CN1045387A - 通过后处理改进陶瓷合体的方法及其生产的制品 - Google Patents

通过后处理改进陶瓷合体的方法及其生产的制品 Download PDF

Info

Publication number
CN1045387A
CN1045387A CN90100123A CN90100123A CN1045387A CN 1045387 A CN1045387 A CN 1045387A CN 90100123 A CN90100123 A CN 90100123A CN 90100123 A CN90100123 A CN 90100123A CN 1045387 A CN1045387 A CN 1045387A
Authority
CN
China
Prior art keywords
metal
zbc
parent metal
supporting body
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN90100123A
Other languages
English (en)
Inventor
威廉姆·拜亚德·乔森
苔利·戴尼斯·克拉尔
罗伯特·安东尼·拉普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxide Technology Co LP
Original Assignee
Lanxide Technology Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxide Technology Co LP filed Critical Lanxide Technology Co LP
Publication of CN1045387A publication Critical patent/CN1045387A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/652Directional oxidation or solidification, e.g. Lanxide process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Laminated Bodies (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Materials For Medical Uses (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明涉及利用后处理工艺生产复合体(如ZrB2-ZrC-Zr复合体)的新方法。并且,本发明还涉及根据本方法而生产的新产物。通过将所述复合体暴露于第二种金属源,新方法改进了该复合体的至少一部分。

Description

本发明涉及采用后处理技术制备复合体(如ZrB2-Zre-Zr复合体)的新方法,及其生产的新产品。更具体地说,本发明涉及改进复合体的方法,所述复合体含有一种或多种含硼化合物(如硼化物或硼化物和碳化物),是通过使熔融母体金属反应性渗透到含碳化硼体和任意选择的一种或多种惰性填料以形成复合体而制备的。
近年来,陶瓷代替金属在建筑上的应用已愈来愈引起人们的关注。原因是,与金属相比,陶瓷在某些性能方面如耐腐蚀性,硬度,耐磨性,弹性模量和耐火性能具有相对优越性。
但是,陶瓷用于上述目的的一个主要问题是制造所需陶瓷结构的可行性及其造价。例如,利用热压法,反应烧结法和反应热压法制造陶瓷硼化物体是已知的。尽管根据上述方法,在制造陶瓷硼化物体方面取得某些有限的进展,但仍然需要一种更有效和更经济的方法制造致密的含硼化物材料。
另外,陶瓷用于建筑上的第二个主要问题是陶瓷通常缺乏韧性(即损坏容限或抗断裂性)。在应用时,缺乏韧性往往容易在中度拉应力情况下引起陶瓷突然的灾难性断裂。这种缺乏韧性在整块陶瓷硼化物中是特别常见的。
解决上述问题的一个方法是使用与金属化合的陶瓷,例如金属陶陶或金属基复合材料。这种公知方法的目的是要获得陶瓷最佳性能(例如硬度和/或刚性)和金属最佳性能(例如延展性)的综合平衡。尽管在生产硼化物金属陶瓷领域取得了一些一般性进展,但仍需要更有效更经济的含硼化物材料的制备方法。
Danny    R.White,Michael    K.Aghajanian和T.Dennis    Claar在1987年7月15日申请的共同未决美国专利申请073,533(题为“自撑体的制备方法及其所制备的产品”)叙述了与生产含硼化物材料有关的许多上述问题。
在申请书′533中使用了下述定义,这些定义同样适用于本发明。
“母体金属”是指多晶氧化反应产物(即母体金属硼化物或其他母体金属硼化合物)的前体金属(如锆),其中包括纯金属或相对纯金属,含有杂质和/或合金成分的可商购金属,以及金属前体是主要成分的合金;当具体金属指的是母体金属(如锆)时,应注意,除非在上下文另有说明,提及的金属具有上述意义。
“母体金属硼化物”和“母体金属硼化合物”是指在碳化硼和母体金属之间反应时形成的含硼反应产物,包括硼与母体金属的二元化合物以及三元或多元化合物。
“母体金属碳化物”是指在碳化硼与母体金属反应时形成的含碳反应产物。
简要归纳申请书′533的内容可知,自支撑陶瓷体是在碳化硼存在下,利用母体金属渗透作用和反应方法(即,反应性渗透作用)制备的。特别的,碳化硼床层或碳化硼体被熔融的母体金属渗透和反应,而床层可全部由碳化硼组成,因此,所得自支撑体包括一种或多种母体金属含硼化合物,该化合物包括母体金属硼化物或母体金属碳化硼或两者,一般还包括母体金属碳化物。该申请还披露:待渗透的碳化硼体还可含有一种或多种与碳化硼混合的惰性填料。因此,通过结合惰性填料,所得产物将是一种具有基体的复合体,该基体是利用母体金属的反应性渗透作用制备的。所说基体包括至少一种含硼化合物,还可以包括母体金属碳化物,该基体嵌入惰性填料。还应注意,在上述方案中不论哪种情况(即,有填料或无填料),最终复合体产物均可以包括残余金属,如原始母体金属的至少一种金属成分。
从广义上讲,在申请书′533公开的方法中,含碳化硼体放置在与熔融的金属体或金属合金体相邻或接触的位置上,熔融的金属体或金属合金在一个特定的温域内、在基本惰性环境中熔化。熔融的金属渗透碳化硼体并与碳化硼反应生成至少一种反应产物。碳化硼可被熔融母体金属至少部分还原,从而生成母体金属含硼化合物(例如,在该工艺温度条件下,生成母体金属硼化物和/或硼化合物)。典型情况下,还生成母体金属碳化物,而在特定情况下,生成母体金属碳硼化物。至少部分反应产物与金属接触,并利用毛细作用使熔融的金属吸到或迁移到未反应的碳化硼。迁移的金属形成另外的母体金属,硼化物,碳化物和/或碳硼化物并且陶瓷体继续形成或扩展直到或是母体金属或碳化硼已被消耗掉或是反应温度变化到反应温域以外的温度。所得结构物包括一种或多种母体金属硼化物,母体金属硼化合物,母体金属碳化物,金属(如申请书′533所述,包括合金和金属互化物)或空隙或上述任意组合。而且,这几相在整个陶瓷体中可以或不以一维或多维相互连接。可以通过改变一种或多种条件,例如改变碳化硼体的初密度,碳化硼和母体金属的相对含量,母体金属的合金用填料稀释碳化硼,温度和时间,控制含硼化合物(即硼化物和硼化合物)、含碳化合物和金属相的最终体积分数以及互连度。碳化硼转化为母体金属硼化物、母体金属硼化合物和母体金属碳化物的转化率较好是至少约50%,最好是至少约90%。
在申请书′533中采用的典型环境或气氛是在该工艺条件下相对惰性或非反应性的环境或气氛。该申请特别指出,例如氩气或真空是适宜的工艺气氛。而且,据披露,如果使用锆作为母体金属,则所得复合体包括二硼化锆,碳化锆和残余的金属锆。该申请还披露,如果在该方法中使用铝母体金属,则所得产物是碳硼化铝如Al3B48C2AlB12C2和/或AlB24C4,并残存铝母体金属和其他未反应、未氧化母体的金属成分。在该工艺条件下其他适用的母体金属还披露有硅,钛,铪,镧,铁,钙,钒,铌,镁和铍。
共同未决的美国专利申请137,044(以下称作“申请书′044”)是申请书′533的继续部分申请,〔申请人:Terry    Dennis    Claar,Steven    Michael    Mason,Kevin    Peter    Pochopien和Danny    Bay    White,申请日:1987年12月23日,题为“自支撑体的制备方法及其所制备的产品”〕。申请书′044披露,在某些情况下,将碳给予体(即,含碳化合物)加到将要被熔融母体金属渗透的碳化硼床层或碳化硼体中是理想的。具体讲,据该申请书公开,碳给予体能够与母体金属反应生成母体金属碳化物相,这种相能改进所得复合体的机械性能(与没有使用碳给予体所制备的复合体比较)。因此,据透露可改变或控制反应浓度和工艺条件以获得含有不同体积百分数的陶瓷化合物、金属和/或孔隙的陶瓷体。例如,通过向碳化硼体加碳给予体(如石墨粉或碳黑),可以调节母体金属硼化物/母体金属碳化物的比率。特别是,如果使用锆作为母体金属,则会降低ZrB2/ZrC的比率(即,由于向碳化硼体加入碳给予体可产生更多的ZrC)。
申请书′044还公开了石墨模具的使用,该石墨模具有适量的、具有特定尺寸、形状和位置的通气孔,这些通气孔起着排气的作用,能在母体金属反应性渗透前沿渗透预型坯时除去例如预型坯或填料中收集到的任何气体。
在另一个相关申请,共同未决美国专利申请137,382(以下称作“申请书′382”)中,公开了其他改进方案。该申请是Terry Dennis Claar和Gerhard Hans Schiroky于1987年12月23日申请的,题为“利用渗碳法改性陶瓷复合体的方法及其制品”。具体讲,申请书′382公开的是:按申请书′533介绍的方法制备的陶瓷复合体暴露于气体渗碳物中能得到改性。例如,通过将复合体包埋在石墨床中并使至少部分石墨床在控制气氛炉中与潮气或氧气反应能制得上述气体渗碳物。但是炉内气氛一般应主要由非反应性气体如氩气构成。还不清楚是否氩气中的杂质提供了必需的O2以形成渗碳物,还是氩气仅起着含有杂质的媒介作用(这些杂质是在石墨床或复合体中某些成份挥发而产生的)。此外,气体渗碳物可以在加热复合体过程中直接引入控制气氛炉内。
一旦气体渗碳物被引入控制气氛炉内,应按如此方式设计组件以使渗碳物能与至少一部分埋在散填石墨粉中的复合体表面接触,据认为,渗碳物中的碳或来自石墨床层中的碳将溶解在相互连接的碳化锆相中,然后溶解的碳迁移遍布基本上所有的复合体(如果需要可以利用空位扩散法)。而且,申请书′382还披露:通过控制时间、复合体暴露在渗碳物的程度和/或发生渗碳作用时的温度,可在复合体表面形成渗碳区或渗碳层。利用这种方法可形成一层包覆有高金属含量和高断裂硬度的复合材料的坚硬、耐磨表面。
因此,如果生成复合体含有约5~30%(体积)的残余母体金属相,则能利用后渗碳处理改性这种复合体,使所形成的复合体含有约0~2%(体积),典型是约0.5~2%(体积)的母体金属。
上述每篇共同所有的美国专利申请的内容在此作为参考文献引用。
从以上讨论来看,本发明已得到开拓并克服了现有技术的缺陷。
本发明提供了一种改进所形成复合体性能的方法,更具体地说,正如以下讨论的那样,使形成体与第二种物质接触能改进形成的陶瓷体,所述第二种物质至少含有一种能与形成体中的至少一种残余金属和/或陶瓷相反应的金属〔例如第二种物质可以主要由反应性金属(如反应性金属粉)构成,或者只有一部分第二种物质可以由反应性金属(如至少含一种反应性组分的化合物)构成〕。因此,可以使形成体与含第二种金属的床层或粉末物料接触。这种接触后,可使形成的复合体中的残余母体金属和/或形成体中的至少一种与第二种物质(即床层或粉末物料)所含的第二种金属反应,从而改进复合体的性能。例如,铝和硅金属能起到第二种金属的作用,并可以粉末形式提供。例如,在惰性气氛下,使这种粉末与所形成的陶瓷体接触会使第二种金属与所形成的陶瓷复合体反应(例如,铝或硅金属与形成体中至少一种陶瓷相之间的反应和/或与形成体中残余母体金属的反应)。
能把转化量或反应量控制在任何所需程度。例如,可把反应限制在表面区域或扩展到陶瓷复合体表面之外。
不仅如此,第二种金属源可以是任何源物料或供体物料,这种物料在工艺温度和工艺条件下可提供与形成体中至少一种组分反应的至少一些第二种金属。
更具体地说,按照例如申请′533提出的方法生产出复合体之后,把复合体嵌入到一种粉末物料(例如氧化铝,氧化铝和硅的混合物或氧化铝和二氧化硅的混合物等)中。这种粉末最好应与所形成的复合体的至少一个面物理接触且形成的复合体与粉末物料都装在例如石墨或氧化铝坩埚内。在惰性或基本上非反应性气氛(如氩气)下,把整个组件加热到能使粉末物料(如第二种金属)和形成的复合体反应的温度。这种反应能限制在复合体的一个表面上,或可以任何预定量延伸到复合体中。
这些后处理技术有其益处,这是因为经这种处理而改进了的复合体可以更抗氧化作用(即,至少那卩分通过前面提到的后处理工艺而改进了的陶瓷体相对于未处理的复合体部分更抗氧化作用)。
本申请主要涉及ZrB2-ZrC-Zr复合体,下文中有时写作“ZBC”复合体。然而,还应理解,尽管特别强调的是ZBC复合体,但类似制造步骤同样也适用于例如钛和铪母体金属的复合体。
图1是一纵剖简图,它示出了根据本发明处理的包埋在石墨粉床层Z内并放在耐火容器1中的ZBC复合体3。
图2是按照实施例1形成的复合体剖面放大400倍的显微照片。
本发明是基于这种发现,即陶瓷复合体、尤其是使锆、铪或钛的母体金属反应性渗入到碳化硼体中生产的陶瓷复合体的特性能通过后处理得到改进。这种后加工处理能改变ZBC复合体的部分或几乎全部显微结构,从而改变了产物的机械性。
根据上述任何专利申请,如申请′533所生产的ZBC复合体,可通过使复合体暴露于含有与形成体中至少一种残余金属和/或 相反应的至少一种第二种金属的第二种物质中而得到改进。在某些情况下,这种反应以扩散反应为特征。例如,使ZBC复合体包埋在石墨床层中并以某种方式使石墨床层中至少一部分与形成ZBC体中至少一部分反应可促使反应进行。
在一个优选实施例中,通过使形成体与含至少一种第二种金属的物质接触形成的复合体(例如,根据申请′533生产的ZBC体)能得到表面改进(其中第二种金属与形成体中的至少一种残余金属和/或陶瓷相反应)。更具体地说,这种形成体可部分地包埋于含第二种金属的床层或粉末物质中。例如,可以粉末形式提供硅金属并在例如惰性气氛下,使该粉末与形成的陶瓷复合体的至少一部分接触。当这种配置受到反应高温度作用时,粉末金属与形成的陶瓷体之间将发生反应。因此,当在约1300℃,在基本上惰性气氛下使ZBC体与硅床层接触时,在复合体上开始形成含ZrSiz和ZrSiO4的表面覆盖层。我们不希望用任何特定的理论和解释对此加以束缚,据信硅可以扩散到ZBC体中,并与ZrC和Zr中的一种或两种进行反应。
与形成硅化覆盖层相似,把形成体包埋在含Al2O3、Al2O3-Si床层和/或其它含Al床层中也可使该形成体(如ZBC体)铝化。
虽然上述每一种转化都可以扩展到ZBC体最接近表面的区域,但业已发现当形成这种表面覆盖层时,本发明制得的覆盖层相对于外部施用的覆盖层(如,用等离子喷涂,CVD,PVD等)具有改进的附着性。
这种后处理工艺是有益处的,因为用这种处理方法改进的陶瓷复合体的任何部位相对于由前述后处理工艺而未得到改进的部位将更具有抗氧化性。尤其是已发现,按上述方法硅化的ZBC体(即其中复合体的至少一部分已转变成ZrSiO4)在高温(1100℃)的潮湿空气中的抗氧化性已得到改进。
掺入另一种物料如硅或氧化铝能进一步改进ZBC体。尤其是就硅床层而言,在某些场合下,要求用至少一些加有锗与硅的床层。锗可以进一步改进ZBC的转化部分,由此赋予该转化区更理想的特性。
不仅如此,通过控制ZBC复合体暴露于第二种物质(如硅或铝)中的时间和/或控制反应或改进发生时的温度,实际上可以非限制方式控制形体的至少外表面上形成的改进区或层(如组成、组织和/或厚度都能以所需方式得以控制)。因此,上述后处理工艺能在有很高金属含量和高断裂韧性的ZBC复合物质心部周围产生一个坚硬而耐磨面。
下面是本发明的实施例。这些实施例旨在说明复合体、特别是ZBC复合体后处理工艺的各个方面。然而,这些实施例不应作为对本发明范围的限制。
实施例1
在本实施例中,ZBC体基本上是按照申请′533实施例1中介绍的工序形成的。该ZBC体基本上呈圆柱体,其直径约为7.8毫米,长度约为12.5毫米,重量约为3.7克。把ZBC圆柱体包埋(即基本上完全包围)在混有约25%(重量)硅金属的ZrSiO4床层中。ZrSiO4以商标ExCELOPAX购取,硅金属以商标AEE-325购取。由ZrSiO4混合物和硅金属包围的ZBC体被装在高纯度Al2O3的舟皿中。
将舟皿放入电耐热炉中。炉子抽空两次然后再充入氩气。在后序加热过程中,干氩气以约500cc/分钟的速度流经炉内。以每小时约200℃的速度使炉温增至约1300℃。保持此温度约6小时。使炉子以每小时200℃约的速率冷至室温。从炉中取出铝舟皿检查ZBC圆柱体。发现用这种处理已使圆柱体得到了改进。尤其是ZBC圆柱体在其表面上含有硅覆盖层。
图2是按照实施例1形成的具有改进层的ZBC体放大400倍的显微照片。图2中的区域10代表改进或硅化表面。在改进层中,ZrB2片晶12看来基本上未受到改进或硅化处理的影响(与改进区域中ZrB2片晶11比较后便能看出)。改进层包括ZrSi2和ZrSiO4相以及极小部分的ZrO2
实施例2
本实施例除使用了含SiO2和硅金属的床层外基本上是按实施例2进行的。具体地说,先形成基本上是按申请′533的实施例1中陈述的步骤形成的ZBC棒。ZBC棒体长约1.7cm,宽约为0.6cm、厚约0.3cm。棒重约1.62克。将ZBC棒放进包含24克500号SiO2和约8克的-300目硅金属的床层中,该床层装入高纯度铝舟皿中。ZBC棒基本上被床层物料包围。
装有ZBC棒和床层物料的氧化铝舟皿放入炉中,该炉两次抽空,再充入氩气。根据实施例1对炉子进行加热。使炉子冷却并取出铝舟皿。发现ZBC棒的表面已得到改进。特别是该表面具有抗氧化的含硅层。
实施例3
本实施例的后处理步骤,除床层物料含Al2O3和硅金属外,与实施例1中介绍的步骤相似。具体地说使用了基本上按实施例1介绍的步骤和申请′533中形成的ZBC棒。ZBC棒长约为2.1cm宽约0.6cm,厚约0.3cm。ZBC棒重约2.1克。ZBC棒基本上由盛在高纯度氧化铝舟皿中的床层物料包围。该床层含约30克(A17)Al2O3和约10克硅金属。把装有床层物料和ZBC棒的铝舟皿放入电耐热炉中,抽真空两次,然后再充入氩气。按照实施例1的步骤使炉子加热。
从炉中取出铝舟皿并检测。发现ZBC表面已得到改进。尤其是该表面含有抗氧化的硅及含铝层。
实施例4
本实施例的后处理工序除使用了含Sie和硅金属床层物料之外,与实施例1介绍的程序相似。具体地说使用了按照申请″533的实施例1中介绍的步骤形成的ZBC棒。该ZBC棒长约3cm长,宽约0.6cm,厚约3cm。该棒重约3克。把ZBC棒放入装有床层物料的高纯度氧化铝坩埚内,而床层基本上包埋了ZBC棒。床层含有约24克的SiC(商标ExOLou)和8克的硅金属。把装有ZBC棒和床层的氧化铝坩埚放入电耐热炉中。炉子经两次抽空,并充入氩气。按照实施例1的步骤进行加热。
取出氧化铝坩埚并检测。发现ZBC棒的表面已得到改进。特别是该表面具有抗氧化的含硅层。
实施例5
除使用了含硅金属的床层物料外,本实施例的后处理步骤与实施例1叙述的相似。使用了基本上按申请′533的实施例1叙述的步骤形成的ZBC棒。具体地说,ZBC棒长约3cm,宽约0.6cm及厚约0.3cm。ZBC棒重约3.2克。把ZBC棒放入床层中,使其基本上包埋ZBC棒的。ZBC棒和床层装入一高纯氧化铝舟皿中。床层含3.2克的硅金属。把装有床层和ZBC棒的氧化铝舟皿放入电耐热炉中。该炉经两次抽空,充入氩气。按实施例1将炉子进行加热。使炉冷却后取去氧化铝舟皿,并且检测。发现ZBC棒的表面已经改进。特别是表面具有抗氧化的含硅层。

Claims (5)

1、生产自撑体的方法,包括生产第一种复合体:
选择一种母体金属;
在基本惰性的气氛下,把所说的母体金属加热到一定温度以足以使熔化的母体金属渗透到含碳化硼体中并使熔化的母体金属与所说碳化硼反应从而形成至少一种含硼化合物;
将上述渗透反应持续一段时间以足以生成含至少一种母体金属含硼化合物的所述自撑体;和
将所述自撑体暴露于一种第二种金属源,以便使至少一部分所述自撑体与所述第二种金属反应,从而在自撑体的至少一部分上使自撑体的至少一种性能得到改善。
2、根据权利要求1的方法,其中所述第二种金属源至少包括一种选自含铝物质和含硅物质的物质。
3、根据权利要求1或2的方法,其中所述自撑体包括ZrB2,ZrC和Zr。
4、根据权利要求1的方法,还包括通过与所述第二种金属一起引入第三种金属而改进所述自撑体的至少一部分。
5、根据权利要求1生产的产物。
CN90100123A 1989-01-13 1990-01-11 通过后处理改进陶瓷合体的方法及其生产的制品 Pending CN1045387A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/296,966 1989-01-13
US07/296,966 US5004714A (en) 1989-01-13 1989-01-13 Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby

Publications (1)

Publication Number Publication Date
CN1045387A true CN1045387A (zh) 1990-09-19

Family

ID=23144302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN90100123A Pending CN1045387A (zh) 1989-01-13 1990-01-11 通过后处理改进陶瓷合体的方法及其生产的制品

Country Status (19)

Country Link
US (1) US5004714A (zh)
EP (1) EP0378503B1 (zh)
JP (1) JP2911939B2 (zh)
KR (1) KR0134957B1 (zh)
CN (1) CN1045387A (zh)
AT (1) ATE98945T1 (zh)
AU (1) AU627817B2 (zh)
BR (1) BR9000063A (zh)
CA (1) CA2007600A1 (zh)
DE (1) DE69005316T2 (zh)
FI (1) FI900201A0 (zh)
IE (1) IE63133B1 (zh)
IL (1) IL92393A0 (zh)
NO (1) NO900146L (zh)
NZ (1) NZ232046A (zh)
PH (1) PH26251A (zh)
PT (1) PT92857A (zh)
TW (1) TW247899B (zh)
ZA (1) ZA90217B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020467A (zh) * 2010-11-17 2011-04-20 郑州大学 一种低成本制备二硼化锆/碳化硅复合粉料的方法
CN113121237A (zh) * 2021-04-16 2021-07-16 合肥工业大学 一种碳化硼基复合陶瓷及其制备工艺

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180697A (en) * 1987-07-15 1993-01-19 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5296417A (en) * 1987-07-15 1994-03-22 Lanxide Technology Company, Lp Self-supporting bodies
US5143870A (en) * 1987-12-23 1992-09-01 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5149678A (en) * 1989-01-13 1992-09-22 Lanxide Technology Company, Lp Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5187128A (en) * 1989-01-13 1993-02-16 Lanxide Technology Company, Lp Process for preparing self-supporting bodies
US4904446A (en) * 1989-01-13 1990-02-27 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US5372178A (en) * 1989-01-13 1994-12-13 Lanxide Technology Company, Lp Method of producing ceramic composite bodies
US5238883A (en) * 1989-01-13 1993-08-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products produced thereby
US5487420A (en) * 1990-05-09 1996-01-30 Lanxide Technology Company, Lp Method for forming metal matrix composite bodies by using a modified spontaneous infiltration process and products produced thereby
US5112654A (en) * 1990-06-25 1992-05-12 Lanxide Technology Company, Lp Method for forming a surface coating
US5250324A (en) * 1990-06-25 1993-10-05 Lanxide Technology Company, L.P. Method for forming a surface coating using powdered solid oxidants and parent metals
US5232040A (en) * 1990-07-12 1993-08-03 Lanxide Technology Company, Lp Method for reducing metal content of self-supporting composite bodies and articles formed thereby
US5098870A (en) * 1990-07-12 1992-03-24 Lanxide Technology Company, Lp Process for preparing self-supporting bodies having controlled porosity and graded properties and products produced thereby
US5435966A (en) * 1991-07-12 1995-07-25 Lanxide Technology Company, Lp Reduced metal content ceramic composite bodies
US5500182A (en) * 1991-07-12 1996-03-19 Lanxide Technology Company, Lp Ceramic composite bodies with increased metal content
US5366686A (en) * 1993-03-19 1994-11-22 Massachusetts Institute Of Technology, A Massachusetts Corporation Method for producing articles by reactive infiltration
US5750450A (en) * 1996-01-08 1998-05-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ablation resistant zirconium and hafnium ceramics
WO2004048294A1 (en) * 2002-11-27 2004-06-10 Foc Frankenburg Oil Company Est. Method for producing a refractory composite material
CN100499979C (zh) 2006-04-28 2009-06-10 富准精密工业(深圳)有限公司 散热装置
US20100310860A1 (en) * 2008-02-28 2010-12-09 Changwon National University Industry Academy Cooperation Corps Synthetic method for anti-oxidation ceramic coatings on graphite substrates
NL2023630A (en) 2018-09-18 2020-04-29 Asml Netherlands Bv Anti-rotation fluid connection
CN110994009B (zh) * 2019-12-20 2023-03-21 云南大学 一种用于制备固体电解质材料的烧结装置及其烧结方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1229505B (de) * 1964-01-23 1966-12-01 Kempten Elektroschmelz Gmbh Verfahren zur Herstellung von Erdalkalimetallboriden und -carbiden
US3758662A (en) * 1971-04-30 1973-09-11 Westinghouse Electric Corp In carbonaceous mold forming dense carbide articles from molten refractory metal contained
GB1492477A (en) * 1976-04-21 1977-11-23 British Steel Corp Production of articles containing a hard phase
US4595545A (en) * 1982-12-30 1986-06-17 Eltech Systems Corporation Refractory metal borides and composites containing them
US4471059A (en) * 1983-02-04 1984-09-11 Shinagawa Refractories Co., Ltd. Carbon-containing refractory
DE3588005T2 (de) * 1984-05-18 1995-08-24 Mitsue Koizumi Verfahren zum Sintern von keramischen Körpern mit einer verteilten Metallverstärkung.
US4692418A (en) * 1984-08-29 1987-09-08 Stemcor Corporation Sintered silicon carbide/carbon composite ceramic body having fine microstructure
US4851375A (en) * 1985-02-04 1989-07-25 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
US4605440A (en) * 1985-05-06 1986-08-12 The United States Of America As Represented By The United States Department Of Energy Boron-carbide-aluminum and boron-carbide-reactive metal cermets
US4702770A (en) * 1985-07-26 1987-10-27 Washington Research Foundation Multipurpose boron carbide-aluminum composite and its manufacture via the control of the microstructure
US4737328A (en) * 1985-07-29 1988-04-12 General Electric Company Infiltration of material with silicon
US4617053A (en) * 1985-09-20 1986-10-14 Great Lakes Carbon Corporation Metal reinforced porous refractory hard metal bodies
US4777014A (en) * 1986-03-07 1988-10-11 Lanxide Technology Company, Lp Process for preparing self-supporting bodies and products made thereby
US4718941A (en) * 1986-06-17 1988-01-12 The Regents Of The University Of California Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
US4868143A (en) * 1986-08-13 1989-09-19 Lanxide Technology Company, Lp Methods of making ceramic articles with a modified metal-containing component
PH24629A (en) * 1986-09-16 1990-08-17 Lanxide Technology Co Ltd Methods of making self-supporting ceramic structures
US4948764A (en) * 1986-09-16 1990-08-14 Lanxide Technology Company, Lp Production of ceramic and ceramic-metal composite articles with surface coatings
JPH0764643B2 (ja) * 1986-09-17 1995-07-12 ランキサイド テクノロジー カンパニー エル ピー 自己支持性セラミック含有物体の製法
IL86947A (en) * 1987-07-15 1992-08-18 Lanxide Technology Co Ltd Process for preparing self-supporting bodies and products made thereby
AU620360B2 (en) * 1987-12-23 1992-02-20 Lanxide Corporation A method of producing and modifying the properties of ceramic composite bodies

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020467A (zh) * 2010-11-17 2011-04-20 郑州大学 一种低成本制备二硼化锆/碳化硅复合粉料的方法
CN102020467B (zh) * 2010-11-17 2012-10-31 郑州大学 一种制备二硼化锆/碳化硅复合粉料的方法
CN113121237A (zh) * 2021-04-16 2021-07-16 合肥工业大学 一种碳化硼基复合陶瓷及其制备工艺
CN113121237B (zh) * 2021-04-16 2023-06-02 合肥工业大学 一种碳化硼基复合陶瓷及其制备工艺

Also Published As

Publication number Publication date
FI900201A0 (fi) 1990-01-12
NO900146D0 (no) 1990-01-11
PT92857A (pt) 1990-07-31
DE69005316T2 (de) 1994-04-14
NZ232046A (en) 1992-02-25
JPH02275762A (ja) 1990-11-09
IE63133B1 (en) 1995-03-22
DE69005316D1 (de) 1994-02-03
US5004714A (en) 1991-04-02
IE900114L (en) 1990-07-13
AU627817B2 (en) 1992-09-03
AU4779290A (en) 1990-07-19
TW247899B (zh) 1995-05-21
CA2007600A1 (en) 1990-07-13
EP0378503B1 (en) 1993-12-22
PH26251A (en) 1992-04-01
ZA90217B (en) 1991-09-25
KR0134957B1 (ko) 1998-04-18
JP2911939B2 (ja) 1999-06-28
NO900146L (no) 1990-07-16
EP0378503A1 (en) 1990-07-18
KR900011685A (ko) 1990-08-01
ATE98945T1 (de) 1994-01-15
IL92393A0 (en) 1990-07-26
BR9000063A (pt) 1990-10-16

Similar Documents

Publication Publication Date Title
CN1045387A (zh) 通过后处理改进陶瓷合体的方法及其生产的制品
JP2667484B2 (ja) 複合材料及びその製造方法
CN1022102C (zh) 自支承陶瓷体的制备方法
CN1022033C (zh) 自支承陶瓷体的生产方法
KR950002915B1 (ko) 자립성 복합체의 제조방법
CN1044804A (zh) 自一支撑体的制备方法及其所制备的产品
CN1044800A (zh) 制备具有控制的孔隙度和分级性的自支撑体的方法及其制得的产品
US5011063A (en) Method of bonding a ceramic composite body to a second body and articles produced thereby
US5614308A (en) Macrocomposite bodies
US5149678A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
CN87106327A (zh) 生产复合陶瓷结构的改进方法
US5238883A (en) Process for preparing self-supporting bodies and products produced thereby
JPH01203261A (ja) 自己支持体の製造方法
JPH02275761A (ja) セラミック複合体の製造方法
US5162098A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5164347A (en) Method for producing self-supporting ceramic bodies with graded properties
JPH02275775A (ja) セラミック複合体を第二の物体に結合する方法及びそれにより製造された物品
US5437833A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby
US5143870A (en) Method of modifying ceramic composite bodies by a post-treatment process and articles produced thereby

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication