CN112277123A - 一种低热膨胀高模量的陶瓷热学超材料制备方法 - Google Patents

一种低热膨胀高模量的陶瓷热学超材料制备方法 Download PDF

Info

Publication number
CN112277123A
CN112277123A CN202011205576.3A CN202011205576A CN112277123A CN 112277123 A CN112277123 A CN 112277123A CN 202011205576 A CN202011205576 A CN 202011205576A CN 112277123 A CN112277123 A CN 112277123A
Authority
CN
China
Prior art keywords
temperature
ceramic
printing
metamaterial
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011205576.3A
Other languages
English (en)
Other versions
CN112277123B (zh
Inventor
梅辉
谭源福
成来飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202011205576.3A priority Critical patent/CN112277123B/zh
Publication of CN112277123A publication Critical patent/CN112277123A/zh
Application granted granted Critical
Publication of CN112277123B publication Critical patent/CN112277123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/22Apparatus or processes for treating or working the shaped or preshaped articles for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • C04B41/4531Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase by C.V.D.
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4596Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with fibrous materials or whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5024Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Composite Materials (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种低热膨胀高模量的陶瓷热学超材料制备方法,利用三维设计软件SOLIDWORKS设计不同阵列单元、极小曲面、负泊松比的结构,采用3D打印,打印浆料为陶瓷光敏树脂,获得打印胚体;对烧结过的陶瓷材料进行化学气相沉积,沉积次数为1次和2次;沉积一次SiC基体后的试样再通过裂解工艺引入SiC晶须。超材料的结构制造的难点在于大规模微结构的制造和精度控制,而3D打印具备成型速度快、精度高、以及复杂型面构件易成型的优点,3D打印技术为超材料的加工提供了一种全新的、灵活的方案。本发明中涉及到的打印参数、烧结工艺、沉积工艺等均经过反复试验优化,可以有效保证结构的打印速度,避免烧结后发生变形,确保沉积引入碳化硅的含量。

Description

一种低热膨胀高模量的陶瓷热学超材料制备方法
技术领域
本发明属于增材制造技术,涉及一种低热膨胀高模量的陶瓷热学超材料制备方法,特别涉及三维结构设计,有限元模拟,热学性质与力学性质测试。
背景技术
固体材料通常会随温度变化产生膨胀或收缩行为,然而材料的热胀冷缩会降低精密部件的结构稳定性和安全可靠性,甚至破坏材料的功能特性。在光学仪器、微电子器件、航空航天等高技术领域,迫切需要形状和尺寸不随温度变化的结构,以保证其构件具有高的尺寸稳定性、精密性和长的使用寿命。经过不断研究,尽管科学家们陆续报道了各种低热膨胀材料以及负热膨胀材料,比如钨酸锆(ZrW2O8)系列负热膨胀材料、锂霞石(LiAlSiO4)、磷酸锆钠(NaZr2P3O12)等,但是由于反常热膨胀材料的热力学性质研究相对较少,从而给合成制备热膨胀系数可调材料带来困难。中国专利CN105272199A中公开了一种利用溶胶凝胶法结合SPS烧结方法低温烧结制备纳米负膨胀陶瓷LiAlSiO4的方法,提供了一种低成本,速度快,可以大规模生产的技术手段。但是对于后续利用LiAlSiO4制备复杂型面构件的可能并未描述,其在1000℃以上的热膨胀系数也并未测试。
超材料制造的难点在于大规模微结构的制造和精度控制,以及超材料微结构对于产品设计和生产工艺的特殊要求。目前超材料加工手段主要包括激光直写、电子束曝光、离子束曝光、紫外曝光等微纳米加工技术。2011年,康奈尔大学乌力·韦斯勒领导的科研团队提出了一种制造三维超材料的新方法,即利用化学方法让嵌段共聚物自我组装成纳米结构。2016年,Science报道了光固化陶瓷聚合物前驱体材料的3D打印技术成功制备了蜂窝、微晶格等网孔结构SiOC陶瓷制品。近年来,增材制造或3D打印技术作为一种数字化、直接化的制造技术,从形状来说可以实现“所想即所得”,从材料来说可以实现材料的数字化复合或组合,从尺度来说可实现从纳米级到米级结构的制造,从而为超材料的加工实现提供了一种全新的、灵活的方案。中国专利CN110931985A公开了一种柔性电磁波吸波超材料薄膜的制备方法,可在总体质量较轻的前提下,实现时序维的宽频带高效吸波屏蔽。该专利讲述了一种吸波超材料的制备方法,但是目前还并未出现任何热学超材料的制备与研究。通过人工设计而实现热导系数非均匀分布的材料或结构被称为热学超材料。中国专利CN209959779U介绍了一种具有负泊松比特性的二维周期材料,用来作为缓冲材料应用在受力变形方面,为具有负膨胀系数的结构设计提供了基本思路。中国专利CN 209955314U描述了一种具有负泊松比的三维拉胀超材料结构,其结构简单并且可以在各个方向上都保持负泊松比的特性,证实了立体三维超结构设计的可能性,为三维热学超材料的结构设计提供了支持。光固化3D打印技术是目前世界上研究最深入、技术最成熟、应用最广泛的快速成型方法。该技术优点是成型精度高,在所有快速成型方法中精度是最高的,最大误差不超过0.1mm。成型过程稳定平滑,所制备的陶瓷胚体表面光滑,加工质量高,可打印形状复杂的陶瓷零件。目前,在光敏树脂中加入陶瓷粉(陶瓷前驱体)的含量高达50-80%。3D打印技术和超材料技术都被看作是新兴的颠覆性技术,两者的融合创新应用无疑具有不可预估的价值。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种低热膨胀高模量的陶瓷热学超材料制备方法,克服陶瓷材料强度低、热膨胀系数大、服役过程中易失效的问题,弥补现有技术的不足,充分探索超结构对于陶瓷材料热学性质和力学性质的影响,使其从理论研究逐步走向实际工程应用。
技术方案
一种低热膨胀高模量的陶瓷热学超材料制备方法,其特征在于步骤如下:
步骤1:利用三维设计软件SOLIDWORKS设计阵列单元、极小曲面、负泊松比的结构的扭转角度,尺寸满足后续热膨胀系数与压缩力学性能测试的要求;
所述阵列单元包括正方形、三角形、花瓣形、波浪形四种;
所述极小曲面包括G曲面、SP曲面、D曲面、SS1曲面;
所述负泊松比结构的扭转角度包含60°、90°、120°、150°;
步骤2:将设计好结构保存为.stl格式,然后利用切片软件进行切片并设置打印参数,保存为.sky文件;最后将文件上传到光固化打印机系统,设置打印参数为:打印层厚20-800微米,打印速度100-200层/小时,打印光机电流5-20A;
采用3D打印,打印浆料为陶瓷光敏树脂,获得打印胚体;
步骤3:将打印好的陶瓷胚体在酒精中超声清洗1-3小时,放入烘箱中烘干;烘干后的陶瓷胚体放入坩埚中,再把坩埚放入管式炉中,然后进行脱脂烧结,烧结过程的温度设定为:空气气氛下,以1-5℃/min的升温速率升至400-800℃保温1-3h,而后以3-5℃/min升温至1300-1500℃保温2-4h,再1-3℃/min降温至400-600℃后随炉冷却,得到多孔陶瓷结构;
步骤4:对烧结过的陶瓷材料进行化学气相沉积沉积SiC,沉积工艺的参数为:沉积温度900-1100℃,沉积压力3-6kPa,炉内真空度为0.01-0.05MPa,沉积时间80h;其中氢气、氩气、甲基三氯硅烷分别为载气、稀释气体和反应气体;
沉积次数为1次或2次;
当沉积次数为1次时,再进行依次裂解工艺进一步引入碳化硅晶须:
1、配置浆料:以丙酮为溶剂,向丙酮中加入环氧树脂,丙酮与环氧树脂的质量比约为20︰7得环氧树脂丙酮溶液;将碳化硅晶须加入到环氧树脂丙酮溶液中,混合均匀后得到环氧树脂预浸料;
2、将沉积1次碳化硅的陶瓷材料放入预浸料中真空浸渍1-3h,取出结构件后室温下干燥12-24小时去除丙酮后置于管式炉中,最后在Ar气氛下进行250℃固化,800℃~1000℃裂解。
步骤4后,将蒸馏水加入盐酸中稀释,再依次加入锂霞石直至溶液饱和;将打印的结构放入配置好的溶液中进行真空浸渍,1-2h后取出试样放入烘箱中设定60-100℃干燥2-5h。
所述步骤4中,氩气流量300ml/min,氢气流量200ml/min,氢气和三氯甲基硅烷的摩尔比为10︰1。
所述陶瓷光敏树脂的陶瓷是氧化物陶瓷。
所述烧结助剂包括但不限于:氧化钇、氧化镁或氧化硅。
所述的氧化物陶瓷包括但不限于氧化铝或氧化锆。
所述步骤3中,在坩埚内埋入硅粉。
有益效果
本发明提出的一种低热膨胀高模量的陶瓷热学超材料制备方法,利用三维设计软件SOLIDWORKS设计不同阵列单元、极小曲面、负泊松比的结构,采用3D打印,打印浆料为陶瓷光敏树脂,获得打印胚体;对烧结过的陶瓷材料进行化学气相沉积,沉积次数为1次和2次;沉积一次SiC基体后的试样再通过裂解工艺引入SiC晶须。
有益效果:
1.本发明其中的一个技术方案设计一种具有负泊松比的三维超材料结构,该结构具有不同的扭转角度,当其一个方向受到拉伸时,另一个方向开始膨胀,该方向受到压缩时,另一个方向发生收缩。
2.通过化学气相沉积、真空浸渍、浸渍裂解法引入的碳化硅基体、碳化硅晶须、锂霞石粉末可以进一步降低结构的热膨胀系数并且起到力学增强的作用,完善了超材料的后续制备工艺与性能优化。
3.超材料的结构制造的难点在于大规模微结构的制造和精度控制,而3D打印具备成型速度快、精度高、以及复杂型面构件易成型的优点,3D打印技术为超材料的加工提供了一种全新的、灵活的方案。
4.本发明中涉及到的打印参数、烧结工艺、沉积工艺等均经过反复试验优化,可以有效保证结构的打印速度,避免烧结后发生变形,确保沉积引入碳化硅的含量。
附图说明
图1:发明流程示意图
图2:含不同阵列单元3D打印陶瓷热力学超材料结构示意图(a)波浪形(b)花瓣形(c)三角形(d)正方形;
图3:含不同极小曲面的3D打印陶瓷热力学超材料结构示意图(a)SS1(b)D曲面(c)SP曲面(d)G曲面
图4:含不同负泊松比的3D打印陶瓷热力学超材料结构示意图(a)60°(b)90°(c)120°(d)150°
图5:3D打印陶瓷热学超材料的实物图(a)正方形(b)三角形(c)波浪形(d)花瓣形(e)D曲面(f)SP曲面(g)SS1曲面(h)G曲面(i)60°(j)90°(k)120°(l)150°
图6:3D打印不同阵列单元陶瓷超材料在不同温度不同工艺下的热膨胀系数(a)烧结过后(b)沉积碳化硅1次(c)沉积碳化硅1次并引入碳化硅晶须(d)沉积碳化硅2次。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
步骤1:利用三维设计软件SOLIDWORKS设计不同阵列单元、极小曲面、负泊松比的结构,尺寸满足后续热膨胀系数与压缩力学性能测试的要求。
其中阵列单元包括正方形、三角形、花瓣形、波浪形四种;极小曲面包括G曲面、SP曲面、D曲面、SS1曲面;负泊松比结构的扭转角度包含60°、90°、120°、150°。
步骤2:将设计好结构保存为.stl格式,然后利用切片软件进行切片并设置打印参数,保存为.sky文件;最后将文件上传到光固化打印机系统,进行光机电流的设置,将打印浆料放入料盘中并开始打印。打印结束后将试样从打印平台上取下来,获得打印胚体。具体打印参数为:打印层厚20-800微米,打印速度100-200层/小时,打印光机电流5-20A.
步骤3:将打印好的陶瓷胚体放入工业酒精中,超声清洗1-3小时后放入烘箱中烘干。烘干后的陶瓷胚体放入管式炉中进行脱脂烧结,烧结过程的温度设定为:空气气氛下,以1-5℃/min的升温速率升至400-800℃保温1-3h,而后以3-5℃/min升温至1300-1500℃保温2-4h,再1-3℃/min降温至400-600℃后随炉冷却,得到陶瓷基复合材料。
步骤4:对烧结过的陶瓷材料进行化学气相沉积,沉积次数为1次和2次。沉积SiC基体可以增加陶瓷材料的强度并降低材料的热膨胀系数。沉积工艺的参数为:沉积温度900-1100℃,沉积压力3-6kPa,炉内真空度为0.01-0.05MPa,其中氢气、氩气、甲基三氯硅烷分别为载气、稀释气体和反应气体。通过控制氢气与甲基三氯硅烷的流量比,即可制备不同形貌的SiC.
步骤5:沉积一次SiC基体后的试样再通过裂解工艺引入SiC晶须。裂解工艺首先是配置浆料,以丙酮为溶剂,向丙酮中加入一定质量的环氧树脂,通过搅拌使其充分溶解,将碳化硅晶须加入到环氧树脂丙酮溶液中,混合均匀后得到环氧树脂预浸料。将多孔陶瓷结构放入预浸料中真空浸渍1-3h,取出试样后室温下干燥12-24小时去除丙酮后置于管式炉中,最后在Ar气氛下裂解。
步骤6:在打印的超结构中引入负热膨胀系数材料锂霞石(LiAlSiO4),进一步降低材料的热膨胀系数。因为锂霞石与盐酸互溶,将蒸馏水加入盐酸中稀释,再依次加入锂霞石直至溶液饱和。将打印的结构放入配置好的溶液中进行真空浸渍,1-2h后取出试样放入烘箱中设定60-100℃干燥2-5h。
实施例1.不同阵列单元的3D打印陶瓷热力学超材料
步骤一:通过SOLIDWORKS软件设计正方形、三角形、波浪形、花瓣形四种不同阵列的超结构,结构总尺寸为26*6*6mm3,正方形单元尺寸为1.2*1.2mm2,三角形为边长为1.6mm的等边三角形,花瓣形由三个花瓣组成,波浪形的由四边均有弧度的波浪线构成,相邻两个单元胞距离0.5mm。
步骤二:通过3D打印机制造商绑定软件进行切片,切片厚度为50μm,添加底板层数3层,并导入3D打印机。在料盘中加入3D打印浆料,通过立体光固化3D打印机进行打印得到陶瓷超材料胚体。
步骤三:用工业酒精浸泡,超声1h后放入烘箱烘干。然后置入管式炉中在空气气氛下进行烧结,以2℃/min的升温速率升至600℃保温4h,然后以5℃/min升温至1400℃保温6h,最后以2℃/min降温至600℃后随炉冷却,将陶瓷坯体烧成陶瓷基复合材料。
步骤四:烧结过后的陶瓷超材料分为四部分,其中三部分利用三种不同工艺对结构进行处理。第一种工艺为沉积碳化硅基体1次,工艺条件:三氯甲基硅烷为源物质,氩气为稀释气体,氩气流量300ml/min,氢气为载气,氢气流量200ml/min,氢气和三氯甲基硅烷的摩尔比为10:1,沉积温度为1000℃,沉积时间80h。第二种工艺为沉积碳化硅基体2次,工艺条件同上。第三种为在沉积碳化硅基体1次的基础上引入碳化硅晶须,引入碳化硅晶须需要在1000℃下裂解,裂解工艺为:以丙酮为溶剂,向丙酮中加入一定质量的环氧树脂,通过搅拌使其充分溶解,将碳化硅晶须加入到环氧树脂丙酮溶液中,混合均匀后得到环氧树脂预浸料。将超材料结构放入预浸料中真空浸渍1小时,取出试样后室温下干燥12小时去除丙酮后置于管式炉中,最后在Ar气氛下进行250℃固化,1000℃裂解。
实施例2.不同极小曲面的3D打印陶瓷热力学超材料
步骤一:通过SOLIDWORKS软件设计D曲面、G曲面、SP曲面、SS1曲面四种不同极小曲面的超结构,结构总尺寸为26*6*6mm3.
步骤二:通过3D打印机制造商绑定软件进行切片,切片厚度为50μm,添加底板层数3层,并导入3D打印机。在料盘中加入3D打印浆料,通过立体光固化3D打印机进行打印得到陶瓷超材料胚体。
步骤三:用工业酒精浸泡,超声1h后放入烘箱烘干。然后置入管式炉中在空气气氛下进行烧结,以2℃/min的升温速率升至600℃保温4h,然后以5℃/min升温至1400℃保温6h,最后以2℃/min降温至600℃后随炉冷却,将陶瓷坯体烧成陶瓷基复合材料。
步骤四:烧结过后的陶瓷超材料分为四部分,其中三部分利用三种不同工艺对结构进行处理。第一种工艺为沉积碳化硅基体1次,工艺条件:三氯甲基硅烷为源物质,氩气为稀释气体,氩气流量300ml/min,氢气为载气,氢气流量200ml/min,氢气和三氯甲基硅烷的摩尔比为10:1,沉积温度为1000℃,沉积时间80h。第二种工艺为真空浸渍LiAlSiO4溶液,浸渍参数为将锂霞石粉末溶解在盐酸溶液中,将陶瓷超材料放入溶液中并置于真空器皿,打开真空泵抽真空浸渍1小时。第三种工艺为热处理引入锂霞石粉末,热处理工艺为:以丙酮为溶剂,向丙酮中加入一定质量的环氧树脂,通过搅拌使其充分溶解,将锂霞石加入到环氧树脂丙酮溶液中,混合均匀后得到锂霞石预浸料。将超材料结构放入预浸料中真空浸渍1小时,取出试样后室温下干燥12小时去除丙酮后置于管式炉中,最后在Ar气氛下进行800℃裂解。
实施例3.不同负泊松比的3D打印陶瓷热力学超材料
步骤一:通过SOLIDWORKS软件设计扭转角度分别为60°、90°、120°、150°的四种不同负泊松比的超结构,结构总尺寸为26*6*6mm3.
步骤二:通过3D打印机制造商绑定软件进行切片,切片厚度为50μm,添加底板层数3层,并导入3D打印机。在料盘中加入3D打印浆料,通过立体光固化3D打印机进行打印得到陶瓷超材料胚体。
步骤三:用工业酒精浸泡,超声1h后放入烘箱烘干。然后置入管式炉中在空气气氛下进行烧结,以2℃/min的升温速率升至600℃保温4h,然后以5℃/min升温至1400℃保温6h,最后以2℃/min降温至600℃后随炉冷却,将陶瓷坯体烧成陶瓷基复合材料。
步骤四:烧结过后的陶瓷超材料分为四部分,其中三部分利用三种不同工艺对结构进行处理。第一种工艺为沉积碳化硅基体1次,工艺条件:三氯甲基硅烷为源物质,氩气为稀释气体,氩气流量300ml/min,氢气为载气,氢气流量200ml/min,氢气和三氯甲基硅烷的摩尔比为10:1,沉积温度为1000℃,沉积时间80h。第二种工艺为真空浸渍LiAlSiO4溶液,将锂霞石粉末溶解在盐酸溶液中,将陶瓷超材料放入溶液中并置于真空器皿,打开真空泵抽真空浸渍1小时。第三种工艺为热处理引入锂霞石粉末,热处理工艺为:以丙酮为溶剂,向丙酮中加入一定质量的环氧树脂,通过搅拌使其充分溶解,将锂霞石加入到环氧树脂丙酮溶液中,混合均匀后得到锂霞石预浸料。将超材料结构放入预浸料中真空浸渍1小时,取出试样后室温下干燥12小时去除丙酮后置于管式炉中,最后在Ar气氛下进行800℃裂解。

Claims (7)

1.一种低热膨胀高模量的陶瓷热学超材料制备方法,其特征在于步骤如下:
步骤1:利用三维设计软件SOLIDWORKS设计阵列单元、极小曲面、负泊松比的结构的扭转角度,尺寸满足后续热膨胀系数与压缩力学性能测试的要求;
所述阵列单元包括正方形、三角形、花瓣形、波浪形四种;
所述极小曲面包括G曲面、SP曲面、D曲面、SS1曲面;
所述负泊松比结构的扭转角度包含60°、90°、120°、150°;
步骤2:将设计好结构保存为.stl格式,然后利用切片软件进行切片并设置打印参数,保存为.sky文件;最后将文件上传到光固化打印机系统,设置打印参数为:打印层厚20-800微米,打印速度100-200层/小时,打印光机电流5-20A;
采用3D打印,打印浆料为陶瓷光敏树脂,获得打印胚体;
步骤3:将打印好的陶瓷胚体在酒精中超声清洗1-3小时,放入烘箱中烘干;烘干后的陶瓷胚体放入坩埚中,再把坩埚放入管式炉中,然后进行脱脂烧结,烧结过程的温度设定为:空气气氛下,以1-5℃/min的升温速率升至400-800℃保温1-3h,而后以3-5℃/min升温至1300-1500℃保温2-4h,再1-3℃/min降温至400-600℃后随炉冷却,得到多孔陶瓷结构;
步骤4:对烧结过的陶瓷材料进行化学气相沉积沉积SiC,沉积工艺的参数为:沉积温度900-1100℃,沉积压力3-6kPa,炉内真空度为0.01-0.05MPa,沉积时间80h;其中氢气、氩气、甲基三氯硅烷分别为载气、稀释气体和反应气体;
沉积次数为1次或2次;
当沉积次数为1次时,再进行依次裂解工艺进一步引入碳化硅晶须:
1、配置浆料:以丙酮为溶剂,向丙酮中加入环氧树脂,丙酮与环氧树脂的质量比约为20︰7得环氧树脂丙酮溶液;将碳化硅晶须加入到环氧树脂丙酮溶液中,混合均匀后得到环氧树脂预浸料;
2、将沉积1次碳化硅的陶瓷材料放入预浸料中真空浸渍1-3h,取出结构件后室温下干燥12-24小时去除丙酮后置于管式炉中,最后在Ar气氛下进行250℃固化,800℃~1000℃裂解。
2.根据权利要求1所述低热膨胀高模量的陶瓷热学超材料制备方法,其特征在于:步骤4后,将蒸馏水加入盐酸中稀释,再依次加入锂霞石直至溶液饱和;将打印的结构放入配置好的溶液中进行真空浸渍,1-2h后取出试样放入烘箱中设定60-100℃干燥2-5h。
3.根据权利要求1所述低热膨胀高模量的陶瓷热学超材料制备方法,其特征在于:所述步骤4中,氩气流量300ml/min,氢气流量200ml/min,氢气和三氯甲基硅烷的摩尔比为10︰1。
4.根据权利要求1所述低热膨胀高模量的陶瓷热学超材料制备方法,其特征在于:所述陶瓷光敏树脂的陶瓷是氧化物陶瓷。
5.根据权利要求1所述低热膨胀高模量的陶瓷热学超材料制备方法,其特征在于:所述烧结助剂包括但不限于:氧化钇、氧化镁或氧化硅。
6.根据权利要求4所述低热膨胀高模量的陶瓷热学超材料制备方法,其特征在于:所述的氧化物陶瓷包括但不限于氧化铝或氧化锆。
7.根据权利要求1所述低热膨胀高模量的陶瓷热学超材料制备方法,其特征在于:所述步骤3中,在坩埚内埋入硅粉。
CN202011205576.3A 2020-11-02 2020-11-02 一种低热膨胀高模量的陶瓷热学超材料制备方法 Active CN112277123B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011205576.3A CN112277123B (zh) 2020-11-02 2020-11-02 一种低热膨胀高模量的陶瓷热学超材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011205576.3A CN112277123B (zh) 2020-11-02 2020-11-02 一种低热膨胀高模量的陶瓷热学超材料制备方法

Publications (2)

Publication Number Publication Date
CN112277123A true CN112277123A (zh) 2021-01-29
CN112277123B CN112277123B (zh) 2022-03-15

Family

ID=74352802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011205576.3A Active CN112277123B (zh) 2020-11-02 2020-11-02 一种低热膨胀高模量的陶瓷热学超材料制备方法

Country Status (1)

Country Link
CN (1) CN112277123B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161738A (zh) * 2021-05-25 2021-07-23 中国电子科技集团公司第二十九研究所 一种低频宽带曲面电路的制备方法
CN113488120A (zh) * 2021-07-22 2021-10-08 浙江理工大学 一种热膨胀系数可调范围大的二维超材料结构
CN113604195A (zh) * 2021-07-29 2021-11-05 西北工业大学 一种x波段全频吸波的多孔膨润土复合材料及制备方法
CN113735590A (zh) * 2021-09-29 2021-12-03 北京理工大学 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
CN114184636A (zh) * 2021-12-13 2022-03-15 浙江抟原复合材料有限公司 一种热塑性复合材料结构3d打印模具热膨胀测量方法
CN114260424A (zh) * 2021-11-29 2022-04-01 重庆交通大学绿色航空技术研究院 基于液态金属的晶格结构超材料的制备方法
CN115116755A (zh) * 2022-06-12 2022-09-27 西北工业大学 一种多面体扭转结构高效光热转化材料及制备方法和应用
CN115368159A (zh) * 2022-08-17 2022-11-22 浙江理工大学 一种三角形蜂窝多孔陶瓷材料的制备方法
CN116354703A (zh) * 2023-03-15 2023-06-30 嘉兴饶稷科技有限公司 一种负泊松比结构增韧树脂渗透陶瓷材料的制备方法
CN116803951A (zh) * 2023-07-19 2023-09-26 北京亦盛精密半导体有限公司 一种高纯高电阻率碳化硅制件及其成型工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20052145L (no) * 2004-05-03 2005-11-04 Snecma Propulsion Solide Fremgangsmate for fremstilling av en del av ugjennomtrengelig termostrukturell komposittmateriale.
CN106966748A (zh) * 2016-11-23 2017-07-21 北京航空航天大学 耐超高温且有自愈合能力的陶瓷基复合材料及其制备方法
CN110240484A (zh) * 2019-06-18 2019-09-17 西北工业大学 一种3d打印高比表面积高效率催化剂-载体体系的方法
CN111018499A (zh) * 2019-12-31 2020-04-17 清华大学深圳国际研究生院 用于太赫兹超材料构建的基板、太赫兹超材料及制备方法
CN111217616A (zh) * 2020-02-17 2020-06-02 西北工业大学 一种近零膨胀特性的C/SiC结构材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20052145L (no) * 2004-05-03 2005-11-04 Snecma Propulsion Solide Fremgangsmate for fremstilling av en del av ugjennomtrengelig termostrukturell komposittmateriale.
CN106966748A (zh) * 2016-11-23 2017-07-21 北京航空航天大学 耐超高温且有自愈合能力的陶瓷基复合材料及其制备方法
CN110240484A (zh) * 2019-06-18 2019-09-17 西北工业大学 一种3d打印高比表面积高效率催化剂-载体体系的方法
CN111018499A (zh) * 2019-12-31 2020-04-17 清华大学深圳国际研究生院 用于太赫兹超材料构建的基板、太赫兹超材料及制备方法
CN111217616A (zh) * 2020-02-17 2020-06-02 西北工业大学 一种近零膨胀特性的C/SiC结构材料的制备方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161738A (zh) * 2021-05-25 2021-07-23 中国电子科技集团公司第二十九研究所 一种低频宽带曲面电路的制备方法
CN113488120A (zh) * 2021-07-22 2021-10-08 浙江理工大学 一种热膨胀系数可调范围大的二维超材料结构
CN113488120B (zh) * 2021-07-22 2023-07-21 浙江理工大学 一种热膨胀系数可调范围大的二维超材料结构
CN113604195B (zh) * 2021-07-29 2024-01-30 西北工业大学 一种x波段全频吸波的多孔膨润土复合材料及制备方法
CN113604195A (zh) * 2021-07-29 2021-11-05 西北工业大学 一种x波段全频吸波的多孔膨润土复合材料及制备方法
CN113735590A (zh) * 2021-09-29 2021-12-03 北京理工大学 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
CN113735590B (zh) * 2021-09-29 2022-06-28 北京理工大学 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
CN114260424A (zh) * 2021-11-29 2022-04-01 重庆交通大学绿色航空技术研究院 基于液态金属的晶格结构超材料的制备方法
CN114184636A (zh) * 2021-12-13 2022-03-15 浙江抟原复合材料有限公司 一种热塑性复合材料结构3d打印模具热膨胀测量方法
CN114184636B (zh) * 2021-12-13 2024-05-17 浙江抟原复合材料有限公司 一种热塑性复合材料结构3d打印模具热膨胀测量方法
CN115116755A (zh) * 2022-06-12 2022-09-27 西北工业大学 一种多面体扭转结构高效光热转化材料及制备方法和应用
CN115116755B (zh) * 2022-06-12 2024-03-29 西北工业大学 一种多面体扭转结构光热转化材料及制备方法和应用
CN115368159A (zh) * 2022-08-17 2022-11-22 浙江理工大学 一种三角形蜂窝多孔陶瓷材料的制备方法
CN115368159B (zh) * 2022-08-17 2023-09-01 浙江理工大学 一种三角形蜂窝多孔陶瓷材料的制备方法
CN116354703A (zh) * 2023-03-15 2023-06-30 嘉兴饶稷科技有限公司 一种负泊松比结构增韧树脂渗透陶瓷材料的制备方法
CN116803951A (zh) * 2023-07-19 2023-09-26 北京亦盛精密半导体有限公司 一种高纯高电阻率碳化硅制件及其成型工艺
CN116803951B (zh) * 2023-07-19 2024-03-05 北京亦盛精密半导体有限公司 一种高纯高电阻率碳化硅制件及其成型工艺

Also Published As

Publication number Publication date
CN112277123B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN112277123B (zh) 一种低热膨胀高模量的陶瓷热学超材料制备方法
Zhang et al. Additive manufacturing of cellular ceramic structures: From structure to structure–function integration
Sun et al. A review on additive manufacturing of ceramic matrix composites
CN108484194B (zh) 一种Al2O3-SiO2基复合材料及其快速制备方法
Zhang et al. High-strength macro-porous alumina ceramics with regularly arranged pores produced by gel-casting and sacrificial template methods
US5571848A (en) Method for producing a microcellular foam
CN111233478B (zh) 一种碳化钛梯度多孔陶瓷的分层挂浆制备方法
CN107686366A (zh) 一种纳米线和晶须协同增韧陶瓷基复合材料的制备方法
CN115286394A (zh) 一种粘结剂喷射打印碳化硅陶瓷材料的制备方法
WO2021118459A1 (en) Porous composites, scaffolds, foams, methods of fabrication and uses thereof
CN113754455B (zh) 多尺度增韧铺层结构吸波陶瓷基复合材料及其制备方法
Duan et al. Electromagnetic interference shielding and mechanical properties of Si3N4–SiOC composites fabricated by 3D-printing combined with polymer infiltration and pyrolysis
Hur et al. Material extrusion for ceramic additive manufacturing with polymer-free ceramic precursor binder
CN110004347B (zh) 一种仿生贝壳结构陶瓷与金属复合材料的制备方法
Rao et al. 3D-printed lattice structures with SiC whiskers to strengthen thermal metamaterials
Li et al. Phase evolution and properties of porous cordierite ceramics prepared by cordierite precursor pastes based on supportless stereolithography
Wang et al. Preparation of porous SiC ceramics skeleton with low-cost and controllable gradient based on liquid crystal display 3D printing
CN116409997A (zh) 一种碳化硅复相陶瓷及其制备方法
Zhang et al. Mechanical reinforcement of 3D printed cordierite-zirconia composites
US5039550A (en) Colloidal processing method for coating ceramic reinforcing agents
JP5168451B2 (ja) 多孔質成形体の製造方法及び多孔質充填成形体の製造方法
CN116410013A (zh) 碳化硅陶瓷及其制备方法
CN115521157A (zh) 一种SiC晶须强韧化的先驱体陶瓷基复合材料及其制备方法
Zhao et al. Strengthening the thermal Negative Poisson's ratio structures by SiC chemical vapor infiltration
Pan et al. Densification of SiCf/mullite composite via vacuum pressure impregnation process towards excellent mechanical and microwave absorbing performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant