CN116178034B - 一种晶须增韧高熵碳化物复相陶瓷及其制备方法和应用 - Google Patents

一种晶须增韧高熵碳化物复相陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN116178034B
CN116178034B CN202211093848.4A CN202211093848A CN116178034B CN 116178034 B CN116178034 B CN 116178034B CN 202211093848 A CN202211093848 A CN 202211093848A CN 116178034 B CN116178034 B CN 116178034B
Authority
CN
China
Prior art keywords
entropy
whisker
carbide
entropy carbide
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211093848.4A
Other languages
English (en)
Other versions
CN116178034A (zh
Inventor
郭伟明
刘洋
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202211093848.4A priority Critical patent/CN116178034B/zh
Publication of CN116178034A publication Critical patent/CN116178034A/zh
Application granted granted Critical
Publication of CN116178034B publication Critical patent/CN116178034B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于非氧化物陶瓷基复合材料技术领域,公开了一种晶须增韧高熵碳化物陶瓷及其制备方法和应用。该方法是将高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须混合后加入Co,制得(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C‑SiCw‑Co混合粉体,压成坯体后在1450~1650℃,压力为30~40MPa,采用放电等离子烧结或热压烧结工艺,制得晶须增韧高熵碳化物复相陶瓷,该复相陶瓷具有更高的断裂韧性和更低的致密化温度;其相对密度大于96%,维氏硬度为22~25GPa,断裂韧性为5~7MPa·m1/2,可应用在制备切削难加工材料或航空航天耐磨零部件中。

Description

一种晶须增韧高熵碳化物复相陶瓷及其制备方法和应用
技术领域
本发明属于非氧化物陶瓷基复合材料技术领域,更具体地,涉及一种晶须增韧高熵碳化复相物陶瓷及其制备方法和应用。
技术背景
高熵碳化物陶瓷材料具有高熔点、高硬度、高耐磨性和高化学稳定性等优异性能,可应用于航空航天、高速切削刀具、军事装备和核能等领域。相较于传统过渡金属一元碳化物陶瓷材料,高熵碳化物陶瓷具有多样的元素组合和简单的单一相结构,在成分设计上拥有很大的发挥空间,是传统过渡金属一元碳化物陶瓷的理想替代材料。然而,由于高熵碳化物特殊的晶体结构,导致其断裂韧性低于传统的过渡金属一元碳化物陶瓷,限制了其进一步应用。故开发提升高熵碳化物陶瓷断裂韧性的有效手段,成为了现下研究者的研究重点。
目前,通过引入碳化硅晶须作为第二相,高温(2000℃)烧结制备高熵碳化物复相陶瓷可提升高熵碳化物陶瓷的断裂韧性。但由于碳化硅晶须热稳定性较差,在高温下结构易受损伤,甚至分解为碳化硅颗粒,严重削弱了碳化硅晶须的增韧性能,以至于同添加碳化硅颗粒的增韧效果无异。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明的目的在于提供一种晶须增韧高熵碳化物复相陶瓷的制备方法。该方法工艺简单,得到的高熵碳化物复相陶瓷具有致密的结构,且碳化硅晶须未受损伤,极大地提升了高熵碳化物陶瓷的断裂韧性。
本发明的另一目的在于提供上述方法制备得到的晶须增韧高熵碳化物复相陶瓷。
本发明的再一目的在于提供上述晶须增韧高熵碳化物复相陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种晶须增韧高熵碳化物复相陶瓷的制备方法,包括以下步骤:
S1.将高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须(SiCw)混合,加入烧结助剂金属Co,制得(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体;以(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须的总质量为100%计,(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体的质量百分比为90~95wt.%,碳化硅晶须的质量百分比为5~10wt.%;Co的质量百分比为(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须总质量的3~6wt.%;
S2.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体加入无水乙醇,超声搅拌制得浆料;然后将氮化硅介质球加入浆料经辊式球磨机球磨,经干燥、烘干、过筛后装入石墨模具,干压成坯体;
S3.在保护气氛下,将坯体在1450~1650℃,压力为30~40MPa,进行放电等离子烧结,或者将坯体在1450~1650℃,压力为30~40MPa,进行热压烧结,制得晶须增韧高熵碳化物复相陶瓷。
优选地,步骤S1中所述的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体的粒径为30nm~1μm;所述的碳化硅晶须的直径为0.5~1μm。
优选地,步骤S2中所述球磨转速为100~300r/min,所述球磨的时间为18~36h;所述干燥的温度为60~80℃,所述干燥的时间为12~24h。
优选地,步骤S3中所述放电等离子烧结程序为:先以100~150℃/min的速率升温至1000~1200℃,开始充氮气或氩气并且开始加压,继续将温度升至1450~1650℃,同时压力升至30~40MPa;升温程序执行完毕后保温保压5~10min;然后以80~100℃/min的速率降温,1000~1200℃泄压完毕,温度降至750~850℃后随炉降温。
优选地,步骤S3中所述热压烧结程序为:先以10~14℃/min的升温速率升温,室温~1000℃开始充氮气或氩气并且开始加压,继续以6~8℃/min的升温速率升温,将温度升至1450~1650℃,同时压力升至30~40MPa;升温程序执行完毕后保温保压0.5~1h;然后以10~12℃/min的速率降温,1000~1200℃泄压完毕,降温至750~850℃后随炉降温。
一种晶须增韧高熵碳化物复相陶瓷,所述晶须增韧高熵碳化物复相陶瓷是由所述的方法制备得到。
优选地,所述晶须增韧高熵碳化物复相陶瓷的相对密度大于96%,维氏硬度为22~25GPa,断裂韧性为5~7MPa·m1/2
所述的晶须增韧高熵碳化物复相陶瓷在制备切削难加工材料或航空航天耐磨零部件中的应用。
本发明碳化硅晶须是一种具有高度取向的纤维状单晶材料。作为第二相添加在高熵碳化物陶瓷基体中,由于晶须和高熵碳化物的热膨胀系数不同,会在晶须与高熵碳化物的晶粒界面产生残余应力。当高熵碳化物陶瓷受外力作用产生裂纹时,裂纹尖端的应力延伸到晶须与高熵碳化物晶粒的界面后会被此残余应力吸收部分能量,从而阻碍裂纹的扩展,达到提升高熵碳化物陶瓷断裂韧性的作用。而对于碳化硅晶须,其外层由非1:1摩尔比的Si和C组成,造成有大量空位存在(Karasek,K.R.,et al.,Characterization ofRecentSiC Whiskers.2008:A Collection of Papers Presented at the 13th AnnualConference on Composites and Advanced Ceramic Materials,Part 1of 2:CeramicEngineering and Science Proceedings,Volume 10,Issue 7/8)。导致碳化硅晶须在高温下的稳定性欠佳,在高温下易受到损伤甚至分解为碳化硅颗粒。在本发明中,通过添加Co做为烧结助剂,降低了高熵碳化物陶瓷的烧结温度,有效的避免了碳化硅晶须的损伤,使其增韧作用得到了充分发挥。
与现有技术相比,本发明具有以下有益效果:
1.本发明采用了低温液相烧结工艺,通过在高熵碳化物混合粉体加入中碳化硅晶须和助烧结金属Co,降低了温度对碳化硅晶须的影响,较低的烧结温度和碳化硅晶须的引入减小了烧结后高熵碳化物的晶粒尺寸,充分发挥了碳化硅晶须的增韧作用,从而抑制了晶粒长大对陶瓷力学性能的不利影响。
2.本发明采用了低温液相烧结工艺,该工艺简单,致密化温度较低,节约能源。
3.本发明制得的晶须增韧高熵碳化物复相陶瓷具有高韧性和高硬度。
附图说明
图1是实施例3中得到的晶须增韧高熵碳化物复相陶瓷的抛光面显微结构图。
图2是实施例4中得到的晶须增韧高熵碳化物复相陶瓷的断面显微结构图。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以质量分数比为95:5的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须(SiCw)为原料,以金属Co为烧结助剂(Co的用量为高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须总质量的6%)配制混合粉体,加入无水乙醇,并超声搅拌1h制得浆料。
2.将浆料在辊式球磨机以无水乙醇为分散剂,Si3N4球为球磨介质,以200r/min转速混料24h,在烘箱80℃干燥24h后,100目过筛,得到混合均匀的(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体;
3.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体装入石墨模具,放入放电等离子烧结炉,以100℃/min的速率升温至1000℃,开始充氮气并且开始加压,然后升温至1600℃,同时压力升至30MPa,并保温保压10min,保温结束后以100℃/min的速率降温,1000℃泄压完毕,800℃后随炉降温,得到晶须增韧高熵碳化物复相陶瓷。
本实施例制得的晶须增韧高熵碳化物复相陶瓷的相对密度为99%,维氏硬度为25.0GPa,断裂韧性为5.5MPa·m1/2
实施例2
1.以质量分数比为93:7的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须(SiCw)为原料,以金属Co为烧结助剂(Co的用量为高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须总质量的6%)配制混合粉体,加入无水乙醇,并超声搅拌1h制得浆料。
2.将浆料在辊式球磨机以无水乙醇为分散剂,Si3N4球为球磨介质,以200r/min转速混料24h,在烘箱80℃干燥24h后,100目过筛,得到混合均匀的(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体;
3.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体装入石墨模具,放入放电等离子烧结炉,以100℃/min的速率升温至1000℃,开始充氩气并且开始加压,然后升温至1600℃,同时压力升至30MPa,并保温保压10min,保温结束后以100℃/min的速率降温,1000℃泄压完毕,800℃后随炉降温,得到晶须增韧高熵碳化物复相陶瓷。
本实施例制得的晶须增韧高熵碳化物复相陶瓷的相对密度为98%,维氏硬度为23.3GPa,断裂韧性为6.1MPa·m1/2
实施例3
1.以质量分数比为9:1的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须(SiCw)为原料,以金属Co为烧结助剂(Co的用量为高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须总质量的5%)配制混合粉体,加入无水乙醇,并超声搅拌1h制得浆料。
2.将浆料在辊式球磨机以无水乙醇为分散剂,Si3N4球为球磨介质,以200r/min转速混料24h,在烘箱80℃干燥24h后,100目过筛,得到混合均匀的(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体;
3.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体装入石墨模具,放入放电等离子烧结炉,以100℃/min的速率升温至1000℃,开始充氩气并且开始加压,然后升温至1600℃,同时压力升至30MPa,并保温保压10min,保温结束后以100℃/min的速率降温,1000℃泄压完毕,800℃后随炉降温,得到晶须增韧高熵碳化物复相陶瓷。
本实施例制备得到的晶须增韧高熵碳化物复相陶瓷的相对密度为96%,维氏硬度为22.6GPa,断裂韧性为7.2MPa·m1/2
图1是实施例3中得到的晶须增韧高熵碳化物复相陶瓷的抛光面显微结构图。从图1中可以看到,晶须的钉扎效应,高熵碳化物晶粒生长不明显,高熵碳化物晶粒的平均尺寸为0.47μm。晶须形貌完整,且未分解为碳化硅颗粒,表明低的烧结温度对晶须具有很好的保护作用。
实施例4
1.以质量分数比为91:9的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须(SiCw)为原料,以金属Co为烧结助剂(Co的用量为高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须总质量的3%)配制混合粉体,加入无水乙醇,并超声搅拌1h制得浆料。
2.将浆料在辊式球磨机以无水乙醇为分散剂,Si3N4球为球磨介质,以200r/min转速混料24h,在烘箱80℃干燥24h后,100目过筛,得到混合均匀的(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体;
3.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体装入石墨模具,放入热压烧结炉,以10℃/min的速率升温,室温下开始充氩气并且开始加压,升温至1600℃,同时压力升至30MPa,并保温保压1h,保温结束后以10℃/min的速率降温,1000℃泄压完毕,800℃后随炉降温,得到晶须增韧高熵碳化物复相陶瓷。
本实施例制备得到的晶须增韧高熵碳化物复相陶瓷的相对密度达到97%,维氏硬度为22.3GPa,断裂韧性为6.1MPa·m1/2
图2是实施例4中得到的晶须增韧高熵碳化物复相陶瓷的断面显微结构图。从图2中可以看出,制备的复合陶瓷具有致密的结构,陶瓷的断裂形式为沿晶断裂,且断面上存在较多由晶须拔出后留下的孔洞,这表明陶瓷具有较高的断裂韧性且具有完整形貌的晶须在陶瓷断裂的过程中发挥了作用,提高了陶瓷的断裂韧性。
本发明的晶须增韧高熵碳化物复相陶瓷的相对密度大于96%,维氏硬度为22~25GPa,断裂韧性为5~7MPa·m1/2。该晶须增韧高熵碳化物复相陶瓷应用在制备切削难加工材料或航空航天耐磨零部件中。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种晶须增韧高熵碳化物复相陶瓷的制备方法,其特征在于,包括以下步骤:
S1.将高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须混合,加入烧结助剂金属Co,制得(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体;以(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须的总质量为100%计,(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体的质量百分比为90~95wt%,碳化硅晶须的质量百分比为5~10wt%;Co的质量百分比为(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体和碳化硅晶须总质量的3~6wt%;所述的高熵碳化物(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C粉体的粒径为30nm~1μm;所述的碳化硅晶须的直径为0.5~1μm;
S2.将(Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C-SiCw-Co混合粉体加入无水乙醇,超声搅拌制得浆料;然后将氮化硅介质球加入浆料经辊式球磨机球磨,经干燥、烘干、过筛后装入石墨模具,干压成坯体;
S3.在保护气氛下,将坯体在1450~1650℃,压力为30~40MPa,进行放电等离子烧结或者热压烧结,制得晶须增韧高熵碳化物复相陶瓷;
所述放电等离子烧结程序为:先以100~150℃/min的速率升温至1000~1200℃,开始充氮气或氩气并且开始加压,继续将温度升至1450~1650℃,同时压力升至30~40MPa;升温程序执行完毕后保温保压5~10min;然后以80~100℃/min的速率降温,1000~1200℃泄压完毕,温度降至750~850℃后随炉降温;
所述热压烧结程序为:先以10~14℃/min的升温速率升温,室温~1000℃开始充氮气或氩气并且开始加压,继续以6~8℃/min的升温速率升温,将温度升至1450~1650℃,同时压力升至30~40MPa;升温程序执行完毕后保温保压0.5~1h;然后以10~12℃/min的速率降温,1000~1200℃泄压完毕,降温至750~850℃后随炉降温。
2.根据权利要求1所述的晶须增韧高熵碳化物复相陶瓷的制备方法,其特征在于,步骤S2中所述球磨转速为100~300r/min,所述球磨的时间为18~36h;所述干燥的温度为60~80℃,所述干燥的时间为12~24h。
3.一种晶须增韧高熵碳化物复相陶瓷,其特征在于,所述晶须增韧高熵碳化物复相陶瓷是由权利要求1或2所述的方法制备得到。
4.根据权利要求3所述的晶须增韧高熵碳化物复相陶瓷,其特征在于,所述晶须增韧高熵碳化物复相陶瓷的相对密度大于96%,维氏硬度为22~25GPa,断裂韧性为5~7MPa·m1 /2
5.根据权利要求3或4所述的晶须增韧高熵碳化物复相陶瓷在制备切削难加工材料或航空航天耐磨零部件中的应用。
CN202211093848.4A 2022-09-08 2022-09-08 一种晶须增韧高熵碳化物复相陶瓷及其制备方法和应用 Active CN116178034B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211093848.4A CN116178034B (zh) 2022-09-08 2022-09-08 一种晶须增韧高熵碳化物复相陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211093848.4A CN116178034B (zh) 2022-09-08 2022-09-08 一种晶须增韧高熵碳化物复相陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116178034A CN116178034A (zh) 2023-05-30
CN116178034B true CN116178034B (zh) 2024-04-26

Family

ID=86447662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211093848.4A Active CN116178034B (zh) 2022-09-08 2022-09-08 一种晶须增韧高熵碳化物复相陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116178034B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221526A (en) * 1991-05-24 1993-06-22 Advanced Industrial Materials Production of silicon carbide whiskers using a seeding component to determine shape and size of whiskers
CN106544605A (zh) * 2016-11-08 2017-03-29 武汉科技大学 一种WCoB‑TiC复合陶瓷刀具材料及其制备方法
CN107868898A (zh) * 2017-10-31 2018-04-03 武汉科技大学 一种WCoB‑TiC‑SiC复相金属陶瓷材料及其制备方法
CN114540724A (zh) * 2022-03-01 2022-05-27 武汉理工大学 一种协同强韧化金属陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221526A (en) * 1991-05-24 1993-06-22 Advanced Industrial Materials Production of silicon carbide whiskers using a seeding component to determine shape and size of whiskers
CN106544605A (zh) * 2016-11-08 2017-03-29 武汉科技大学 一种WCoB‑TiC复合陶瓷刀具材料及其制备方法
CN107868898A (zh) * 2017-10-31 2018-04-03 武汉科技大学 一种WCoB‑TiC‑SiC复相金属陶瓷材料及其制备方法
CN114540724A (zh) * 2022-03-01 2022-05-27 武汉理工大学 一种协同强韧化金属陶瓷材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Si-Chun LUO et al..Low-temperature densification of high-entropy (Ti,Zr,Nb,Ta,Mo)C–Co composites with high hardness and high toughness .《Journal of Advanced Ceramics》.2022,第11卷(第5期),805-813页. *
Textured and toughened high-entropy (Ti 0.2 Zr 0.2 Hf 0.2 Nb 0.2 Ta 0.2 )C-SiCw ceramics;Si-Chun Luo et al.;《Journal of Materials Science & Technology 》;第94卷;99-103页 *

Also Published As

Publication number Publication date
CN116178034A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
CN103145422B (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
CN110627508A (zh) 一种高熵硼化物基陶瓷及其制备方法和应用
CN113387704B (zh) 一种碳化硼-硼化钛轻质高强复合陶瓷材料及其制备方法
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN110903091B (zh) 一种SiC-Ti3SiC2复合材料及其制备方法
CN110606748A (zh) 一种氧化铝增强高熵硼化物陶瓷及其制备方法和应用
CN115180960B (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN111732437A (zh) 超高温复相陶瓷粉体的制备方法及其致密化工艺
CN114315359A (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN112645726B (zh) 一种具有典型长颗粒形貌、富含层错和孪晶的碳化硅晶须陶瓷及其制备方法
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN110436928A (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN112500167A (zh) 一种致密化碳化钛复合陶瓷的制备方法
CN113149676B (zh) 一种利用两步法烧结原位增韧碳化硼基复相陶瓷的方法
CN110304933B (zh) 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
CN113416077A (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN111515404B (zh) 一种cBN/Al复合材料的制备方法
CN116178034B (zh) 一种晶须增韧高熵碳化物复相陶瓷及其制备方法和应用
CN111499386A (zh) 一种复合陶瓷材料及其制备方法
CN113121238B (zh) 一种高性能碳化硼基复合陶瓷材料及其制备方法
CN114835473B (zh) 一种氧化铝陶瓷及其制备方法
CN113149658B (zh) 一种氮化钛基复合陶瓷材料及其制备方法
CN113929463B (zh) 一种烧结法制备钛副族碳氮化物固溶体复相陶瓷材料的方法
CN105585324A (zh) 晶须增韧强化碳陶瓷复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant