113735590B
CN113735590B CN202111149705.6A CN202111149705A CN113735590B CN 113735590 B CN113735590 B CN 113735590B CN 202111149705 A CN202111149705 A CN 202111149705A CN 113735590 B CN113735590 B CN 113735590B
Authority
CN
China
Prior art keywords
temperature
electromagnetic wave
absorbing ceramic
absorbing
resistant electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111149705.6A
Other languages
English (en)
Other versions
CN113735590A (zh
Inventor
何汝杰
周妮平
王文清
张可强
张学勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202111149705.6A priority Critical patent/CN113735590B/zh
Publication of CN113735590A publication Critical patent/CN113735590A/zh
Application granted granted Critical
Publication of CN113735590B publication Critical patent/CN113735590B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品。所述耐高温电磁吸波陶瓷基复合材料的制备步骤包括:(1)将光敏树脂和分散剂混合,加入陶瓷粉体、光引发剂、防沉剂和增强相填料,球磨,制得耐高温电磁吸波陶瓷基复合浆料;(2)利用步骤(1)中的耐高温电磁吸波陶瓷基复合浆料进行光固化3D打印,制得耐高温电磁吸波陶瓷基复合材料生坯;(3)将步骤(2)中的耐高温电磁吸波陶瓷基复合材料生坯烧结,制得耐高温电磁吸波陶瓷基复合材料二次坯体;(4)将步骤(3)中的耐高温电磁吸波陶瓷基复合材料二次坯体浸渍,浸渍完成后固化,再进行烧结;循环浸渍、固化、烧结步骤,制得耐高温电磁吸波陶瓷基复合材料。

Description

一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
技术领域
本发明涉及复合材料成型技术领域,特别涉及一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品。
背景技术
随着国防与军事领域面临复杂严苛的高温吸波环境,传统吸波材料耐高温性、抗氧化性、耐腐蚀性较差,难以达到高温环境下电磁波高效能吸收要求。因此,为了满足上述要求,亟需发展适用于高温环境下的电磁吸波材料与结构,满足其在严苛环境中的使用性能要求。陶瓷材料具有优异的耐高温、耐化学腐蚀性能、力学性能、热稳定性能、可调谐介电性能等,可满足高温吸波环境下应用要求。传统制备方法,像热压烧结(HPS)、溶胶凝胶法(Sol-Gel)、化学镀法等,制备工艺流程复杂,且无法实现复杂形状吸波结构的制备。因此,需要开发一种新型电磁吸波材料与结构的成型方法,以弥补传统制备方法的不足。
发明内容
本发明的目的在于提供一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品。本发明提供的耐高温电磁吸波陶瓷基复合材料的制备工艺与传统制备工艺有所不同,其优势在于成型速度快、成型尺寸精度高,可实现轻量化、复杂形状结构的制备。为陶瓷基复合材料快速成型、小范围批量化生产提供一种崭新的思路。
为实现上述目的,本发明提供了如下技术方案:
本发明技术方案之一:提供一种耐高温电磁吸波陶瓷基复合材料的制备方法,包括以下步骤:
(1)将光敏树脂和分散剂混合,加入陶瓷粉体、光引发剂、防沉剂和增强相填料,球磨,制得耐高温电磁吸波陶瓷基复合浆料;
(2)利用步骤(1)中的耐高温电磁吸波陶瓷基复合浆料进行光固化3D打印,制得耐高温电磁吸波陶瓷基复合材料生坯;
(3)将步骤(2)中的耐高温电磁吸波陶瓷基复合材料生坯烧结,制得耐高温电磁吸波陶瓷基复合材料二次坯体;
(4)将步骤(3)中的耐高温电磁吸波陶瓷基复合材料二次坯体浸渍,浸渍完成后固化,再进行烧结;循环浸渍、固化、烧结步骤,制得耐高温电磁吸波陶瓷基复合材料。
优选的,步骤(1)中所述光敏树脂占光敏树脂和陶瓷粉体体积之和的35~45%;所述光引发剂的用量为光敏树脂质量的1~2%;所述分散剂的用量为陶瓷粉体质量的3~5%;所述防沉剂的用量为陶瓷粉体质量的0.5~1%;所述增强相填料的用量为陶瓷粉体质量的1~2%。
优选的,步骤(1)中所述光敏树脂为1、6-己二醇二丙烯酸酯(HDDA)与三羟甲基丙烷三丙烯酸酯(TMPTA)体积比1:1的混合物;所述分散剂为KOS110分散剂;所述陶瓷粉体为碳化硅(SiC)粉体;所述光引发剂为二苯基(2,4,6-三甲基苯甲酰基)氧化膦(TPO);所述防沉剂为气相纳米二氧化硅(SiO2);所述增强相填料为无机碳材料或金属氧化物。
更优选的,所述无机碳材料包括石墨烯或碳纳米管,所述金属氧化物包括TiO2
优选的,步骤(1)中所述球磨的转速为300~400r/min,时间为4~5h。
优选的,所述光固化3D打印的工艺参数为光强12000~15000μw/cm2,首层曝光时间70~75s,其余层曝光时间15s,每层固化厚度50μm。
优选的,步骤(3)中所述烧结的温度控制程序为:以1~5℃/min的升温速率,从室温加热到350℃,保温1~2h,再以5~10℃/min的升温速率,从350℃加热到1100℃,保温1~2h,随炉冷却到室温。
优选的,步骤(4)中所述浸渍的时间为3h,所用浸渍液为聚碳硅烷(PCS)与二乙烯苯(DVB)体积比1:1的混合溶液;所述固化的温度为200℃,时间为1~2h;所述烧结的温度控制程序为:以5~10℃/min的升温速率,从室温加热到1100~1200℃,保温1~2h,随炉冷却至室温。
优选的,步骤(4)中所述循环浸渍、固化、烧结步骤的循环次数6次。
本发明技术方案之二:提供一种根据上述制备方法制得的耐高温电磁吸波陶瓷基复合材料。
本发明的有益技术效果如下:
本发明采用光固化3D打印技术首先制备出耐高温电磁吸波材料,基于这种材料的介电性能,仿真模拟设计出最佳的吸波结构单元,继而采用光固化3D打印技术来实现这种高精度耐高温电磁吸波结构单元的制备,通过调控打印参数,实现最优的吸波结构制备。
本发明制备的耐高温电磁吸波陶瓷基复合材料致密度可达95%,三点弯曲强度可达217MPa,有效吸波带宽(EAB)近乎覆盖C、X、Ku、K、Ka波段,适用于高温环境下航空航天领域吸波要求,具有广阔的应用前景。
本发明提供的耐高温电磁吸波陶瓷基复合材料的制备工艺与传统制备工艺有所不同,其优势在于成型速度快、成型尺寸精度高,可实现轻量化、复杂形状结构的制备。为陶瓷基复合材料快速成型、小范围批量化生产提供一种崭新的思路。
附图说明
图1为本发明的制备耐高温电磁吸波陶瓷基复合材料的工艺流程图;
图2为本发明所用光固化3D打印技术的原理图;
图3为本发明实施例1制备的耐高温电磁吸波陶瓷基复合材料生坯的实物图;
图4为本发明实施例1制备的耐高温电磁吸波陶瓷基复合材料生坯的SEM图;
图5为本发明实施例1制备的耐高温电磁吸波陶瓷基复合材料的实物图;
图6为本发明实施例1制备的耐高温电磁吸波陶瓷基复合材料的SEM图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。
另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明所用KOS110分散剂为广州康欧双贸易有限公司的水油通用分散剂。
本发明所用HDDA的密度为1.01g/mL;TMPTA的密度为1.1g/mL;SiC陶瓷粉体的密度为3.2g/cm3
实施例1
耐高温电磁吸波陶瓷基复合材料的制备:
(1)将15.15g(15mL)HDDA、16.5g(15mL)TMPTA、3.2g KOS110混合制备出预混液,再将64g(20cm3)SiC陶瓷粉体、0.633gTPO光引发剂、0.64g气相纳米SiO2防沉剂、0.64g石墨烯加入预混液并混合,将混合浆料加入45g球磨珠后并放入球磨罐中,在行星式球磨机上以转速400r/min球磨5h,得到分散均匀、高固含量、低粘度的耐高温电磁吸波陶瓷基复合浆料;
(2)将步骤(1)得到的耐高温电磁吸波陶瓷基复合浆料利用光固化3D打印成型设备打印成耐高温电磁吸波陶瓷基复合材料生坯,3D打印工艺参数如下,光强为15000μw/cm2,首层曝光时间为75s,其余层曝光时间为15s,每层固化厚度为50μm;
(3)炭化裂解处理:将步骤(2)得到的耐高温电磁吸波陶瓷基复合材料生坯置于石墨坩埚中,放入真空烧结炉中进行热解炭化。升温速率为:室温~350℃:1℃/min;350~1100℃:10℃/min;1100℃保温1h;然后随炉冷却至室温,得到耐高温电磁吸波陶瓷基复合材料二次坯体;
(4)前驱体浸渍裂解(PIP):将聚碳硅烷(PCS)与二乙烯苯(DVB)按质量比1:1配置成浸渍液,将步骤(3)得到的耐高温电磁吸波陶瓷基复合材料二次坯体浸泡于浸渍液中,真空浸渍3h后,200℃恒温固化1h,然后置于真空烧结炉进行真空烧结,以10℃/min的升温速率,从室温加热到1200℃,保温1h,随炉冷却,此步骤真空浸渍-固化-烧结循环6轮,最终得到致密化的耐高温电磁吸波陶瓷基复合材料。
所制得的耐高温电磁吸波陶瓷基复合材料致密度为94%,力学试验机测得的三点弯曲强度为217MPa,矢量网络分析仪测得的有效吸波带宽(EAB)为6~40GHz。
本发明实施例1制备的耐高温电磁吸波陶瓷基复合材料生坯的实物图见图3;本发明实施例1制备的耐高温电磁吸波陶瓷基复合材料生坯的SEM图见图4;本发明实施例1制备的耐高温电磁吸波陶瓷基复合材料的实物图见图5;本发明实施例1制备的耐高温电磁吸波陶瓷基复合材料的SEM图见图6。
从图4中可以看出,生坯表面的陶瓷粉体被光敏树脂紧紧包围,坯体的致密度较高,但陶瓷粉体还未烧结成体,因此,力学性能较低。
从图6中可以看出,烧结体表面已无光敏树脂,经过前驱体浸渍裂解过程,陶瓷坯体已经实现高度致密化,此时,坯体的力学性能达到最高。
实施例2
耐高温电磁吸波陶瓷基复合材料的制备:
与实施例1相比,区别在于步骤(4)中烧结的保温时间调整为2h。
所制得的耐高温电磁吸波陶瓷基复合材料致密度为94.3%,三点弯曲强度为217.8MPa,有效吸波带宽(EAB)为7.58~38.96GHz。与实施例1相比,烧结的保温时间增加,裂解烧结更加完全,得到的耐高温电磁吸波陶瓷基复合材料制件致密化有所提高。
实施例3
耐高温电磁吸波陶瓷基复合材料的制备:
与实施例1相比,区别在于3D打印工艺参数如下,光强为13000μw/cm2,首层曝光时间为70s,其余层曝光时间为15s,每层固化厚度为50μm。
所制得的耐高温电磁吸波陶瓷基复合材料致密度92.7%,三点弯曲强度为208.5MPa,有效吸波带宽(EAB)为8.6~38.25GHz。与实施例1相比,由于光强降低,使得耐高温电磁吸波陶瓷基复合材料生坯的层间结合较弱,最终制备的耐高温电磁吸波陶瓷基复合材料制件致密化降低。
对比例1
耐高温电磁吸波陶瓷基复合材料的制备:
(1)将12.12g(12mL)HDDA、13.2g(12mL)TMPTA、2.56g KOS110混合制备出预混液,再将51.2g(16cm3)SiC陶瓷粉体、0.5064gTPO光引发剂、0.64g气相纳米SiO2防沉剂、0.512g碳纳米管加入预混液并混合,将混合浆料加入34g球磨珠并放入球磨罐中,在行星式球磨机上以转速400r/min球磨5h,得到分散均匀、高固含量、低粘度的耐高温电磁吸波陶瓷基复合浆料;
步骤(2)~(4)与实施例1相同。
所制得的耐高温电磁吸波陶瓷基复合材料致密度为91.8%,三点弯曲强度为206MPa,有效吸波带宽(EAB)为9.5-38.46GHz。由于防沉剂添加量增多,使得耐高温电磁吸波陶瓷基复合材料浆料打印过程中出现轻微的沉降,导致层间结合能力较弱,最终制备的耐高温电磁吸波陶瓷基复合材料制件致密化降低,力学性能降低,EAB减小。
对比例2
耐高温电磁吸波陶瓷基复合材料的制备:
(1)将12.12g(12mL)HDDA、13.2g(12mL)TMPTA、2.56g KOS110混合制备出预混液,再将51.2g(16cm3)SiC陶瓷粉体、0.6gTPO光引发剂、0.512g气相纳米SiO2防沉剂、0.512g石墨烯加入预混液并混合,将混合浆料加入34g球磨珠并放入球磨罐中,在行星式球磨机上以转速400r/min球磨5h,得到分散均匀、高固含量、低粘度的耐高温电磁吸波陶瓷基复合浆料;
步骤(2)~(4)与实施例1相同。
所制得的耐高温电磁吸波陶瓷基复合材料致密度为92.3%,三点弯曲强度为199MPa,有效吸波带宽(EAB)为9.33-38.26GHz。由于改变了光引发剂的含量,使得耐高温电磁吸波陶瓷基复合材料微观结构上交联过程发生改变,最终制备的耐高温电磁吸波陶瓷基复合材料制件致密化降低,力学性能降低,EAB减小。
对比例3
耐高温电磁吸波陶瓷基复合材料的制备:
与实施例1相比,区别在于,步骤(4)中的循环次数调整为4次。
所制得的耐高温电磁吸波陶瓷基复合材料致密度为86.7%,三点弯曲强度为165.41MPa,有效吸波带宽(EAB)为14.85-32.49GHz。前驱体浸渍裂解循环次数的减少,使得最终的坯体的致密度大幅度降低,继而导致坯体力学性能降低,使得EAB随之变小。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (5)

1.一种耐高温电磁吸波陶瓷基复合材料的制备方法,其特征在于,包括以下步骤:
(1)将光敏树脂和分散剂混合,加入陶瓷粉体、光引发剂、防沉剂和增强相填料,球磨,制得耐高温电磁吸波陶瓷基复合浆料;
(2)利用步骤(1)中的耐高温电磁吸波陶瓷基复合浆料进行光固化3D打印,制得耐高温电磁吸波陶瓷基复合材料生坯;
(3)将步骤(2)中的耐高温电磁吸波陶瓷基复合材料生坯烧结,制得耐高温电磁吸波陶瓷基复合材料二次坯体;
(4)将步骤(3)中的耐高温电磁吸波陶瓷基复合材料二次坯体浸渍,浸渍完成后固化,再进行烧结;循环浸渍、固化、烧结步骤,制得耐高温电磁吸波陶瓷基复合材料;
步骤(1)中所述光敏树脂占光敏树脂和陶瓷粉体体积之和的35~45%;所述光引发剂的用量为光敏树脂质量的1~2%;所述分散剂的用量为陶瓷粉体质量的3~5%;所述防沉剂的用量为陶瓷粉体质量的0.5~1%;所述增强相填料的用量为陶瓷粉体质量的1~2%;
步骤(4)中所述循环浸渍、固化、烧结步骤的循环次数6次;
步骤(1)中所述光敏树脂为1、6-己二醇二丙烯酸酯与三羟甲基丙烷三丙烯酸酯体积比1:1的混合物;所述分散剂为KOS110分散剂;所述陶瓷粉体为碳化硅粉体;所述光引发剂为二苯基(2,4,6-三甲基苯甲酰基)氧化膦;所述防沉剂为气相纳米二氧化硅;所述增强相填料为无机碳材料或金属氧化物;
步骤(4)中所述浸渍的时间为3h,所用浸渍液为聚碳硅烷与二乙烯苯体积比1:1的混合溶液;所述固化的温度为200℃,时间为1~2h;所述烧结的温度控制程序为:以5~10℃/min的升温速率,从室温加热到1100~1200℃,保温1~2h,随炉冷却至室温。
2.根据权利要求1所述的耐高温电磁吸波陶瓷基复合材料的制备方法,其特征在于,步骤(1)中所述球磨的转速为300~400r/min,时间为4~5h。
3.根据权利要求1所述的耐高温电磁吸波陶瓷基复合材料的制备方法,其特征在于,步骤(2)中所述光固化3D打印的工艺参数为光强12000~15000µw/cm2,首层曝光时间70~75s,其余层曝光时间15s,每层固化厚度50µm。
4.根据权利要求1所述的耐高温电磁吸波陶瓷基复合材料的制备方法,其特征在于,步骤(3)中所述烧结的温度控制程序为:以1~5℃/min的升温速率,从室温加热到350℃,保温1~2h,再以5~10℃/min的升温速率,从350℃加热到1100℃,保温1~2h,随炉冷却到室温。
5.一种根据权利要求1~4任一项所述耐高温电磁吸波陶瓷基复合材料的制备方法制备的耐高温电磁吸波陶瓷基复合材料。
CN202111149705.6A 2021-09-29 2021-09-29 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品 Active CN113735590B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111149705.6A CN113735590B (zh) 2021-09-29 2021-09-29 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111149705.6A CN113735590B (zh) 2021-09-29 2021-09-29 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品

Publications (2)

Publication Number Publication Date
CN113735590A CN113735590A (zh) 2021-12-03
CN113735590B true CN113735590B (zh) 2022-06-28

Family

ID=78741694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111149705.6A Active CN113735590B (zh) 2021-09-29 2021-09-29 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品

Country Status (1)

Country Link
CN (1) CN113735590B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082060B (zh) * 2023-03-07 2024-04-12 西安邮电大学 一种具有取向微孔的梯度吸波复合陶瓷超材料及制备方法
CN116789462B (zh) * 2023-05-31 2024-07-12 成都飞机工业(集团)有限责任公司 一种耐高温陶瓷吸波蜂窝的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546255A2 (de) * 1991-12-12 1993-06-16 Deutsche Aerospace AG Absorber für elektromagnetische Strahlung
CN106007723A (zh) * 2016-05-20 2016-10-12 中国科学院上海硅酸盐研究所 一种SiC陶瓷素坯的制造方法
CN109467438A (zh) * 2019-01-09 2019-03-15 北京理工大学 一种碳化硅陶瓷光固化成型方法
CN112046086A (zh) * 2020-08-26 2020-12-08 中国航空工业集团公司济南特种结构研究所 一种吸波蜂窝的制备方法
CN112277123A (zh) * 2020-11-02 2021-01-29 西北工业大学 一种低热膨胀高模量的陶瓷热学超材料制备方法
CN112960972A (zh) * 2021-03-19 2021-06-15 西北工业大学 宽频可调轻薄结构型陶瓷基吸波材料及跨尺度设计及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814278B1 (ko) * 2006-09-14 2008-03-18 한국기계연구원 비-스테이지 경화된 레진필름을 이용한 전자파 흡수체 및이의 제조방법
CN103387405B (zh) * 2013-07-10 2015-02-11 航天材料及工艺研究所 一种碳化硅/碳化硅复合材料构件的制备方法
CN104193345B (zh) * 2014-08-20 2015-11-11 中南大学 基于3d打印技术制备吸波陶瓷部件的方法
CN104529458B (zh) * 2014-12-01 2016-08-17 西安交通大学 高性能SiC陶瓷基复合材料航空发动机叶片的制造方法
CN106810215B (zh) * 2017-01-18 2022-08-16 重庆摩方科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN108441067B (zh) * 2018-02-26 2020-04-17 北京环境特性研究所 一种基于石墨烯的蜂窝角锥吸波材料及其制备方法和应用
CN109020605B (zh) * 2018-09-30 2021-05-11 广东工业大学 一种陶瓷材料及其制备方法和应用
CN110423119B (zh) * 2019-08-07 2020-09-01 航天特种材料及工艺技术研究所 一种耐烧蚀C/SiC陶瓷基复合材料的制备方法
CN110655405B (zh) * 2019-09-30 2022-04-01 汕头大学 一种陶瓷基复合材料结构的制备方法
CN112358299B (zh) * 2020-11-25 2022-08-16 苏州泛博增材技术有限公司 一种陶瓷基板及其3d打印方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546255A2 (de) * 1991-12-12 1993-06-16 Deutsche Aerospace AG Absorber für elektromagnetische Strahlung
CN106007723A (zh) * 2016-05-20 2016-10-12 中国科学院上海硅酸盐研究所 一种SiC陶瓷素坯的制造方法
CN109467438A (zh) * 2019-01-09 2019-03-15 北京理工大学 一种碳化硅陶瓷光固化成型方法
CN112046086A (zh) * 2020-08-26 2020-12-08 中国航空工业集团公司济南特种结构研究所 一种吸波蜂窝的制备方法
CN112277123A (zh) * 2020-11-02 2021-01-29 西北工业大学 一种低热膨胀高模量的陶瓷热学超材料制备方法
CN112960972A (zh) * 2021-03-19 2021-06-15 西北工业大学 宽频可调轻薄结构型陶瓷基吸波材料及跨尺度设计及制备方法

Also Published As

Publication number Publication date
CN113735590A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN113735590B (zh) 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
CN107698271A (zh) 耐高温高强韧性氮化硅基透波复合材料及制备方法
CN113999043A (zh) 一种互穿型莫来石/碳化硼泡沫陶瓷耐高温中子屏蔽材料及其制备方法
CN113666765A (zh) 一种连续纤维增强高熵陶瓷基复合材料及其制备方法
CN113121237A (zh) 一种碳化硼基复合陶瓷及其制备工艺
WO2019227661A1 (zh) 一种氮化硅陶瓷及其制备方法
Xing et al. 3D printing of liquid‐metal‐in‐ceramic metamaterials for high‐efficient microwave absorption
CN103242044B (zh) 一种BN/Si3N4复相陶瓷的凝胶注模成型制备方法
CN102049514A (zh) 氧化铝陶瓷纳米金属化膏剂用粉料及其制备方法
CN113817946B (zh) 一种HEA-SiC高温吸波材料及其制备方法
CN116715528B (zh) 高韧性陶瓷研磨介质的制备方法
CN117534495A (zh) 前驱体浸渍裂解结合反应熔渗制备陶瓷基复合材料的方法
CN107778011A (zh) 一种石墨烯复合SiC木质陶瓷材料的制备方法
CN112573925B (zh) 高性能电磁屏蔽NdB6/SiO2复相陶瓷材料及其制备方法
CN103693946B (zh) 一种高热导率的含TiO2衰减瓷及其制备方法
CN115745620A (zh) 一种高致密度氮化钛陶瓷材料及其制备方法
CN115196951A (zh) 一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法
CN113788697A (zh) 一种缠绕工艺适用陶瓷先驱体浆料及其制备方法
CN110699566B (zh) CaMn7O12增强低膨胀高热导铜基复合材料及其制备方法
CN107010928B (zh) 一种MoSi2/Al2O3耐高温吸波材料、制备方法及其应用
CN105970608B (zh) 一种基于浆料涂覆法制备碳化钛包覆碳纤维的方法
CN110981490A (zh) CNT增韧B4C-SiC层状复合陶瓷及其制备方法
CN109320263A (zh) 烧结助剂与石英陶瓷及其制备与应用方法
CN116003141B (zh) 一种耐高温多壳层tac基吸收剂及其制备方法
CN114538933B (zh) 一种行波管夹持杆的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant