CN110903091B - 一种SiC-Ti3SiC2复合材料及其制备方法 - Google Patents

一种SiC-Ti3SiC2复合材料及其制备方法 Download PDF

Info

Publication number
CN110903091B
CN110903091B CN201911245301.XA CN201911245301A CN110903091B CN 110903091 B CN110903091 B CN 110903091B CN 201911245301 A CN201911245301 A CN 201911245301A CN 110903091 B CN110903091 B CN 110903091B
Authority
CN
China
Prior art keywords
sic
powder
silicon carbide
sintering
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911245301.XA
Other languages
English (en)
Other versions
CN110903091A (zh
Inventor
邹芹
李艳国
王明智
赵玉成
李晓普
焦子剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201911245301.XA priority Critical patent/CN110903091B/zh
Publication of CN110903091A publication Critical patent/CN110903091A/zh
Application granted granted Critical
Publication of CN110903091B publication Critical patent/CN110903091B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明属于复合材料技术领域,涉及一种SiC‑Ti3SiC2复合材料及其制备方法。碳化硅复合材料为二元复合材料,包括70~95vol.%六方碳化硅和5~30vol.%Ti3SiC2。制备时,将六方碳化硅和Ti3SiC2粉末在行星球磨机里混料;混合均匀后进行预压,预压压力为10~500MPa,预压10~60s;然后把预压后的样品进行热压烧结,烧结压力20~50MPa,烧结温度1100~2000℃,保温10~90min,制得碳化硅复合材料。本发明通过Ti3SiC2的添加可以提高SiC韧性及致密度,得到的SiC‑Ti3SiC2复合材料具有高韧性。

Description

一种SiC-Ti3SiC2复合材料及其制备方法
技术领域
本发明属于复合材料技术领域,涉及一种SiC-Ti3SiC2复合材料及其制备方法。
背景技术
SiC陶瓷是一种具有代表性的非氧化物先进陶瓷之一,具有热膨胀系数低、硬度高、抗氧化性和耐磨性优异等优点。因此,碳化硅材料被广泛应用于刀具、精密轴承、密封件、气轮机转子、喷嘴热交换器部件,原子热反应堆材料,防弹装甲板,大规模集成电路底板及火箭发动机燃烧室喉衬和内衬材料等,近年来,SiC材料在LED材料和半导体领域得到了广泛的应用,表明高纯度SiC材料对LED的需求越来越大。
碳化硅熔点高,因此人们通过采用热压烧结、放电等离子烧结(SPS)等技术降低其烧结温度。Y .B .Liu采用固相烧结法(无压烧结和热压烧结)成功制备了高致密度的碳化硅陶瓷。主要研究了烧结温度、保温时间、热压压力对碳化硅陶瓷性能的影响并确定了最佳工艺参数,实验结果表明,无压烧结最佳工艺参数:烧结温度2010℃,保温时间45min,SiC陶瓷体积密度高达3 .1261g/cm3,断裂韧性达4 .46M· Pam1/2,抗弯强度达379MPa;热压烧结最佳工艺参数:烧结温度1900℃,保温时间60min,热压压力50MPa,SiC陶瓷体积密度达3.1756g/cm3,断裂韧性5.12M· Pam1/2,抗弯强度达596MPa[Y .B .Liu .Preparation ofsolid phase sintering and grinding medium balls of SiC ceramics .Xi 'anUniversity of Science and Technology ,2015]。为了进一步降低SiC陶瓷的烧结温度,促进SiC陶瓷的致密化,通常都需要添加一定量的烧结助剂(Al2O3、Y2O3等)。C .C .Peng以硅微粉、超细铝粉和不同碳源为原料,采用埋石墨法成功原位合成α-Al2O3/SiC复相陶瓷材料。结果表明:摩尔比n(SiO2):n(Al):n(C)=3:4:4、炭黑为碳源、成型压力≥10Mpa、合成温度、保温时间分别为1450℃、3h时,复相陶瓷开口气孔率为13.39%,体积密度为3.12g/cm3,抗弯强度为172.4MPa[C .C .Peng .Preparation and properties of reactivesintered Al2O3/SiC composites .South China University of Technology ,2015]。然而,采用氧化物作为烧结助剂最大的缺点是SiC的晶界处存在玻璃相,降低SiC陶瓷的高温性能,并能引起晶粒的异常长大。X .G .Wang采用α-SiC、β-SiC粉体为原料,B4C为烧结助剂,热压烧结制备SiC陶瓷。研究结果表明:在烧结温度1900℃、保温时间60min及烧结压力50MPa的烧结条件下可以获得致密度为99.2%的SiC陶瓷,当添加10%的β-SiC后,陶瓷生成大量长柱状颗粒,同时断裂韧性和抗弯强度亦有所提高。但因固相烧结不存在弱界面结合,故对SiC陶瓷整体性能的增强有限[X .G .Wang ,J .Cui ,Y .B.Liu ,et al .Study onhot pressing sintering properties of silicon carbide ceramics .Chineseceramic ,2014 ,50(04):11–14]。碳化硅复合材料烧结温度高,韧性低的问题仍没有得到解决,为了提高SiC陶瓷的强度及韧性,仍需对SiC材料及制备方法进行改进。
发明内容
针对现有技术的不足,本发明将机械合金化法(MA)制备的Ti3SiC2与六方碳化硅粉末进行混合,采用热压烧结(HP)制备碳化硅复合材料。
为实现上述技术问题,本发明采用以下技术方案:
一种SiC-Ti3SiC2复合材料,其包含六方碳化硅和Ti3SiC2,所述六方碳化硅的体积百分比为70~95vol.%,Ti3SiC2的体积百分比为5~30vol.%。
上述技术方案中,进一步地,所述六方碳化硅微粉的纯度为99%,粒度为2μm;Ti3SiC2的粒度为4μm以下。
一种SiC- Ti3SiC2复合材料的制备方法,其制备方法包括以下步骤:
S1、将预设摩尔比的碳化钛、硅、钛和铝组成的原料粉末进行球磨,球料质量比即碳化钨磨球与原料粉末质量之比为10:1~20:1,转速为250~450r/min,球磨时间为7~10h,每转1h,停机20min进行散热,制得Ti3SiC2和TiC的混合粉体;
S2、将Ti3SiC2和TiC的混合粉体进行放电等离子(SPS)烧结,升温速率为30~100℃/min,压力为10~50MPa,真空度低于4Pa,烧结温度为850~1400℃,制得Ti3SiC2含量在95%以上的烧结体,充分研磨后得到Ti3SiC2和TiC的混合粉体,用于SiC的烧结;
S3、往步骤S2得到的Ti3SiC2和TiC的混合粉体中加入体积百分比为70~95vol .%六方碳化硅粉末进行球磨混料,球料质量比即碳化钨磨球与原料粉末质量之比为5:1~10:1,球磨转速为250~350r/min,球磨5~10h,每转1h,停机20min进行散热;将混料完成的Ti3SiC2、TiC和六方碳化硅粉末混合物装填入硬质合金模具中进行预压,预压压力为10~500MPa,预压10~60s;把预压后的样品装入石墨磨具中进行热压烧结(HP),烧结压力为20~50MPa,烧结温度为1100~2000℃,保温为10~90min,然后降温卸压,制得碳化硅复合材料。
上述技术方案中,进一步地,所述碳化钛粉末、硅粉、碳粉和铝粉的摩尔比为10:5:5:1。
上述技术方案中,进一步地,所述碳化钛粉末的粒径为1~3μm,纯度为99.5%。
上述技术方案中,进一步地,所述硅粉的粒径为1~3μm,纯度为99.5%。
上述技术方案中,进一步地,所述钛粉的粒径为1~2μm,纯度为99%。
上述技术方案中,进一步地,所述铝粉的粒径为1~2μm,纯度为99 .6%,Al的加入促使TiC尽可能地转变为Ti3SiC2,减少了TiC等杂质的含量。
上述技术方案中,进一步地,步骤S1和S3的球磨过程均采用5mm和8mm两种WC硬质合金球。
上述技术方案中,进一步地,步骤S3中具体烧结工艺为:首先,对样品缓慢施加压力至20~50MPa;然后,以20℃/min的升温速率从室温升到1000℃,在1000℃保温10min;再以20℃/min的升温速率从1000℃升到1100~2000℃,保温10~90min,随炉冷却,得到毛坯,将制备的毛坯进行表面磨削、去毛刺处理,得到碳化硅复合材料。
本发明有益效果:
本发明的制备方法中,通过Ti3SiC2的添加可以提高SiC韧性及致密度,Ti3SiC2和SiC的烧结温度相差很大,富SiC的复合材料需要更高的烧结温度,在1500℃下Ti3SiC2会分解成TiC和气相的Si。由于新分解的TiC具有较高的活性,在烧结过程中可以填充SiC颗粒间的孔隙,而Si的存在也提高SiC在烧结过程中的扩散速率,从而起到促进SiC致密化,提高SiC的断裂韧性,得到的SiC- Ti3SiC2复合材料具有高韧性。
具体实施方式
以下结合具体实施例对本发明作进一步说明,但不以任何方式限制本发明。
以下实施例中制备Ti3SiC2的原料及其质量配比如表1所示:
表1 制备Ti3SiC2的原料及其质量配比
Figure RE-DEST_PATH_IMAGE001
实施例1
原料配方的称量按照下述百分比进行:
表2 原料配方表(45g)
Figure RE-647091DEST_PATH_IMAGE002
S1、将摩尔比为(10:5:5:1)的碳化钛、硅、碳和铝组成的原料粉末进行球磨,球料质量比为10:1,转速为250 r/min,球磨时间为7 h,每转60 min,停机20 min进行散热,制得Ti3SiC2和TiC的混合粉体;
S2、将Ti3SiC2和TiC的混合粉体进行SPS烧结,升温速率为30 ℃/min,压力为10MPa,真空度低于4 Pa,烧结温度为850℃,制得含量在95%以上的Ti3SiC2烧结体,充分研磨后得到Ti3SiC2和TiC的混合粉体,用于SiC的烧结;
S3、将上述Ti3SiC2和TiC的混合粉体9.2g与35 .8g的六方碳化硅粉末在球磨机中混料5h,球料比5:1,球磨转速为250 r/min,在手套箱中将Ti3SiC2、TiC和α-SiC粉末混合物装填入硬质合金模具中进行预压,预压压力为10 MPa,预压10 s,然后把预压后的样品装入石墨磨具中进行热压烧结。将石墨模具放在烧结台上,升温制度为:首先,对样品缓慢施加压力至20 MPa;然后,以20 ℃/min的升温速率从室温升到1000 ℃,在1000 ℃保温10 min;再以20 ℃/min的升温速率从1000 ℃升到1100 ℃,保温10 min。随炉冷却,得到毛坯。将制备的毛坯进行表面磨削、去毛刺处理,得到碳化硅复合材料。
将热压烧结后的碳化硅复合材料试样打磨抛光后进行组织及性能检测,所得烧结块体技术参数如下:
表3 实施例1中复合烧结体的技术参数和具体数值
Figure RE-DEST_PATH_IMAGE003
实施例2
原料配方的称量按照下述百分比进行:
表4原料配方表(45g)
Figure RE-829811DEST_PATH_IMAGE004
S1、将摩尔比为(10:5:5:1)的碳化钛、硅、碳和铝组成的原料粉末进行球磨,球料质量比为20:1,转速为350 r/min,球磨时间为8 h,每转60 min,停机20 min进行散热,制得Ti3SiC2和TiC的混合粉体;
S2、将Ti3SiC2和TiC的混合粉体进行SPS烧结,升温速率为50 ℃/min,压力为20MPa,真空度低于4 Pa,烧结温度为1000℃,制得含量在95%以上的Ti3SiC2烧结体,充分研磨后得到Ti3SiC2和TiC的混合粉体,用于SiC的烧结;
S3、将上述Ti3SiC2和TiC的混合粉体15.8g与29.2g的六方碳化硅粉末在球磨机中混料6 h,球料比10:1,球磨转速为300 r/min,在手套箱中将Ti3SiC2、TiC和六方碳化硅粉末混合物装填入硬质合金模具中进行预压,预压压力为100 MPa,预压20 s,然后把预压后的样品装入石墨磨具中进行热压烧结。将石墨模具放在烧结台上,升温制度为:首先,对样品缓慢施加压力至25 MPa;然后,以20 ℃/min的升温速率从室温升到1000 ℃,在1000 ℃保温10 min;再以20 ℃/min的升温速率从1000 ℃升到1300 ℃,保温30 min。随炉冷却,得到毛坯。将制备的毛坯进行表面磨削、去毛刺处理,得到碳化硅复合材料。
将热压烧结后的碳化硅复合材料试样打磨抛光后进行组织及性能检测,所得烧结块体技术参数如下:
表5实施例2中复合烧结体的技术参数和具体数值
Figure RE-DEST_PATH_IMAGE005
实施例3
原料配方的称量按照下述百分比进行:
表6原料配方表(45g)
Figure RE-875127DEST_PATH_IMAGE006
S1、将摩尔比为(10:5:5:1)的碳化钛、硅、碳和铝组成的原料粉末进行球磨,球料质量比为20:1,转速为450 r/min,球磨时间为9 h,每转60 min,停机20 min进行散热,制得Ti3SiC2和TiC的混合粉体;
S2、将Ti3SiC2和TiC的混合粉体进行SPS烧结,升温速率为70 ℃/min,压力为30MPa,真空度低于4 Pa,烧结温度为1100℃,制得含量在95%以上的Ti3SiC2烧结体,充分研磨后得到Ti3SiC2和TiC的混合粉体,用于SiC的烧结;
S3、将上述Ti3SiC2和TiC的混合粉体20.8 g与24.2 g的六方碳化硅粉末在球磨机中混料7 h,球料比5:1,球磨转速为350 r/min,在手套箱中将Ti3SiC2、TiC和六方碳化硅粉末混合物装填入硬质合金模具中进行预压,预压压力为200 MPa,预压30 s,然后把预压后的样品装入石墨磨具中进行热压烧结。将石墨模具放在烧结台上,升温制度为:首先,对样品缓慢施加压力至30 MPa;然后,以20 ℃/min的升温速率从室温升到1000 ℃,在1000 ℃保温10 min;再以20 ℃/min的升温速率从1000 ℃升到1500 ℃,保温50 min。随炉冷却,得到毛坯。将制备的毛坯进行表面磨削、去毛刺处理,得到碳化硅复合材料。
将热压烧结后的碳化硅复合材料试样打磨抛光后进行组织及性能检测,所得烧结块体技术参数如下:
表7实施例3中复合烧结体的技术参数和具体数值
Figure RE-DEST_PATH_IMAGE007
实施例4
原料配方的称量按照下述百分比进行:
表8原料配方表(45g)
Figure RE-547634DEST_PATH_IMAGE008
S1、将摩尔比为(10:5:5:1)的碳化钛、硅、碳和铝组成的原料粉末进行球磨,球料质量比为10:1,转速为250 r/min,球磨时间为10 h,每转60 min,停机20 min进行散热,制得Ti3SiC2和TiC的混合粉体;
S2、将Ti3SiC2和TiC的混合粉体进行SPS烧结,升温速率为100 ℃/min,压力为40MPa,真空度低于4 Pa,烧结温度为1200℃,制得含量在95%以上的Ti3SiC2烧结体,充分研磨后得到Ti3SiC2和TiC的混合粉体,用于SiC的烧结;
S3、将上述Ti3SiC2和TiC的混合粉体24.7 g与20.3g的六方碳化硅粉末在球磨机中混料8 h,球料比10:1,球磨转速为250 r/min,在手套箱中将Ti3SiC2、TiC和六方碳化硅粉末混合物装填入硬质合金模具中进行预压,预压压力为300 MPa,预压40 s,然后把预压后的样品装入石墨磨具中进行热压烧结。将石墨模具放在烧结台上,升温制度为:首先,对样品缓慢施加压力至35 MPa;然后,以20 ℃/min的升温速率从室温升到1000 ℃,在1000 ℃保温10 min;再以20 ℃/min的升温速率从1000 ℃升到1700 ℃,保温70 min。随炉冷却,得到毛坯。将制备的毛坯进行表面磨削、去毛刺处理,得到碳化硅复合材料。
将热压烧结后的碳化硅复合材料试样打磨抛光后进行组织及性能检测,所得烧结块体技术参数如下:
表9实施例4中复合烧结体的技术参数和具体数值
Figure RE-DEST_PATH_IMAGE009
实施例5
原料配方的称量按照下述百分比进行:
表10原料配方表(45g)
Figure RE-627586DEST_PATH_IMAGE010
S1、将摩尔比为(10:5:5:1)的碳化钛、硅、碳和铝组成的原料粉末进行球磨,球料质量比为20:1,转速为350 r/min,球磨时间为7 h,每转60 min,停机20 min进行散热,制得Ti3SiC2和TiC的混合粉体;
S2、将Ti3SiC2和TiC的混合粉体进行SPS烧结,升温速率为30 ℃/min,压力为50MPa,真空度低于4 Pa,烧结温度为1300℃,制得含量在95%以上的Ti3SiC2烧结体,充分研磨后得到Ti3SiC2和TiC的混合粉体,用于SiC的烧结;
S3、将上述Ti3SiC2和TiC的混合粉体27.9g与17.1 g的六方碳化硅粉末在球磨机中混料9 h,球料比5:1,球磨转速为300 r/min,在手套箱中将Ti3SiC2、TiC和六方碳化硅粉末混合物装填入硬质合金模具中进行预压,预压压力为400 MPa,预压50 s,然后把预压后的样品装入石墨磨具中进行热压烧结。将石墨模具放在烧结台上,升温制度为:首先,对样品缓慢施加压力至40 MPa;然后,以20 ℃/min的升温速率从室温升到1000 ℃,在1000 ℃保温10 min;再以20 ℃/min的升温速率从1000 ℃升到1900 ℃,保温90 min。随炉冷却,得到毛坯。将制备的毛坯进行表面磨削、去毛刺处理,得到碳化硅复合材料。
将热压烧结后的碳化硅复合材料试样打磨抛光后进行组织及性能检测,所得烧结块体技术参数如下:
表11实施例5中复合烧结体的技术参数和具体数值
Figure RE-DEST_PATH_IMAGE011
实施例6
原料配方的称量按照下述百分比进行:
表12原料配方表(45g)
Figure RE-715628DEST_PATH_IMAGE012
S1、将摩尔比为(10:5:5:1)的碳化钛、硅、碳和铝组成的原料粉末进行球磨,球料质量比为20:1,转速为450 r/min,球磨时间为8 h,每转60 min,停机20 min进行散热,制得Ti3SiC2和TiC的混合粉体;
S2、将Ti3SiC2和TiC的混合粉体进行SPS烧结,升温速率为50 ℃/min,压力为10MPa,真空度低于4 Pa,烧结温度为1400℃,制得含量在95%以上的Ti3SiC2烧结体,充分研磨后得到Ti3SiC2和TiC的混合粉体,用于SiC的烧结;
S3、将上述Ti3SiC2和TiC的混合粉体30.4 g与14.6 g的六方碳化硅粉末在球磨机中混料10 h,球料比10:1,球磨转速为350 r/min,在手套箱中将Ti3SiC2、 TiC和六方碳化硅粉末混合物装填入硬质合金模具中进行预压,预压压力为500 MPa,预压60 s,然后把预压后的样品装入石墨磨具中进行热压烧结。将石墨模具放在烧结台上,升温制度为:首先,对样品缓慢施加压力45 MPa;然后,以20 ℃/min的升温速率从室温升到1000 ℃,在1000 ℃保温10 min;再以20 ℃/min的升温速率从1000 ℃升到2000 ℃,保温10 min。随炉冷却,得到毛坯。将制备的毛坯进行表面磨削、去毛刺处理,得到碳化硅复合材料。
将热压烧结后的碳化硅复合材料试样打磨抛光后进行组织及性能检测,所得烧结块体技术参数如下:
表13实施例6中复合烧结体的技术参数和具体数值
Figure RE-DEST_PATH_IMAGE013
实施例7
原料配方的称量按照下述百分比进行:
表14原料配方表(45g)
Figure RE-248240DEST_PATH_IMAGE014
S1、将摩尔比为(10:5:5:1)的碳化钛、硅、碳和铝组成的原料粉末进行球磨,球料质量比为10:1,转速为250 r/min,球磨时间为9 h,每转60 min,停机20 min进行散热,制得Ti3SiC2和TiC的混合粉体;
S2、将Ti3SiC2和TiC的混合粉体进行SPS烧结,升温速率为70 ℃/min,压力为20MPa,真空度低于4 Pa,烧结温度为850℃,制得含量在95%以上的Ti3SiC2烧结体,充分研磨后得到Ti3SiC2和TiC的混合粉体,用于SiC的烧结;
S3、将上述Ti3SiC2和TiC的混合粉体9.2 g与35.8 g的六方碳化硅粉末在球磨机中混料5 h,球料比5:1,球磨转速为250 r/min,在手套箱中将Ti3SiC2、 TiC和六方碳化硅粉末混合物装填入硬质合金模具中进行预压,预压压力为10 MPa,预压10 s,然后把预压后的样品装入石墨磨具中进行热压烧结。将石墨模具放在烧结台上,升温制度为:首先,对样品缓慢施加压力至50 MPa;然后,以20 ℃/min的升温速率从室温升到1000 ℃,在1000 ℃保温10 min;再以20 ℃/min的升温速率从1000 ℃升到1100 ℃,保温30 min。随炉冷却,得到毛坯。将制备的毛坯进行表面磨削、去毛刺处理,得到碳化硅复合材料。
将热压烧结后的碳化硅复合材料试样打磨抛光后进行组织及性能检测,所得烧结块体技术参数如下:
表15实施例7中复合烧结体的技术参数和具体数值
Figure RE-DEST_PATH_IMAGE015
对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应仍属于本发明技术方案保护的范围内。

Claims (7)

1.一种SiC-Ti3SiC2复合材料,其特征在于:其包含六方碳化硅和Ti3SiC2,所述六方碳化硅的体积百分比为95vol.%,Ti3SiC2的体积百分比为5vol.%;
所述的SiC-Ti3SiC2复合材料的制备方法,其制备方法包括以下步骤:
S1、将预设摩尔比的碳化钛、硅、钛和铝组成的原料粉末进行球磨,球料质量比为10:1,转速为250r/min,球磨时间为7~9h,制得Ti3SiC2和TiC的混合粉体;
S2、将Ti3SiC2和TiC的混合粉体进行放电等离子烧结,升温速率为30~70 ℃/min,压力为10~20 MPa,真空度低于4 Pa,烧结温度为850℃,研磨后得到Ti3SiC2和TiC的混合粉体,用于SiC的烧结;
S3、往步骤S2得到的Ti3SiC2和TiC的混合粉体中加入体积百分比为95vol.%六方碳化硅粉末进行球磨混料,球料质量比为5:1,球磨转速为250 r/min,球磨5 h;将混料完成的Ti3SiC2、TiC和六方碳化硅粉末混合物进行预压,预压压力为10MPa,预压10s;把预压后的样品进行热压烧结,烧结压力为20~50MPa,烧结温度为1100 ℃,保温10~30min,降温卸压,制得碳化硅复合材料;
所述碳化钛粉末、硅粉、钛粉和铝粉的摩尔比为10:5:5:1;
步骤S3中具体烧结工艺为:首先,对样品缓慢施加压力至20~50 MPa;然后,以20 ℃/min的升温速率从室温升到1000 ℃,在1000 ℃保温10 min;再以20 ℃/min的升温速率从1000 ℃升到1100℃,保温10~30 min,随炉冷却,得到毛坯,将制备的毛坯进行表面磨削、去毛刺处理,得到碳化硅复合材料。
2.根据权利要求1所述的SiC-Ti3SiC2复合材料,其特征在于:所述六方碳化硅微粉的纯度为99%,粒度为2 μm;Ti3SiC2的粒度为4 μm以下。
3.根据权利要求1所述的SiC-Ti3SiC2复合材料,其特征在于:所述碳化钛粉末的粒径为1~3μm,纯度为99.5%。
4.根据权利要求1所述的SiC-Ti3SiC2复合材料,其特征在于:所述硅粉的粒径为1~3 μm,纯度为99.5%。
5.根据权利要求1所述的SiC-Ti3SiC2复合材料,其特征在于:所述钛粉的粒径为1~2 μm,纯度为99%。
6.根据权利要求1所述的SiC-Ti3SiC2复合材料,其特征在于:所述铝粉的粒径为1~2 μm,纯度为99.6%,Al的加入为了促使TiC尽可能地转变为Ti3SiC2,减少TiC等杂质的含量。
7.根据权利要求1所述的SiC-Ti3SiC2复合材料,其特征在于:步骤S1和S3的球磨过程均采用5 mm和8 mm两种碳化钨硬质合金球。
CN201911245301.XA 2019-12-06 2019-12-06 一种SiC-Ti3SiC2复合材料及其制备方法 Active CN110903091B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911245301.XA CN110903091B (zh) 2019-12-06 2019-12-06 一种SiC-Ti3SiC2复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911245301.XA CN110903091B (zh) 2019-12-06 2019-12-06 一种SiC-Ti3SiC2复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110903091A CN110903091A (zh) 2020-03-24
CN110903091B true CN110903091B (zh) 2021-12-07

Family

ID=69823260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911245301.XA Active CN110903091B (zh) 2019-12-06 2019-12-06 一种SiC-Ti3SiC2复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110903091B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393168A (zh) * 2020-03-27 2020-07-10 燕山大学 一种TiCx增强Ti3SiC2复合材料及其制备方法
CN113511898B (zh) * 2020-04-09 2023-01-31 中国科学院上海硅酸盐研究所 一种可焊接碳化硅陶瓷桶的制备方法
CN114538943A (zh) * 2022-03-04 2022-05-27 南京航空航天大学 一种激光选区烧结双相增韧SiC陶瓷及其制备方法
CN115286392B (zh) * 2022-08-05 2023-04-07 安徽工业大学 一种制备TiB2-TiC-SiC三元复相陶瓷的方法及其产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322732A1 (de) * 1987-12-24 1989-07-05 Forschungszentrum Jülich Gmbh Verfahren zum Verbinden eines Siliciumcarbid-Formteils mit einem weiteren Formteil aus Siliciumcarbid oder Metall
CN1460658A (zh) * 2003-06-20 2003-12-10 武汉理工大学 以Al为助剂原位热压反应制备单相致密钛碳化硅块体材料的方法
CN106518079A (zh) * 2016-10-24 2017-03-22 中国科学院福建物质结构研究所 碳化硅基复合材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296501C (zh) * 2004-11-23 2007-01-24 武汉理工大学 原位热压工艺合成致密碳化硅钛—二硼化钛复合块体材料
CN100455688C (zh) * 2006-08-16 2009-01-28 中国科学院上海硅酸盐研究所 碳硅化钛基梯度材料及原位反应的制备方法
CN101269966A (zh) * 2008-04-29 2008-09-24 北京交通大学 原位置换反应热压制备SiC/Ti3SiC2材料的方法
FR2936088B1 (fr) * 2008-09-18 2011-01-07 Commissariat Energie Atomique Gaine de combustible nucleaire a haute conductivite thermique et son procede de fabrication.
CN102153347B (zh) * 2011-01-21 2013-03-20 武汉理工大学 一种快速合成Ti3SiC2亚微米粉体的方法
CN103351164A (zh) * 2013-05-23 2013-10-16 安泰科技股份有限公司 一种高纯度、高性能钛硅碳陶瓷块体材料及其制备方法
CN108409347A (zh) * 2018-03-09 2018-08-17 中国航发北京航空材料研究院 一种原位生成Ti3SiC2相增韧碳化硅陶瓷基复合材料的制备方法
CN109627010A (zh) * 2018-12-04 2019-04-16 燕山大学 碳化硅复合材料及其制备方法
CN109503170A (zh) * 2019-01-04 2019-03-22 燕山大学 一种碳化硅复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0322732A1 (de) * 1987-12-24 1989-07-05 Forschungszentrum Jülich Gmbh Verfahren zum Verbinden eines Siliciumcarbid-Formteils mit einem weiteren Formteil aus Siliciumcarbid oder Metall
CN1460658A (zh) * 2003-06-20 2003-12-10 武汉理工大学 以Al为助剂原位热压反应制备单相致密钛碳化硅块体材料的方法
CN106518079A (zh) * 2016-10-24 2017-03-22 中国科学院福建物质结构研究所 碳化硅基复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
机械合金化+烧结制备TiC/Ti3SiC2复合材料;金松哲 等;《热加工工艺》;20070225;第36卷(第4期);30-34 *

Also Published As

Publication number Publication date
CN110903091A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
CN110903091B (zh) 一种SiC-Ti3SiC2复合材料及其制备方法
CN109553419B (zh) 一种气压固相烧结碳化硼复相陶瓷及其制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN103626496B (zh) 一种非化学计量比碳化钛与氮化铝、氮化钛复合材料
CN108439995B (zh) 一种复相陶瓷及其制备方法
CN104630533A (zh) 一种刀具材料的复合硬质合金的制备方法
CN110655408B (zh) 一种单相碳硼化物固溶体陶瓷材料的制备方法
CN110436928B (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN113526960B (zh) 一种碳化硅陶瓷及其热等静压烧结工艺
CN108751996A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺
CN109439991A (zh) 一种TiB2晶须高温强韧化Ti(C,N)基金属陶瓷材料制备方法
CN108165855B (zh) 一种结合剂、聚晶立方氮化硼复合片及其制备方法
CN112500178A (zh) 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
CN115991606B (zh) 一种TiB2-SiC-B4C三元超硬陶瓷材料及其制备方法
CN115010496B (zh) 一种性能可控的b4c-金刚石复合材料的制备方法
KR20110018997A (ko) 고밀도 탄화붕소 소결체의 제조방법 및 이에 의해 제조된 고밀도 탄화붕소 소결체
CN111499386A (zh) 一种复合陶瓷材料及其制备方法
CN114774750A (zh) 一种由增强型高熵合金粘结的碳化钨材料及制备方法
CN110607475B (zh) 一种碳化硼增强二硼化钛基金属陶瓷及其制备方法和应用
CN114573351B (zh) 一种碳化硼基复合材料及其制备方法
CN116535218B (zh) 一种高纯致密碳化硅陶瓷材料及其固相烧结方法和应用
CN111689778A (zh) 一种高致密SiBCN陶瓷材料及其制备方法
CN112142481B (zh) 一种聚晶立方氮化硼材料合成用粘结剂及其使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant