CN113121237A - 一种碳化硼基复合陶瓷及其制备工艺 - Google Patents

一种碳化硼基复合陶瓷及其制备工艺 Download PDF

Info

Publication number
CN113121237A
CN113121237A CN202110408476.9A CN202110408476A CN113121237A CN 113121237 A CN113121237 A CN 113121237A CN 202110408476 A CN202110408476 A CN 202110408476A CN 113121237 A CN113121237 A CN 113121237A
Authority
CN
China
Prior art keywords
boron carbide
based composite
composite ceramic
powder
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110408476.9A
Other languages
English (en)
Other versions
CN113121237B (zh
Inventor
钟志宏
袁邦国
袁东立
吴玉程
王国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110408476.9A priority Critical patent/CN113121237B/zh
Publication of CN113121237A publication Critical patent/CN113121237A/zh
Application granted granted Critical
Publication of CN113121237B publication Critical patent/CN113121237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明提供了一种碳化硼基复合陶瓷及其制备工艺,所述碳化硼基复合陶瓷的原料包括碳化硼粉、硅化锆粉、碳化硅晶须,将所述原料球磨混合后经放电等离子烧结制备得到。本发明实现了碳化硼基复合陶瓷低温烧结,所得碳化硼基复合陶瓷致密度高、综合力学性能优异。

Description

一种碳化硼基复合陶瓷及其制备工艺
技术领域
本发明属于陶瓷基复合材料技术领域,尤其涉及一种碳化硼基复合陶瓷及其制备工艺。
背景技术
碳化硼(B4C)陶瓷因具有一系列优异的化学和物理性能,如良好的化学稳定性、高硬度、低密度、高熔点和良好的耐磨性,在防弹装甲、耐火材料、耐磨涂层等领域有广阔的应用前景。此外,由于硼元素具有良好的中子吸收能力,B4C陶瓷可用于核反应堆中作为中子吸收剂和屏蔽材料使用。
然而,由于B4C陶瓷的烧结性极差,一般烧结需要温度到达2200℃且保温时间不低于30min,这导致了B4C陶瓷晶粒组织易变得粗大,降低了陶瓷材料的综合力学性能。此外,B4C陶瓷的机械加工性能差、脆性大、断裂韧性差等问题,也限制了B4C陶瓷的应用。因而,降低B4C陶瓷的烧结温度、提高其综合力学性能及改善其机械加工性能对其应用而言具有重要意义。
研究表明,在B4C中引入适量的碳化硅(SiC)或二硼化锆(ZrB2)等第二相可以在一定程度上改善B4C的烧结性能及提高B4C陶瓷的力学性能。然而,将SiC、ZrB2直接以普通的粉末混入,将块体烧结致密仍需要较高的温度,从而限制了B4C陶瓷复合材料整体性能的提升。
发明内容
基于上述技术问题,本发明提供了一种碳化硼基复合陶瓷及其制备工艺,实现了碳化硼基复合陶瓷低温烧结,所得碳化硼基复合陶瓷致密度高、综合力学性能优异。
本发明具体方案如下:
本发明提供了一种碳化硼基复合陶瓷,所述碳化硼基复合陶瓷的原料包括碳化硼粉、硅化锆粉、碳化硅晶须,将所述原料球磨混合后经放电等离子烧结制备得到。
优选地,所述碳化硼基复合陶瓷原料的体积百分比如下:碳化硼粉63-70%、硅化锆粉27-30%、碳化硅晶须3-10%。
优选地,所述碳化硼粉的纯度≥97%,粒径为0.1μm-7μm。
优选地,所述硅化锆粉的纯度≥98%,粒径为0.1μm-30μm。
优选地,所述碳化硅晶须的纯度≥98%,直径为0.1μm-2μm,长度为10μm-50μm。
本发明还提供了所述碳化硼基复合陶瓷的制备工艺,包括如下步骤:(1)将碳化硼粉和硅化锆粉进行球磨10-15h;(2)将碳化硅晶须加入并继续球磨20-40min,干燥,得混合粉末;(3)将混合粉末进行放电等离子烧结,在30-50MPa、1550-1650℃下,保温10-15min,即得碳化硼基复合陶瓷。
优选地,步骤(1)中,以无水乙醇作为球磨介质,球磨转速为200-400r/min;步骤(2)中,球磨前,先将碳化硅晶须在乙醇溶剂中超声分散0.5-1h,球磨转速为50-70r/min。
优选地,步骤(2)中,所述干燥方式选自真空干燥、常压干燥、喷雾干燥中的一种;更优选地,采用真空干燥,于40-60℃干燥10-16h。
优选地,步骤(3)中,混合粉末以50-100℃/min的升温速率升温至烧结温度。
优选地,步骤(3)中,烧结保温完成后以30-50MPa/min的速率降压至0MPa。
有益效果:
本发明所述碳化硼基复合陶瓷是以碳化硼粉为基体,硅化锆粉为烧结助剂,添加碳化硅晶须,经放电等离子烧结制备得到,实现了碳化硼基复合陶瓷的低温、短时致密化烧结,解决了碳化硼基陶瓷烧结温度高、保温时间长等难烧结的技术问题,制备得到了高致密度、综合力学性能优异的碳化硼基复合陶瓷。
其中,硅化锆粉作为烧结助剂,在保持B4C陶瓷高强度和高硬度的前提下,能够通过原位反应在B4C基体中生成了晶粒尺寸小且分布均匀的SiC和ZrB2增强增韧相。与将SiC和ZrB2以普通的粉末混入方式相比,通过原位反应形成晶粒细小且在B4C基体中均匀分布的SiC、ZrB2等增强相不仅可降低反应烧结温度,还能在促进烧结致密化的同时有效抑制了晶粒长大,解决了B4C陶瓷烧结致密度不高及断裂韧性低的问题,得到综合性能更为优越的碳化硼基复合陶瓷。此外,生成的ZrB2具有较高的电导率,使B4C基复合陶瓷能够用电火花线切割进行加工,解决了B4C陶瓷机械加工困难的问题。
除了硅化锆粉,同时还加入少量的碳化硅晶须,进一步提高了碳化硼基复合陶瓷的断裂韧性。
附图说明
图1为B4C陶瓷和添加不同体积分数的ZrSi2和SiC晶须制备的B4C基复合陶瓷材料的微观组织照片;
其中:(a)对应对比例1所制备的B4C陶瓷;(b)对应对比例2所制备的B4C基复合陶瓷材料(B4C+30vol.%ZrSi2);(c)对应实施例2所制备的B4C基复合陶瓷材料(65.8vol.%B4C+28.2vol.%ZrSi2+6vol.%SiC晶须)。
图2为B4C陶瓷和添加不同体积分数ZrSi2和SiC晶须制备的B4C基复合陶瓷的XRD图谱;
其中:(a)对应对比例1所制备的B4C陶瓷;(b)对应对比例2所制备的B4C基复合陶瓷材料(B4C+30vol.%ZrSi2);(c)对应实施例2所制备的B4C基复合陶瓷材料(65.8vol.%B4C+28.2vol.%ZrSi2+6vol.%SiC晶须)。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明,但是应该明确提出这些实施例用于举例说明,但是不解释为限制本发明的范围。
实施例1
一种碳化硼基复合陶瓷,其原料按照体积百分比包括:67.9vol.%碳化硼粉、29.1vol.%硅化锆粉、3vol.%碳化硅晶须。其中,所述碳化硼粉的纯度为97%,平均粒径为3.5μm;所述硅化锆粉的纯度为98%,平均粒径为20μm;所述碳化硅晶须的纯度98%,直径为0.1μm-2μm,长度为10μm-50μm。
所述碳化硼基复合陶瓷的制备工艺为:
(1)混合粉末制备:按照上述体积百分比将碳化硼粉和硅化锆粉倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球料质量比3:1,球磨机的转速为360r/min,球磨混合时间12h;将碳化硅晶须在乙醇溶剂中超声分散1h;将碳化硅晶须加入碳化硼粉和硅化锆粉的混合液中,球磨混合时间为30min,球磨转速为60r/min,再将混合粉末置于50℃真空干燥箱中干燥12h,即得所需混合粉末;
(2)放电等离子烧结:将混合粉末装配至内径20mm的石墨模具中,然后将装好的石墨模具放入放电等离子烧结炉中;在室温下对烧结炉抽真空至20Pa以下,加载压力为50MPa,以80℃/min的速率升温至烧结温度1600℃,保温10min,保温阶段结束后随炉降温、以50MPa/min的速率降压至0MPa,即得碳化硼基复合陶瓷。
实施例2
一种碳化硼基复合陶瓷,其原料按照体积百分比包括:65.8vol.%碳化硼粉、28.2vol.%硅化锆粉、6vol.%碳化硅晶须。其中,所述碳化硼粉的纯度为97%,平均粒径为3.5μm;所述硅化锆粉的纯度为98%,平均粒径为20μm;所述碳化硅晶须的纯度98%,直径为0.1μm-2μm,长度为10μm-50μm。
所述碳化硼基复合陶瓷的制备工艺为:
(1)混合粉末制备:按照上述体积百分比将碳化硼粉和硅化锆粉倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球料质量比3:1,球磨机的转速为360r/min,球磨混合时间12h;将碳化硅晶须在乙醇溶剂中超声分散1h;将碳化硅晶须加入碳化硼粉和硅化锆粉的混合液中,球磨混合时间为30min,球磨转速为60r/min,再将混合粉末置于50℃真空干燥箱中干燥12h,即得所需混合粉末;
(2)放电等离子烧结:将混合粉末装配至内径20mm的石墨模具中,然后将装好的石墨模具放入放电等离子烧结炉中;在室温下对烧结炉抽真空至20Pa以下,加载压力为50MPa,以80℃/min的速率升温至烧结温度1600℃,保温10min,保温阶段结束后随炉降温、以50MPa/min的速率降压至0MPa,即得碳化硼基复合陶瓷。
实施例3
一种碳化硼基复合陶瓷,其原料按照体积百分比包括:63vol.%碳化硼粉、27vol.%硅化锆粉、10vol.%碳化硅晶须。其中,所述碳化硼粉的纯度为97%,平均粒径为3.5μm;所述硅化锆粉的纯度为98%,平均粒径为20μm;所述碳化硅晶须的纯度98%,直径为0.1μm-2μm,长度为10μm-50μm。
所述碳化硼基复合陶瓷的制备工艺为:
(1)混合粉末制备:按照上述体积百分比将碳化硼粉和硅化锆粉倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球料质量比3:1,球磨机的转速为360r/min,球磨混合时间12h;将碳化硅晶须在乙醇溶剂中超声分散1h;将碳化硅晶须加入碳化硼粉和硅化锆粉的混合液中,球磨混合时间为30min,球磨转速为60r/min,再将混合粉末置于50℃真空干燥箱中干燥12h,即得所需混合粉末;
(2)放电等离子烧结:将混合粉末装配至内径20mm的石墨模具中,然后将装好的石墨模具放入放电等离子烧结炉中;在室温下对烧结炉抽真空至20Pa以下,加载压力为50MPa,以80℃/min的速率升温至烧结温度1600℃,保温10min,保温阶段结束后随炉降温、以50MPa/min的速率降压至0MPa,即得碳化硼基复合陶瓷。
实施例4
一种碳化硼基复合陶瓷,其原料按照体积百分比包括:65vol.%碳化硼粉、28vol.%硅化锆粉、7vol.%碳化硅晶须。其中,所述碳化硼粉的纯度为97%,平均粒径为3.5μm;所述硅化锆粉的纯度为98%,平均粒径为20μm;所述碳化硅晶须的纯度98%,直径为0.1μm-2μm,长度为10μm-50μm。
所述碳化硼基复合陶瓷的制备工艺为:
(1)混合粉末制备:按照上述体积百分比将碳化硼粉和硅化锆粉倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球料质量比3:1,球磨机的转速为300r/min,球磨混合时间12h;将碳化硅晶须在乙醇溶剂中超声分散1h;将碳化硅晶须加入碳化硼粉和硅化锆粉的混合液中,球磨混合时间为30min,球磨转速为60r/min,再将混合粉末置于50℃真空干燥箱中干燥12h,即得所需混合粉末;
(2)放电等离子烧结:将混合粉末装配至内径20mm的石墨模具中,然后将装好的石墨模具放入放电等离子烧结炉中;在室温下对烧结炉抽真空至20Pa以下,加载压力为30MPa,以50℃/min的速率升温至烧结温度1500℃,保温10min,保温阶段结束后随炉降温、以30MPa/min的速率降压至0MPa,即得碳化硼基复合陶瓷。
对比例1
通过放电等离子烧结技术制备纯B4C陶瓷材料的工艺如下:将100vol.%B4C粉末(纯度为97%,平均粒径为3.5μm)装配至内径20mm的石墨模具中,然后将装好的石墨模具放入放电等离子烧结炉中;在室温下对烧结炉抽真空至20Pa以下,加载压力为50MPa,以80℃/min的速率升温至烧结温度1600℃,保温10min,保温阶段结束后随炉降温、以50MPa/min的速率降压至0MPa,即得碳化硼陶瓷。
对比例2
一种碳化硼基复合陶瓷,其原料按照体积百分比包括:70vol.%碳化硼粉、30vol.%硅化锆粉。其中,所述碳化硼粉的纯度为97%,平均粒径为3.5μm;所述硅化锆粉的纯度为98%,平均粒径为20μm。
所述碳化硼基复合陶瓷的制备工艺为:
(1)混合粉末制备:按照上述体积百分比将碳化硼粉和硅化锆粉倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球料质量比3:1,球磨机的转速为360r/min,球磨混合时间12h,再将混合粉末置于50℃真空干燥箱中干燥12h,即得所需混合粉末;
(2)放电等离子烧结:将混合粉末装配至内径20mm的石墨模具中,然后将装好的石墨模具放入放电等离子烧结炉中;在室温下对烧结炉抽真空至20Pa以下,加载压力为50MPa,以80℃/min的速率升温至烧结温度1600℃,保温10min,保温阶段结束后随炉降温、以50MPa/min的速率降压至0MPa,即得碳化硼基复合陶瓷。
对比例3
一种碳化硼基复合陶瓷,其原料按照体积百分比包括:57.64vol.%碳化硼粉、15.02vol.%二硼化锆粉、27.34vol.%碳化硅粉。其中,所述碳化硼粉的纯度为97%,平均粒径为3.5μm;所述二硼化锆粉的纯度为98%,平均粒径为20μm;所述碳化硅粉的纯度为98%,平均粒径为20μm。
所述碳化硼基复合陶瓷的制备工艺为:
(1)混合粉末制备:按照上述体积百分比将碳化硼粉、二硼化锆粉和碳化硅粉,倒入球磨罐中,以无水乙醇为球磨介质,将球磨罐置于行星球磨机中,球料质量比3:1,球磨机的转速为360r/min,球磨混合时间12h,再将混合粉末置于50℃真空干燥箱中干燥12h,即得所需混合粉末;
(2)放电等离子烧结:将混合粉末装配至内径20mm的石墨模具中,然后将装好的石墨模具放入放电等离子烧结炉中;在室温下对烧结炉抽真空至20Pa以下,加载压力为50MPa,以80℃/min的速率升温至烧结温度1600℃,保温10min,保温阶段结束后随炉降温、以50MPa/min的速率降压至0MPa,即得碳化硼基复合陶瓷。
性能测试:
本发明实施例和对比例各项性能按照如下方法检测:(1)相对密度采用Archimedes排水法测定;(2)维氏硬度采用HV5型维氏硬度计测定;(3)断裂韧性测试方法采用单边切口梁法,采用电子万能材料试验机;(4)弯曲强度测试方法采用三点弯曲法,采用电子万能材料试验机。具体的测试结果见下表1。
表1、实施例1-4及对比例1-3所述陶瓷材料性能数据
Figure BDA0003023231800000091
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种碳化硼基复合陶瓷,其特征在于,所述碳化硼基复合陶瓷的原料包括碳化硼粉、硅化锆粉、碳化硅晶须,将所述原料球磨混合后经放电等离子烧结制备得到。
2.根据权利要求1所述的碳化硼基复合陶瓷,其特征在于,所述碳化硼基复合陶瓷原料的体积百分比如下:碳化硼粉63-70%、硅化锆粉27-30%、碳化硅晶须3-10%。
3.根据权利要求1或2所述的碳化硼基复合陶瓷,其特征在于,所述碳化硼粉的纯度≥97%,粒径为0.1μm-7μm。
4.根据权利要求1-3任一项所述的碳化硼基复合陶瓷,其特征在于,所述硅化锆粉的纯度≥98%,粒径为0.1μm-30μm。
5.根据权利要求1-4任一项所述的碳化硼基复合陶瓷,其特征在于,所述碳化硅晶须的纯度≥98%,直径为0.1μm-2μm,长度为10μm-50μm。
6.一种如权利要求1-5任一项所述的碳化硼基复合陶瓷的制备工艺,其特征在于,包括如下步骤:(1)将碳化硼粉和硅化锆粉进行球磨10-15h;(2)将碳化硅晶须加入并继续球磨20-40min,干燥,得混合粉末;(3)将混合粉末进行放电等离子烧结,在30-50MPa、1550-1650℃下,保温10-15min,即得碳化硼基复合陶瓷。
7.根据权利要求6所述的碳化硼基复合陶瓷的制备工艺,其特征在于,步骤(1)中,以无水乙醇作为球磨介质,球磨转速为200-400r/min;步骤(2)中,球磨前,先将碳化硅晶须在乙醇溶剂中超声分散0.5-1h,球磨转速为50-70r/min。
8.根据权利要求6或7所述的碳化硼基复合陶瓷的制备工艺,其特征在于,步骤(2)中,所述干燥方式选自真空干燥、常压干燥、喷雾干燥中的一种;优选地,采用真空干燥,于40-60℃干燥10-16h。
9.根据权利要求6-8任一项所述的碳化硼基复合陶瓷的制备工艺,其特征在于,步骤(3)中,混合粉末以50-100℃/min的升温速率,升温至烧结温度。
10.根据权利要求6-9任一项所述的碳化硼基复合陶瓷的制备工艺,其特征在于,步骤(3)中,烧结保温完成后以30-50MPa/min的速率降压至0MPa。
CN202110408476.9A 2021-04-16 2021-04-16 一种碳化硼基复合陶瓷及其制备工艺 Active CN113121237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110408476.9A CN113121237B (zh) 2021-04-16 2021-04-16 一种碳化硼基复合陶瓷及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110408476.9A CN113121237B (zh) 2021-04-16 2021-04-16 一种碳化硼基复合陶瓷及其制备工艺

Publications (2)

Publication Number Publication Date
CN113121237A true CN113121237A (zh) 2021-07-16
CN113121237B CN113121237B (zh) 2023-06-02

Family

ID=76777338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110408476.9A Active CN113121237B (zh) 2021-04-16 2021-04-16 一种碳化硼基复合陶瓷及其制备工艺

Country Status (1)

Country Link
CN (1) CN113121237B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582698A (zh) * 2021-08-20 2021-11-02 郑州大学 一种ZrB2-SiC增韧B4C防弹片的制备方法
CN113735592A (zh) * 2021-07-21 2021-12-03 刘建恒 复合纳米陶瓷粉体的生产工艺
CN115028454A (zh) * 2022-06-24 2022-09-09 扬州北方三山工业陶瓷有限公司 一种防弹陶瓷复合材料
CN115322001A (zh) * 2022-09-15 2022-11-11 江阴誉球耐火材料有限公司 一种耐高温铁沟浇注料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695321A (en) * 1985-06-21 1987-09-22 New Mexico Tech Research Foundation Dynamic compaction of composite materials containing diamond
CN1045387A (zh) * 1989-01-13 1990-09-19 兰克西敦技术公司 通过后处理改进陶瓷合体的方法及其生产的制品
JPH05345672A (ja) * 1991-12-03 1993-12-27 Tonen Corp 金属炭化物系セラミックス成形体及びその製造方法
CN1803714A (zh) * 2006-01-18 2006-07-19 山东大学 碳化硼基复合防弹陶瓷及其制备方法
CN102617148A (zh) * 2012-04-06 2012-08-01 牡丹江金钢钻碳化硼有限公司 一种新型碳化硼陶瓷基复合材料及其制备方法
UA78252U (ru) * 2012-09-24 2013-03-11 Институт Проблем Материаловедения Им. И.М. Францевича Нан Украины Высокотемпературный электроизоляционный термо- и эрозионно стойкий материал системы bn-b4c
CN112500178A (zh) * 2020-12-08 2021-03-16 郑州大学 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695321A (en) * 1985-06-21 1987-09-22 New Mexico Tech Research Foundation Dynamic compaction of composite materials containing diamond
CN1045387A (zh) * 1989-01-13 1990-09-19 兰克西敦技术公司 通过后处理改进陶瓷合体的方法及其生产的制品
JPH05345672A (ja) * 1991-12-03 1993-12-27 Tonen Corp 金属炭化物系セラミックス成形体及びその製造方法
CN1803714A (zh) * 2006-01-18 2006-07-19 山东大学 碳化硼基复合防弹陶瓷及其制备方法
CN102617148A (zh) * 2012-04-06 2012-08-01 牡丹江金钢钻碳化硼有限公司 一种新型碳化硼陶瓷基复合材料及其制备方法
UA78252U (ru) * 2012-09-24 2013-03-11 Институт Проблем Материаловедения Им. И.М. Францевича Нан Украины Высокотемпературный электроизоляционный термо- и эрозионно стойкий материал системы bn-b4c
CN112500178A (zh) * 2020-12-08 2021-03-16 郑州大学 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
裴立宅: "《高技术陶瓷材料》", 31 July 2015, 合肥工业大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735592A (zh) * 2021-07-21 2021-12-03 刘建恒 复合纳米陶瓷粉体的生产工艺
CN113582698A (zh) * 2021-08-20 2021-11-02 郑州大学 一种ZrB2-SiC增韧B4C防弹片的制备方法
CN115028454A (zh) * 2022-06-24 2022-09-09 扬州北方三山工业陶瓷有限公司 一种防弹陶瓷复合材料
CN115322001A (zh) * 2022-09-15 2022-11-11 江阴誉球耐火材料有限公司 一种耐高温铁沟浇注料及其制备方法
CN115322001B (zh) * 2022-09-15 2023-07-07 江阴誉球耐火材料有限公司 一种耐高温铁沟浇注料及其制备方法

Also Published As

Publication number Publication date
CN113121237B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN113121237A (zh) 一种碳化硼基复合陶瓷及其制备工艺
US20210323875A1 (en) Short-Fiber-Reinforced Oriented MAX-Phase Ceramic-Based Composite and Preparation Method Therefor
CN113666764B (zh) 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN110128146B (zh) 一种具有多功能的碳化硼基复相陶瓷及其反应热压烧结制备方法
CN110627507B (zh) 一种低温碳化硅陶瓷及其制备方法和应用
CN110256081A (zh) 一种碳化硼基复合陶瓷材料及其制备工艺
CN111848170A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN113402279A (zh) 一种长棒状β-SiAlON增韧的高熵碳化物陶瓷及其制备方法和应用
CN102603344B (zh) 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN115536403A (zh) 一种高韧氮化硅陶瓷材料及其制备方法
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
CN105481365A (zh) 一种高致密化碳化钛陶瓷的制备方法
CN113121238B (zh) 一种高性能碳化硼基复合陶瓷材料及其制备方法
CN115259859B (zh) 一种碳化硼防弹陶瓷材料及其制备方法
CN108503370A (zh) 一种单相氮化硅陶瓷及其sps制备工艺
CN115073186A (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN113582698A (zh) 一种ZrB2-SiC增韧B4C防弹片的制备方法
CN113816747A (zh) TiC增强MAX相高熵陶瓷基复合材料及其制备方法
CN111732436A (zh) 易烧结钛和钨共掺杂碳化锆粉体及其制备方法
CN113213941B (zh) 一种BCN纳米非晶相强韧化TiB2-B4C复相陶瓷的制备方法
CN115872749B (zh) 一种高熵硼化物增强b4c复合陶瓷及其原位合成方法
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN114685168B (zh) 一种B4C-TiB2导电复相陶瓷及其制备方法
CN106747470B (zh) 一种热聚反应制备高温非氧化物共晶超细粉末的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant