CN114933478A - 一种高硬自润滑单相高熵陶瓷材料及其制备方法 - Google Patents

一种高硬自润滑单相高熵陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114933478A
CN114933478A CN202210562555.XA CN202210562555A CN114933478A CN 114933478 A CN114933478 A CN 114933478A CN 202210562555 A CN202210562555 A CN 202210562555A CN 114933478 A CN114933478 A CN 114933478A
Authority
CN
China
Prior art keywords
entropy ceramic
ceramic material
raw materials
powder
entropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210562555.XA
Other languages
English (en)
Other versions
CN114933478B (zh
Inventor
杨军
孙奇春
刘维民
朱圣宇
程军
谈辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN202210562555.XA priority Critical patent/CN114933478B/zh
Publication of CN114933478A publication Critical patent/CN114933478A/zh
Application granted granted Critical
Publication of CN114933478B publication Critical patent/CN114933478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种高硬自润滑单相高熵陶瓷材料,该材料呈块体,其组成为(Hf‑X‑Nb‑Ta‑Ti)C,其中X为Zr、W、V。同时,本发明还公开了该高熵陶瓷材料的制备方法。本发明高熵陶瓷材料具有较高的硬度并且在宽温域具有良好的摩擦学性能,并且可实现特定温度的自润滑,从而实现了陶瓷材料的结构/润滑功能一体化设计。

Description

一种高硬自润滑单相高熵陶瓷材料及其制备方法
技术领域
本发明涉及高熵材料技术领域,尤其涉及一种高硬自润滑单相高熵陶瓷材料及其制备方法。
背景技术
随着高新技术的快速发展,如新一代核反应堆、喷气发动机、超音速飞行器等服役的工况越来越苛刻,对高性能高温材料的需求更为迫切。其中陶瓷材料因其在高温下具有良好的力学和稳定性等性能而在高端装备机械系统具有广泛的应用前景。然而,目前大部分单相陶瓷材料在高温下不具有自润滑性能,并且其摩擦系数和磨损率随温度的升高而急剧增大,分别高达0.8~1.5和10-4 mm3/Nm数量级。为改善陶瓷材料的高温摩擦学性能,目前主要是通过添加润滑相。尽管该方法可有效改善摩擦学性能,但是不可避免地导致其力学性能的严重恶化,特别是硬度的急剧降低,最终造成材料综合使役性能的下降,使其不能胜任极端的苛刻工况。
近年来,“高熵”作为一种新颖的材料设计理念引起了人们的广泛关注。其中高熵碳化物陶瓷因其优异的综合性能和潜在的应用前景而备受青睐,但主要聚焦于制备、力学性能和热物理性能的研究,而与其相关的摩擦学性能的研究非常有限。
发明内容
本发明所要解决的技术问题是提供一种性能良好的高硬自润滑单相高熵陶瓷材料。
本发明所要解决的另一个技术问题是提供该高硬自润滑单相高熵陶瓷材料的制备方法。
为解决上述问题,本发明所述的一种高硬自润滑单相高熵陶瓷材料,其特征在于:该材料呈块体,其组成为(Hf-X-Nb-Ta-Ti)C,其中X为Zr、W、V。
该材料组成为(Hf-Zr-Nb-Ta-Ti)C,由下述质量百分比的原料制得:HfO2 21.8~22.5%,ZrO2 12.7~13.2%,Nb2O5 13.4~14.2%,Ta2O5 22.8~23.4%,TiO2 8.1~8.5%和石墨粉末18.2~21.1%。
该材料组成为(Hf-W-Nb-Ta-Ti)C,由下述质量百分比的原料制得:HfO2 18.9~20.1%,WO3 21.1~21.7%,Nb2O5 11.7~12.8%,Ta2O5 19.6~21.1%,TiO2 7.1~7.8%和石墨粉末16.5~21.6%。
该材料组成为(Hf-V-Nb-Ta-Ti)C,由下述质量百分比的原料制得:HfO2 23.8~24.8%,VC 7.0~7.5%,Nb2O5 15.0~16.0%,Ta2O5 25.2~26.4%,TiO2 8.6~9.7%和石墨粉末15.6~20.4%。
如上所述的一种高硬自润滑单相高熵陶瓷材料的制备方法,其特征在于:首先按配比称取各原料;然后在混合原料中加入其质量0.15~0.45倍的无水乙醇,混合均匀后,经烘干、过筛,得到粒径为3~30 μm的混合粉末;所述混合粉末装入石墨模具中,依次经放电等离子烧结、高能球磨粉碎,即得粒径为0.08~2.0 μm的高熵陶瓷粉末;最后,所述高熵陶瓷粉末经放电等离子烧结,即得高熵陶瓷块体材料。
所述混合粉末的放电等离子烧结条件是指真空度低于0.8 Pa,平均升温速度为75~200 ℃/min,烧结温度为1700~1800 ℃,压力为3~10 MPa,保温时间15~20 min。
所述高能球磨粉碎的条件是指球料比1.2:1~2.5:1,转速为230~260 r/min,球磨时间为3~5 h,磨罐和磨球均为碳化物硬质合金,球磨开始前充入氩气。
所述高熵陶瓷粉末的放电等离子烧结条件是指真空度低于0.8 Pa,平均升温速度为100~200 ℃/min,烧结温度为1850~1950 ℃,压力为30~40 MPa,保温时间8~15 min。
本发明与现有技术相比具有以下优点:
1、本发明采用新颖的“高熵”设计理念,明显不同于通过添加润滑相来改善陶瓷材料摩擦学性能的传统设计思路,有效地避免了第二相对材料力学性能的影响,进而获得高硬自润滑单相高熵陶瓷材料。
2、对本发明烧结后高熵陶瓷的物相组成以及晶粒大小采用X射线衍射仪及扫描电子显微镜进行分析,发现:本发明制备的高熵陶瓷块体由单相组成,其组成为(Hf-X-Nb-Ta-Ti)C,其中X为Zr、W、V,如图1所示。从图2可知,本发明制备的高熵陶瓷块体具有较小的晶粒,平均粒径为1.8 μm。该尺寸有利于提高材料的硬度以及摩擦学性能。
3、本发明高熵陶瓷块体材料经试验测试,具有较高硬度且在高温下具有自润滑性能。硬度最高可达22.1 GPa,磨损率低至10-7 mm3/Nm量级,并且可实现特定温度的润滑,摩擦系数低至0.3左右,从而实现了陶瓷材料的结构/润滑功能一体化设计。
【致密性及力学性能】
采用阿基米德原理测量材料的密度。测试结果表明所制备块体材料的相对密度为97.8~99.2 %。
采用维式显微硬度计测试材料的硬度,测试条件为:载荷5 kg,加载持续时间10s。测试结果表明所制备块体材料的硬度在室温时为19.6~22.1 GPa,如表1所示。
表1:本发明高熵陶瓷块体材料在25 ℃的硬度
Figure 200604DEST_PATH_IMAGE001
【真空摩擦学性能】
真空摩擦磨损实验采用GHT-1000E试验机进行评价,对偶球为Al2O3陶瓷,载荷为5N,滑动线速度为0.10 m/s,摩擦半径为4 mm,行程为200 m,测试温度为25 ℃、300 ℃、400℃、600 ℃和900 ℃。摩擦系数和磨损率为3次试验平均值。实验结果表明所制备的高熵陶瓷块体材料在真空宽温域具有优异的摩擦学性能:在400 ℃和900 ℃时,平均摩擦系数分别低至0.3和0.58左右。而磨损率在25~400 ℃时为10-7mm3/Nm量级,在600~900 ℃时为10-6 mm3/Nm量级。在400 ℃时(Hf-Zr-Nb-Ta-Ti)C的摩擦系数如图3所示,经过跑合之后摩擦系数稳定于0.3左右。
4、本发明制备工艺简单,通过调整配方和工艺参数,可以调控材料性能,所得高熵材料可在高温真空等极端苛刻工况下应用。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为本发明实施例1~3制备的高熵陶瓷块体的X射线衍射图。
图2为本发明制备的(Hf-Zr-Nb-Ta-Ti)C高熵陶瓷块体的扫描电镜形貌。
图3为本发明制备的(Hf-Zr-Nb-Ta-Ti)C高熵陶瓷块体在真空下400℃时的摩擦系数。
具体实施方式
一种高硬自润滑单相高熵陶瓷材料,该材料呈块体,其组成为(Hf-X-Nb-Ta-Ti)C,其中X为Zr、W、V。
当材料组成为(Hf-Zr-Nb-Ta-Ti)C时,由下述质量百分比(g/g)的原料制得:HfO221.8~22.5%,ZrO2 12.7~13.2%,Nb2O5 13.4~14.2%,Ta2O5 22.8~23.4%,TiO2 8.1~8.5%和石墨粉末18.2~21.1%。
当材料组成为(Hf-W-Nb-Ta-Ti)C时,由下述质量百分比(g/g)的原料制得:HfO218.9~20.1%,WO3 21.1~21.7%,Nb2O5 11.7~12.8%,Ta2O5 19.6~21.1%,TiO2 7.1~7.8%和石墨粉末16.5~21.6%。
当材料组成为(Hf-V-Nb-Ta-Ti)C时,由下述质量百分比(g/g)的原料制得:HfO223.8~24.8%,VC 7.0~7.5%,Nb2O5 15.0~16.0%,Ta2O5 25.2~26.4%,TiO2 8.6~9.7%和石墨粉末15.6~20.4%。
具体制备方法如下:首先按配比称取各原料,并将各原料置于球磨机中;然后在混合原料中加入其质量0.15~0.45倍的无水乙醇,混合均匀后,经烘干、过筛,得到粒径为3~30μm的混合粉末;混合粉末装入石墨模具中,先在真空度低于0.8 Pa、平均升温速度为75~200℃/min、烧结温度为1700~1800 ℃、压力为3~10 MPa、保温时间15~20 min的条件下进行放电等离子烧结,烧结结束后,烧结产物再经高能球磨粉碎,粉碎的条件是指球料比1.2:1~2.5:1,转速为230~260 r/min,球磨时间为3~5 h,磨罐和磨球均为碳化物硬质合金,球磨开始前充入氩气,即得粒径为0.08~2.0 μm的高熵陶瓷粉末;最后,高熵陶瓷粉末在真空度低于0.8 Pa、平均升温速度为100~200 ℃/min、烧结温度为1850~1950 ℃、压力为30~40 MPa、保温时间8~15 min的条件下放电等离子烧结,即得高熵陶瓷块体材料。
实施例1 一种高硬自润滑单相高熵陶瓷材料,该材料呈块体,其组成为(Hf-Zr-Nb-Ta-Ti)C,由下述原料制得:HfO2 21.9 g,ZrO2 12.8 g,Nb2O5 13.9 g,Ta2O5 23.0 g,TiO2 8.3 g和石墨粉末20.1 g。
该高熵陶瓷材料的制备方法:首先按配比称取各原料,并将各原料置于球磨机中,然后在混合原料中加入其质量0.15倍的无水乙醇,混合均匀后,经烘干、过筛,得到粒径为3~30 μm的混合粉末;混合粉末装入石墨模具中,置于放电等离子烧结炉中经放电等离子烧结,烧结条件是指真空度低于0.5 Pa,平均升温速度为200 ℃/min,烧结温度为1700 ℃,压力为3 MPa,保温时间20 min。烧结结束后,烧结产物置于高能球磨中粉碎即得粒径为0.08~2.0 μm的高熵陶瓷粉末。其中:球磨参数为球料比2.5:1,转速为230 r/min,球磨时间为5h,磨罐和磨球均为碳化物硬质合金,球磨开始前充入氩气。最后,高熵陶瓷粉末在真空度低于0.5 Pa、升温速度为100 ℃/min、烧结温度为1950 ℃、压力为40 MPa、保温时间15 min的条件下经放电等离子烧结,即得(Hf-Zr-Nb-Ta-Ti)C高熵陶瓷块体材料,物相组成和微观结构如图1和图2所示。
实施例2 一种高硬自润滑单相高熵陶瓷材料,该材料呈块体,其组成为(Hf-W-Nb-Ta-Ti)C,由下述原料制得:HfO2 19.5 g,WO3 21.5 g,Nb2O5 12.3 g,Ta2O5 20.4 g,TiO2 7.4g和石墨粉末18.9 g。
该高熵陶瓷材料的制备方法:首先按配比称取各原料,并将各原料置于球磨机中,然后在混合原料中加入其质量0.30倍的无水乙醇,混合均匀后,经烘干、过筛,得到粒径为3~30 μm的混合粉末;混合粉末装入石墨模具中,置于放电等离子烧结炉中经放电等离子烧结,烧结条件是指真空度低于0.8 Pa,平均升温速率75℃/min,烧结温度1800℃,压力10MPa,保温时间15 min。烧结结束后,烧结产物置于高能球磨中粉碎即得粒径为0.08~2.0 μm的高熵陶瓷粉末。其中:球磨参数为球料比2:1,转速为260 r/min,球磨时间为4 h,磨罐和磨球均为碳化物硬质合金,球磨开始前充入氩气。最后,高熵陶瓷粉末在真空度低于0.08Pa、升温速度为150 ℃/min、烧结温度为1900 ℃、压力为30 MPa、保温时间8 min的条件下经放电等离子烧结,即得(Hf-W-Nb-Ta-Ti)C高熵陶瓷块体材料,物相组成如图1所示。
实施例3 一种高硬自润滑单相高熵陶瓷材料,该材料呈块体,其组成为(Hf-V-Nb-Ta-Ti)C,由下述原料制得:HfO2 24.4 g,VC7.3 g,Nb2O5 15.4 g,Ta2O5 25.6 g,TiO2 9.2 g和石墨粉末18.1 g。
该高熵陶瓷材料的制备方法:首先按配比称取各原料,并将各原料置于球磨机中,然后在混合原料中加入其质量0.45倍的无水乙醇,混合均匀后,经烘干、过筛,得到粒径为3~30 μm的混合粉末;混合粉末装入石墨模具中,置于放电等离子烧结炉中经放电等离子烧结,烧结条件是指真空度低于0.8 Pa,平均升温速率125 ℃/min,烧结温度1750 ℃,压力5MPa,保温时间17 min。烧结结束后,烧结产物置于高能球磨中粉碎即得粒径为0.08~2.0 μm的高熵陶瓷粉末。其中:球磨参数为球料比1.2:1,转速为250 r/min,球磨时间为3 h,磨罐和磨球均为碳化物硬质合金,球磨开始前充入氩气。最后,高熵陶瓷粉末在真空度低于0.8Pa、升温速度为200 ℃/min、烧结温度为1850 ℃、压力为35 MPa、保温时间10 min的条件下经放电等离子烧结,即得(Hf-V-Nb-Ta-Ti)C高熵陶瓷块体材料,物相组成如图1所示。

Claims (8)

1.一种高硬自润滑单相高熵陶瓷材料,其特征在于:该材料呈块体,其组成为(Hf-X-Nb-Ta-Ti)C,其中X为Zr、W、V。
2.如权利要求1所述的一种高硬自润滑单相高熵陶瓷材料,其特征在于:该材料组成为(Hf-Zr-Nb-Ta-Ti)C,由下述质量百分比的原料制得:HfO2 21.8~22.5%,ZrO2 12.7~13.2%,Nb2O5 13.4~14.2%,Ta2O5 22.8~23.4%,TiO2 8.1~8.5%和石墨粉末18.2~21.1%。
3.如权利要求1所述的一种高硬自润滑单相高熵陶瓷材料,其特征在于:该材料组成为(Hf-W-Nb-Ta-Ti)C,由下述质量百分比的原料制得:HfO2 18.9~20.1%,WO3 21.1~21.7%,Nb2O5 11.7~12.8%,Ta2O5 19.6~21.1%,TiO2 7.1~7.8%和石墨粉末16.5~21.6%。
4.如权利要求1所述的一种高硬自润滑单相高熵陶瓷材料,其特征在于:该材料组成为(Hf-V-Nb-Ta-Ti)C,由下述质量百分比的原料制得:HfO2 23.8~24.8%,VC 7.0~7.5%,Nb2O515.0~16.0%,Ta2O5 25.2~26.4%,TiO2 8.6~9.7%和石墨粉末15.6~20.4%。
5.如权利要求1~4所述的一种高硬自润滑单相高熵陶瓷材料的制备方法,其特征在于:首先按配比称取各原料;然后在混合原料中加入其质量0.15~0.45倍的无水乙醇,混合均匀后,经烘干、过筛,得到粒径为3~30 μm的混合粉末;所述混合粉末装入石墨模具中,依次经放电等离子烧结、高能球磨粉碎,即得粒径为0.08~2.0 μm的高熵陶瓷粉末;最后,所述高熵陶瓷粉末经放电等离子烧结,即得高熵陶瓷块体材料。
6.如权利要求5所述的一种高硬自润滑单相高熵陶瓷材料的制备方法,其特征在于:所述混合粉末的放电等离子烧结条件是指真空度低于0.8 Pa,平均升温速度为75~200 ℃/min,烧结温度为1700~1800 ℃,压力为3~10 MPa,保温时间15~20 min。
7.如权利要求5所述的一种高硬自润滑单相高熵陶瓷材料的制备方法,其特征在于:所述高能球磨粉碎的条件是指球料比1.2:1~2.5:1,转速为230~260 r/min,球磨时间为3~5h,磨罐和磨球均为碳化物硬质合金,球磨开始前充入氩气。
8.如权利要求5所述的一种高硬自润滑单相高熵陶瓷材料的制备方法,其特征在于:所述高熵陶瓷粉末的放电等离子烧结条件是指真空度低于0.8 Pa,平均升温速度为100~200℃/min,烧结温度为1850~1950 ℃,压力为30~40 MPa,保温时间8~15 min。
CN202210562555.XA 2022-05-23 2022-05-23 一种高硬自润滑单相高熵陶瓷材料及其制备方法 Active CN114933478B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210562555.XA CN114933478B (zh) 2022-05-23 2022-05-23 一种高硬自润滑单相高熵陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210562555.XA CN114933478B (zh) 2022-05-23 2022-05-23 一种高硬自润滑单相高熵陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114933478A true CN114933478A (zh) 2022-08-23
CN114933478B CN114933478B (zh) 2023-08-25

Family

ID=82864361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210562555.XA Active CN114933478B (zh) 2022-05-23 2022-05-23 一种高硬自润滑单相高熵陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114933478B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403380A (zh) * 2022-08-29 2022-11-29 中国科学院兰州化学物理研究所 一种优异耐磨损萤石结构高熵陶瓷材料的应用
CN116715526A (zh) * 2023-06-09 2023-09-08 中南大学 一种C/C-(Ti,Zr,Hf,Nb,Ta)C-SiC复合材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942830B1 (ja) * 1998-09-08 1999-08-30 工業技術院長 自己潤滑性セラミックス
JP2005336364A (ja) * 2004-05-28 2005-12-08 National Institute Of Advanced Industrial & Technology 自己潤滑性複合材料及びその製造方法
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法
US20190039913A1 (en) * 2017-08-01 2019-02-07 Iowa State University Research Foundation, Inc. Preparation of metal chalcogenides
CN110330341A (zh) * 2019-07-24 2019-10-15 哈尔滨工业大学 一种高纯超细过渡金属碳化物单相高熵陶瓷粉体及其制备方法
WO2020084166A1 (en) * 2018-10-26 2020-04-30 Oerlikon Surface Solutions Ag, Pfäffikon Pvd coatings with a hea ceramic matrix with controlled precipitate structure
CN111533559A (zh) * 2020-03-30 2020-08-14 东华大学 一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法
CN111995400A (zh) * 2020-09-10 2020-11-27 中国科学院兰州化学物理研究所 一种具有优异摩擦学性能的高熵陶瓷材料及其制备方法
US20210039999A1 (en) * 2019-08-09 2021-02-11 United Technologies Corporation High temperature fiber, method of making and high temperature fiber composites
CN112457017A (zh) * 2020-12-09 2021-03-09 安徽工业大学 一种高性能(TiTaHfZrNb)C高熵碳化物陶瓷及其制备方法
CN112830791A (zh) * 2021-01-22 2021-05-25 广东工业大学 一种高熵陶瓷及其制备方法和应用
CN114031406A (zh) * 2021-12-01 2022-02-11 中国科学院兰州化学物理研究所 一种易烧结的抗磨减摩高熵陶瓷材料及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942830B1 (ja) * 1998-09-08 1999-08-30 工業技術院長 自己潤滑性セラミックス
JP2005336364A (ja) * 2004-05-28 2005-12-08 National Institute Of Advanced Industrial & Technology 自己潤滑性複合材料及びその製造方法
US20190039913A1 (en) * 2017-08-01 2019-02-07 Iowa State University Research Foundation, Inc. Preparation of metal chalcogenides
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法
WO2020084166A1 (en) * 2018-10-26 2020-04-30 Oerlikon Surface Solutions Ag, Pfäffikon Pvd coatings with a hea ceramic matrix with controlled precipitate structure
CN110330341A (zh) * 2019-07-24 2019-10-15 哈尔滨工业大学 一种高纯超细过渡金属碳化物单相高熵陶瓷粉体及其制备方法
US20210039999A1 (en) * 2019-08-09 2021-02-11 United Technologies Corporation High temperature fiber, method of making and high temperature fiber composites
CN111533559A (zh) * 2020-03-30 2020-08-14 东华大学 一种缺碳型高熵过渡金属碳化物陶瓷材料及其制备方法
CN111995400A (zh) * 2020-09-10 2020-11-27 中国科学院兰州化学物理研究所 一种具有优异摩擦学性能的高熵陶瓷材料及其制备方法
CN112457017A (zh) * 2020-12-09 2021-03-09 安徽工业大学 一种高性能(TiTaHfZrNb)C高熵碳化物陶瓷及其制备方法
CN112830791A (zh) * 2021-01-22 2021-05-25 广东工业大学 一种高熵陶瓷及其制备方法和应用
CN114031406A (zh) * 2021-12-01 2022-02-11 中国科学院兰州化学物理研究所 一种易烧结的抗磨减摩高熵陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王达飞;刘宁;张晓玲;刘爱军;: "四元高熵碳化物陶瓷的组织和性能研究", 热处理, no. 02, pages 1 - 8 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403380A (zh) * 2022-08-29 2022-11-29 中国科学院兰州化学物理研究所 一种优异耐磨损萤石结构高熵陶瓷材料的应用
CN116715526A (zh) * 2023-06-09 2023-09-08 中南大学 一种C/C-(Ti,Zr,Hf,Nb,Ta)C-SiC复合材料及其制备方法

Also Published As

Publication number Publication date
CN114933478B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
CN111995400B (zh) 一种具有优异摩擦学性能的高熵陶瓷材料及其制备方法
CN114933478B (zh) 一种高硬自润滑单相高熵陶瓷材料及其制备方法
CN114031406B (zh) 一种易烧结的抗磨减摩高熵陶瓷材料及其制备方法
WO2018152448A1 (en) Cemented carbide powders for additive manufacturing
CN112276076B (zh) 一种宽温域高熵合金基固体润滑复合材料的制备方法
Li et al. Fabrication and mechanical properties of tungsten alloys reinforced with c-ZrO2 particles
CN108486565B (zh) 一种低压冷喷涂铜基自润滑涂层及其制备方法
Liu et al. Self-Lubricating Si3N4-based composites toughened by in situ formation of silver
JP5268750B2 (ja) 耐衝撃部材およびその製造方法
CN114293087B (zh) 一种具有微米/纳米晶粒复合结构的单相高熵合金
CN110066934B (zh) 一种轴承滚动体用合金材料及其制备方法
Feng et al. Mechanical and tribological properties of NiAl–NbC–Ag composites prepared by hot-pressing sintering
CN115925423B (zh) 一种高性能单相自润滑高熵陶瓷材料及其制备方法
CN114438361A (zh) 表面细晶功能梯度无钴钛基金属陶瓷的制备方法
CN113980545A (zh) 一种聚醚醚酮/黑磷自润滑复合涂层、复合材料及其制备方法
CN113061766A (zh) 一种提高钨铼合金高温强度的方法
CN110981489B (zh) 一种TiNx-Ti3SiC2复合材料及其制备方法
Cao et al. In situ synthesis of TiB/Ti6Al4V composites reinforced with nano TiB through SPS
CN101307406A (zh) 无钼Ti(C,N)基金属陶瓷及其制备方法
CN109652714A (zh) 一种含石墨烯的WC-6Co硬质合金
CN113774265B (zh) 一种兼备高强度和宽温域耐磨损特性的高熵金属间化合物
CN117383943A (zh) 一种高温摩擦自适应单相自润滑高熵陶瓷及其制备方法
CN113186437A (zh) 一种含铒的氧化物弥散强化钨基合金及其制备方法与应用
Sui et al. Microstructure and mechanical properties of WC-Co-Ti (C0. 5, N0. 5)-Mo cemented carbides
CN115340383B (zh) 一种提升多组元碳化物断裂韧性的方法及多组元碳化物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant