CN111943682A - 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用 - Google Patents
一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用 Download PDFInfo
- Publication number
- CN111943682A CN111943682A CN202010724840.8A CN202010724840A CN111943682A CN 111943682 A CN111943682 A CN 111943682A CN 202010724840 A CN202010724840 A CN 202010724840A CN 111943682 A CN111943682 A CN 111943682A
- Authority
- CN
- China
- Prior art keywords
- powder
- ceramic
- entropy
- equal
- entropy ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/0006—Cutting members therefor
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
- C04B35/58064—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
- C04B35/58078—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/0006—Cutting members therefor
- B26D2001/002—Materials or surface treatments therefor, e.g. composite materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3821—Boron carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Magnetic Ceramics (AREA)
- Ceramic Products (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
本发明属于陶瓷材料技术领域,公开了一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用。该织构化高熵陶瓷的分子式为(HfxZryTazCrnTim)B2,其中,0.1≤x≤1,0.1≤y≤1,0.1≤z≤1,0.1≤n≤1,0.1≤m≤1,且满足x+y+z+n+m=1;该陶瓷是将金属氧化物的混合粉体模压制成坯体,在真空条件下,升温至1400~1600℃进行热处理,经研磨过筛制得(HfxZryTazCrnTim)B2织构化高熵陶瓷粉末,采用放电等离子烧结将该粉末升温至1000~1400℃时充入保护气氛,然后升温至1800~2200℃煅烧制得。该织构化高熵陶瓷具有均一固溶体相的、高韧性的、耐氧化,且沿c‑轴定向生长的织构化形貌。可应用在超高温耐氧化或刀具领域中。
Description
技术领域
本发明属于陶瓷材料技术领域,更具体地,涉及一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用。
背景技术
高熵硼化物陶瓷与碳化物陶瓷是新一类的超高温陶瓷材料,引起了研究者们广泛的兴趣,其具有高熔点、高硬度、良好的抗腐蚀性能与抗氧化性能,且明显优于一元或者二元硼化物或者碳化物陶瓷,有望成为在航空航天、汽车发动机、超音速飞行器、核反应堆等极端环境应用的候选者,由于高熵陶瓷由五种或者五种以上的元素组成,其可以解决单相陶瓷在实际应用的局限性,如损伤容限差和临界抗氧化能力差。
对于高熵陶瓷其也存在陶瓷的通性,即断裂韧性低,且由于硼化物和碳化物存在强的共价键和低的扩散系数,使得其很难烧结致密,虽然其优于一元或者二元硼化物或者碳化物陶瓷,但是已报道的通过高能球磨和放电等离子烧结制备的硼化物与碳化物陶瓷的致密度均<93%,在2300℃高温下制备的(Hf-Ta-Zr-Nb)C陶瓷材料才能达到了99%致密度。为了改善其烧结性能,专利CN201811196871.X和专利CN201910223884.X通过硼热还原法和硼热碳热还原法制备易于烧结的高熵固溶体粉末,通过2000℃放电等离子烧结后致密度可以达到95.0~99.2%,文献报道的通过硼热碳热还原法与SPS结合,2000℃制备的(Ti0.2Hf0.2Zr0.2Nb0.2Ta0.2)B2的致密度达到97.9%。因此,通过采用易于烧结的粉末、提高烧结温度与外加压力,可以有效提高其致密度。
近年来,关于高熵陶瓷的研究多在于其致密化的提高,高熵粉末的提纯,性能的改善等,还未有关于织构化高熵陶瓷的制备和性能改善的研究。传统制备织构化陶瓷的方法主要有热加工方法,采用模板晶粒长大法,强磁场准直法,经注浆成型后烧结而成,但是这些方法成本高而且操作复杂。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种高韧性耐氧化的织构化高熵陶瓷。该陶瓷具有均一固溶体相的、高韧性的、耐氧化、沿c-轴定向生长的织构化高熵陶瓷。
本发明另一目的在于提供上述高韧性耐氧化的织构化高熵陶瓷的制备方法。
本发明再一目的在于提供上述高韧性耐氧化的织构化高熵陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种高韧性耐氧化的织构化高熵陶瓷,所述织构化高熵陶瓷的分子式为(HfxZryTazCrnTim)B2,其中,0.1≤x≤1,0.1≤y≤1,0.1≤z≤1,0.1≤n≤1,0.1≤m≤1,且满足x+y+z+n+m=1;该陶瓷是先将HfO2、ZrO2、Ta2O5、Cr2O3、TiO2、B4C和石墨粉的混合粉体模压制成坯体,在真空条件下升温至1400~1600℃进行热处理,经研磨过筛制得(HfxZryTazCrnTim)B2织构化高熵陶瓷粉末;然后采用放电等离子烧结将该织构化高熵陶瓷粉末升温至1000~1400℃时充入保护气氛,再升温至1800~2200℃煅烧制得。
优选地,所述织构化高熵陶瓷的相对密度>99%,硬度为32~45GPa,断裂韧性为5~12MPa·m1/2,陶瓷的晶粒长度为4~6μm,宽度为1~2μm,长宽比值为2~6,织构度为0.1~1,所述陶瓷经1200~1600℃热处理1~4h后的重量变化率为0.3~1%。
优选地,所述HfO2、ZrO2、Ta2O5、Cr2O3、TiO2、B4C和石墨粉的纯度均为99.0~99.9wt%,所述HfO2、ZrO2、Ta2O5、Cr2O3、TiO2、B4C和石墨粉的粒径均为0.1~10μm。
优选地,所述陶瓷粉末的粒径为0.1~1μm,所述陶瓷粉末中的氧含量为1~5wt%,所述陶瓷粉末中的碳含量为0.1~1wt%。
优选地,所述HfO2、ZrO2、Cr2O3或TiO2与石墨粉、B4C的摩尔比均为(1~10):(1~10):(1~10),所述石墨粉、B4C与Ta2O5的摩尔比为(1~20):(1~10):(1~10)。
优选地,所述保护气氛为N2或Ar。
优选地,所述升温至1400~1600℃时的速率为5~20℃/min,所述热处理的时间为0.5~2h,所述煅烧的时间为1~30min,所述煅烧的压力为10~100MPa,所述升温至1800~2200℃时的升温的速率和降温速率均为100~400℃/min。
所述的高韧性耐氧化的织构化高熵陶瓷的制备方法,包括如下具体步骤:
S1.将金属氧化物HfO2、ZrO2、Ta2O5、Cr2O3、TiO2与B4C和石墨粉与溶剂和球磨介质进行混合10~24h,干燥后得到混合粉体;
S2.将混合粉体模压成坯体,在真空条件下热处理,以5~20℃/min的升温速率升温至1400~1600℃热处理0.5~2h,经研磨过筛,制得(HfxZryTazCrnTim)B2织构化高熵陶瓷粉末;
S3.(HfxZryTazCrnTim)B2织构化高熵陶瓷粉末放入石墨模具中,采用放电等离子烧结以100~400℃/min速率升温至1000~1400℃时充保护气氛,再以100~400℃/min速率升温至1800~2200℃,加压10~100MPa煅烧1~30min,制得(HfxZryTazCrnTim)B2织构化高熵陶瓷。
优选地,步骤S1中所述溶剂为乙醇、丙醇、甲醇或丙酮。
所述的高韧性耐氧化的织构化高熵陶瓷在超高温耐氧化或刀具领域中的应用。
本发明是以金属氧化物(HfO2、ZrO2、Ta2O5、Cr2O3、TiO2)、B4C和石墨粉为原料,通过硼热碳热还原法制备出(HfxZryTazCrnTim)B2织构化高熵陶瓷粉末,经过放电等离子烧结后,制备(HfxZryTazCrnTim)B2织构化高熵陶瓷。由于其冷却速度快,很难出现固溶析出相,故该陶瓷的组分均一织构化。由于硼化物陶瓷具有AlB2型六方结构(P6/mmm),其存在各向异性,可通过晶粒定向生长来改变其性能。金属氧化物、B4C和石墨粉在硼热碳热还原反应的过程中,会生成具有低熔点的硼化物CrB,使得(HfxZryTazCrnTim)B2织构化高熵陶瓷易于沿c-轴定向生长,可以充分发挥材料中晶体的各向异性所表征的物理效应,在机械性能、热和电性能、抗腐蚀性能等方面很有前途的功能结构材料。
与现有技术相比,本发明具有以下有益效果:
1.本发明制备的(HfxZryTazCrnTim)B2织构化高熵陶瓷,以金属氧化物(HfO2、ZrO2、Ta2O5、Cr2O3、TiO2)、B4C和石墨粉为原料,在硼热碳热还原反应的过程中,会生成具有低熔点的硼化物CrB,使得其在烧结过程中存在液相烧结,促进晶粒定向生长,易于在垂直于加压方向沿c-轴定向生长,陶瓷颗粒不再是等轴晶粒,而形成了棒状,当有裂纹产生时,其会产生更多的裂纹扩展,裂纹的偏转、桥接增多,显著提高了陶瓷的断裂韧性。
2.本发明制备的(HfxZryTazCrnTim)B2织构化高熵陶瓷,由于在织构面,即于压力垂直面有更多沿着(00l)方向的面,在(00l)方向的金属原子的密度高,故生成的氧化层较致密,可以阻止外层氧的进一步运输,具有较好的抗氧化性能。
3.本发明的织构化陶瓷是通过硼热碳热还原法与放电等离子烧结结合,利用粉末中残余的硼化铬低固溶点物质,同时(HfxZryTazCrnTim)B2高熵陶瓷易于沿c-轴定向生长,用更简单的方法制备出织构化陶瓷材料,与其他方法相比,成本低且操作简单,易操作,是迄今为止第一种织构化高熵陶瓷。
4.本发明采用硼热碳热还原法原位合成的高熵硼化物陶瓷粉末为原料,粉末直接是固溶体高熵陶瓷粉末,与商业购买硼化物相比,粉末烧结活性高,可以更加容易的制备出单相高熵陶瓷,且价格低廉。与通过高能球磨来降低粉末粒径促进烧结的方法来比,此方法可以减少粉末污染,提高粉末纯度。
附图说明
图1为实施例1和2制得的(HfxZryTazCrnTim)B2织构化高熵陶瓷与粉末的XRD图。
图2为实施例2制得的(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2织构高熵陶瓷的腐蚀形貌。
图3为实施例2和3制备的(HfxZryTazCrnTim)B2织构化高熵陶瓷氧化后的断口面扫描分析。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.以HfO2(粉末的纯度99.9%,粒径2μm)、ZrO2(粉末的纯度99.9%,粒径1μm)、Cr2O3(粉末的纯度99.9%,粒径10μm)、TiO2(粉末的纯度99.9%,粒径4μm)和Ta2O5(粉末的纯度99.9%,粒径1μm)粉末、B4C(粉末的纯度99.9%,粒径2μm)和石墨粉(纯度99.9%,粒径1μm),以Si3N4球为球磨介质,以乙醇为溶剂,混合22h。
2.石墨粉、B4C与HfO2或ZrO2或TiO2的摩尔比均为10:8:1,所述石墨粉、B4C和Ta2O5的摩尔比为20:10:10,所述石墨粉、B4C和Cr2O3的摩尔比为10:9:10。
3.将混合粉体模压成坯体,在真空条件下热处理,以15℃/min的升温速率,升温至1500℃保温2h,经研磨过筛,制得(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷粉末。
4.将(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷粉末放入石墨模具中,采用放电等离子烧结以160℃/min速率升温至1200℃时充Ar保护气氛,再以150℃/min速率升温至2000℃,保温15min,加压40MPa煅烧,制得(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷。
通过激光粒度分析测得本实施例(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷粉末的粒径为0.42μm,用碳氧分析仪测得(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷粉末的氧含量为1.5wt%,碳含量为0.9wt%。(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷的相对密度为99%,硬度为32GPa,断裂韧性5MPa·m1/2,晶粒尺寸长度为4μm,宽度为2μm,长宽比值为2,织构度0.1,所述陶瓷经1200热处理1h后重量增加为0.3wt%。
实施例2
1.以HfO2(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)、Cr2O3(粉末的纯度99.9%,粒径1μm)、TiO2(粉末的纯度99.9%,粒径1μm)和Ta2O5(粉末的纯度99.9%,粒径1μm)粉末、B4C(粉末的纯度99.9%,粒径2μm)和石墨粉(纯度99.9%,粒径1μm),以Si3N4球为球磨介质,以乙醇为溶剂,混合24h。
2.石墨粉、B4C与HfO2或ZrO2或TiO2的摩尔比均为10:6:3,所述石墨粉、B4C和Ta2O5的摩尔比为20:7:10,所述石墨粉、B4C和Cr2O3的摩尔比为10:9:7。
3.将混合粉体模压成坯体,在真空条件下热处理,以10℃/min的升温速率,升温至1600℃保温2h,经研磨过筛,制得(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2织构化高熵陶瓷粉末。
4.将(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2织构化高熵陶瓷粉末放入石墨模具中,采用放电等离子烧结以150℃/min速率升温至1200℃时充Ar保护气氛,再以150℃/min速率升温至2000℃,保温10min,加压30MPa煅烧,制得(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2织构化高熵陶瓷。
图1为实施例1和2制得的(HfxZryTazCrnTim)B2织构化高熵陶瓷与粉末的XRD图,其中,(a)为实施例1所制备的(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷粉末;(b)为实施例1所制备的(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷;(c)为实施例2所制备的(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2织构化高熵陶瓷。从图1中(a)中可以看出,实施例1中制得的(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷粉末有少量氧化物杂质(m-HfO2),还有未固溶的HfB2相,还有少量CrB的相,证明其需要高温才能固溶完全。与HfB2和ZrB2标准PDF卡片65-8678和65-8704对比可知,(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2的峰向高角度偏移,证明五种元素相互固溶,使得晶格常数减小,故衍射峰发生偏移。当(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷粉末经过SPS烧结后,如图1中(b)中所示,其检测到(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2的衍射峰,氧化物杂质峰减小,且其峰在(00l)方向无明显定向生长,从XRD数据计算得知,其织构度为0.1。而从图1中(c)中可知,实施例2所制备的(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2织构化高熵陶瓷只检测到(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2的衍射峰,且其峰在(00l)方向的峰的强度明显高于(Hf0.2Zr0.1Ta0.3Cr0.1Ti0.3)B2织构化高熵陶瓷,证明当Cr含量增多时,其织构化程度增加,(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2织构化高熵陶瓷材料沿着c-轴定向生长,从XRD数据计算得知,其织构度为0.56。
图2为实施例2制得的(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2织构高熵陶瓷的腐蚀形貌。从图2中可以看出,陶瓷基本致密,陶瓷晶粒成棒状,晶粒尺寸长度为5.33μm,宽度为1.54μm,长宽比值为3.5。
通过激光粒度分析测得本实施例(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2织构化高熵陶瓷粉末的粒径为0.37μm,用碳氧分析仪测得(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2织构化高熵陶瓷粉末的氧含量为1.3wt%,碳含量为0.8wt%。(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2织构化高熵陶瓷的相对密度为99.2%,硬度为41GPa,断裂韧性10MPa·m1/2,晶粒尺寸长度5.33μm,宽度1.54μm,长宽比值为3.5,织构度0.56,所述陶瓷,经1400℃热处理2h后重量增加0.3wt%。
实施例3
1.以HfO2(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)、Cr2O3(粉末的纯度99.9%,粒径4μm)、TiO2(粉末的纯度99.9%,粒径8μm)和Ta2O5(粉末的纯度99.9%,粒径1μm)粉末、B4C(粉末的纯度99.9%,粒径2μm)和石墨粉(纯度99.9%,粒径5μm),以Si3N4球为球磨介质,以乙醇为溶剂,混合20h。
2.石墨粉、B4C与HfO2或ZrO2或TiO2的摩尔比均为8:6:3,所述石墨粉、B4C和Ta2O5的摩尔比均为17:7:10,所述石墨粉、B4C和Cr2O3的摩尔比为7:9:7。
3.将混合粉体模压成坯体,在真空条件下热处理,以15℃/min的升温速率,升温至1600℃保温1.5h,经研磨过筛,制得(Hf0.2Zr0.2Ta0.1Cr0.3Ti0.2)B2织构化高熵陶瓷粉末。
4.将(Hf0.2Zr0.2Ta0.1Cr0.3Ti0.2)B2织构化高熵陶瓷粉末放入石墨模具中,采用放电等离子烧结以150℃/min速率升温至1400℃时充Ar保护气氛,再以150℃/min速率升温至2200℃,保温10min,加压30MPa煅烧,制得(Hf0.2Zr0.2Ta0.1Cr0.3Ti0.2)B2织构化高熵陶瓷。
图3为实施例2和3制备的(HfxZryTazCrnTim)B2织构化高熵陶瓷氧化后的断口面扫描分析。其中,(a)为实施例2所制备的(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2织构化高熵陶瓷;(b)为实施例3所制备的(Hf0.2Zr0.2Ta0.1Cr0.3Ti0.2)B2织构化高熵陶瓷。从图3中(a)可以看出,氧化层为五种元素的氧化物,Hf、Zr、Ta、Cr和Ti元素分布均匀。由于CrB的熔点低,Cr2O3有高的蒸汽压,试样中Cr元素不断被消耗,聚集在试样表面和外氧化层,试样内部的Cr元素逐渐被耗尽。氧化层厚度为123.05μm,在试样表面Cr2O3层厚度为45.79μm,氧化层和试样表面中间的碳层为制样时的树脂磨料。从图3中(b)可以看出,氧化层为五种元素的氧化物,Hf、Zr、Ta、Cr和Ti元素分布均匀。由于CrB的熔点低,Cr2O3有高的蒸汽压,试样中Cr元素不断被消耗,聚集在试样表面和外氧化层,试样内部的Cr元素逐渐被耗尽。氧化层厚度为107.17μm,在试样表面Cr2O3层厚度为37.71μm,氧化层和试样表面中间的碳层为制样时的树脂磨料。结果表明,随着Cr含量的增多,其有更多沿着(00l)方向的面,有较好的抗氧化性能。这是由于在(00l)方向的金属原子的密度高,生成的氧化层较致密,阻止外层氧的进一步运输。
通过激光粒度分析测得本实施例(Hf0.2Zr0.2Ta0.1Cr0.3Ti0.2)B2织构化高熵陶瓷粉末的粒径为0.32μm,用碳氧分析仪测得(Hf0.2Zr0.2Ta0.1Cr0.3Ti0.2)B2织构化高熵陶瓷粉末的氧含量为1.2wt%,碳含量为0.7wt%。(Hf0.2Zr0.2Ta0.1Cr0.3Ti0.2)B2织构化高熵陶瓷的相对密度为99.4%,硬度为42GPa,断裂韧性10.5MPa·m1/2,晶粒尺寸长度5.42μm,宽度1.43μm,长宽比值为3.8,织构度0.62,所述陶瓷经1500℃热处理2h后重量增加0.4wt%。
实施例4
1.以HfO2(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)、Cr2O3(粉末的纯度99.9%,粒径1μm)、TiO2(粉末的纯度99.9%,粒径1μm)和Ta2O5(粉末的纯度99.9%,粒径1μm)粉末、B4C(粉末的纯度99.9%,粒径2μm)和石墨粉(纯度99.9%,粒径4μm),以Si3N4球为球磨介质,以乙醇为溶剂,混合18h。
2.石墨粉、B4C与HfO2或ZrO2或TiO2的摩尔比均为10:10:3,所述石墨粉、B4C和Ta2O5的摩尔比为20:8:10,所述石墨粉、B4C和Cr2O3的摩尔比为10:9:7。
3.将混合粉体模压成坯体,在真空条件下热处理,以10℃/min的升温速率,升温至1500℃保温2h,经研磨过筛,制得(Hf0.1Zr0.1Ta0.2Cr0.4Ti0.2)B2织构化高熵陶瓷粉末。
4.将(Hf0.1Zr0.1Ta0.2Cr0.4Ti0.2)B2织构化高熵陶瓷粉末放入石墨模具中,采用放电等离子烧结以160℃/min速率升温至1300℃时充Ar保护气氛,再以160℃/min速率升温至2000℃,保温10min,加压50MPa煅烧,制得(Hf0.1Zr0.1Ta0.2Cr0.4Ti0.2)B2织构化高熵陶瓷。
通过激光粒度分析测得本实施例(Hf0.1Zr0.1Ta0.2Cr0.4Ti0.2)B2织构化高熵陶瓷粉末的粒径为0.31μm,用碳氧分析仪测得(Hf0.1Zr0.1Ta0.2Cr0.4Ti0.2)B2织构化高熵陶瓷粉末的氧含量为1.3wt%,碳含量为0.7wt%。(Hf0.1Zr0.1Ta0.2Cr0.4Ti0.2)B2织构化高熵陶瓷的相对密度为99.5%,硬度为43GPa,断裂韧性11.2MPa·m1/2,晶粒尺寸长度5.56μm,宽度1.32μm,长宽比值为4.2,织构度0.68,所述陶瓷经1600℃热处理2h后重量增加0.4wt%。
实施例5
1.以HfO2(粉末的纯度99.9%,粒径1μm)、ZrO2(粉末的纯度99.9%,粒径1μm)、Cr2O3(粉末的纯度99.9%,粒径1μm)、TiO2(粉末的纯度99.9%,粒径1μm)和Ta2O5(粉末的纯度99.9%,粒径1μm)粉末、B4C(粉末的纯度99.9%,粒径2μm)和石墨粉(纯度99.9%,粒径1μm),以Si3N4球为球磨介质,以乙醇为溶剂,混合24h。
2.石墨粉、B4C与HfO2或ZrO2或TiO2的摩尔比均为10:6:3,所述石墨粉、B4C和Ta2O5的摩尔比为10:10:10,所述石墨粉、B4C和Cr2O3的摩尔比为10:9:7。
3.将混合粉体模压成坯体,在真空条件下热处理,以10℃/min的升温速率,升温至1600℃保温2h,经研磨过筛,制得(Hf0.2Zr0.1Ta0.1Cr0.5Ti0.1)B2织构化高熵陶瓷粉末。
4.将(Hf0.2Zr0.1Ta0.1Cr0.5Ti0.1)B2织构化高熵陶瓷粉末放入石墨模具中,采用放电等离子烧结以150℃/min速率升温至1200℃时充Ar保护气氛,再以150℃/min速率升温至1800℃,保温15min,加压20MPa煅烧,制得(Hf0.2Zr0.1Ta0.1Cr0.5Ti0.1)B2织构化高熵陶瓷。
通过激光粒度分析测得本实施例(Hf0.2Zr0.1Ta0.1Cr0.5Ti0.1)B2织构化高熵陶瓷粉末的粒径为0.43μm,用碳氧分析仪测得(Hf0.2Zr0.1Ta0.1Cr0.5Ti0.1)B2织构化高熵陶瓷粉末的氧含量为1.3wt%,碳含量为0.8wt%。(Hf0.2Zr0.1Ta0.1Cr0.5Ti0.1)B2织构化高熵陶瓷的相对密度为99.6%,硬度为45GPa,断裂韧性12MPa·m1/2,晶粒尺寸长度6μm,宽度1μm,长宽比值为6,织构度0.78,所述陶瓷经1600℃热处理4h后重量增加0.8wt%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种高韧性耐氧化的织构化高熵陶瓷,其特征在于,所述织构化高熵陶瓷的分子式为(HfxZryTazCrnTim)B2,其中,0.1≤x≤1,0.1≤y≤1,0.1≤z≤1,0.1≤n≤1,0.1≤m≤1,且满足x+y+z+n+m=1;该陶瓷是先将HfO2、ZrO2、Ta2O5、Cr2O3、TiO2、B4C和石墨粉的混合粉体模压制成坯体,在真空条件下升温至1400~1600℃进行热处理,经研磨过筛制得(HfxZryTazCrnTim)B2织构化高熵陶瓷粉末;然后采用放电等离子烧结将该织构化高熵陶瓷粉末升温至1000~1400℃时充入保护气氛,再升温至1800~2200℃煅烧制得。
2.根据权利要求1所述的高韧性耐氧化的织构化高熵陶瓷,其特征在于,所述织构化高熵陶瓷的相对密度>99%,硬度为32~45GPa,断裂韧性为5~12MPa·m1/2,所述陶瓷的晶粒长度为4~6μm,宽度为1~2μm,长宽比值为2~6,织构度为0.1~1;所述陶瓷经1200~1600℃热处理1~4h后的重量变化率为0.3~1%。
3.根据权利要求1所述的高韧性耐氧化的织构化高熵陶瓷,其特征在于,所述HfO2、ZrO2、Ta2O5、Cr2O3、TiO2、B4C和石墨粉的纯度均为99.0~99.9wt%,所述HfO2、ZrO2、Ta2O5、Cr2O3、TiO2、B4C和石墨粉的粒径均为0.1~10μm。
4.根据权利要求1所述的高韧性耐氧化的织构化高熵陶瓷,其特征在于,所述陶瓷粉末的粒径为0.1~1μm,所述陶瓷粉末中的氧含量为1~5wt%,所述陶瓷粉末中的碳含量为0.1~1wt%。
5.根据权利要求1所述的高韧性耐氧化的织构化高熵陶瓷,其特征在于,所述HfO2、ZrO2、Cr2O3或TiO2与石墨粉、B4C的摩尔比均为(1~10):(1~10):(1~10),所述石墨粉、B4C与Ta2O5的摩尔比为(1~20):(1~10):(1~10)。
6.根据权利要求1所述的高韧性耐氧化的织构化高熵陶瓷,其特征在于,所述保护气氛为N2或Ar。
7.根据权利要求1所述的高韧性耐氧化的织构化高熵陶瓷,其特征在于,所述升温至1400~1600℃时的速率为5~20℃/min,所述热处理的时间为0.5~2h,所述煅烧的时间为1~30min,所述煅烧的压力为10~100MPa,所述升温至1800~2200℃时的升温的速率和降温速率均为100~400℃/min。
8.根据权利要求1-7任一项所述的高韧性耐氧化的织构化高熵陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.将金属氧化物HfO2、ZrO2、Ta2O5、Cr2O3、TiO2与B4C和石墨粉与溶剂和球磨介质进行混合10~24h,干燥后得到混合粉体;
S2.将混合粉体模压成坯体,在真空条件下热处理,以5~20℃/min的升温速率升温至1400~1600℃热处理0.5~2h,经研磨过筛,制得(HfxZryTazCrnTim)B2织构化高熵陶瓷粉末;
S3.(HfxZryTazCrnTim)B2织构化高熵陶瓷粉末放入石墨模具中,采用放电等离子烧结以100~400℃/min速率升温至1000~1400℃时充保护气氛,再以100~400℃/min速率升温至1800~2200℃,加压10~100MPa煅烧1~30min,制得(HfxZryTazCrnTim)B2织构化高熵陶瓷。
9.根据权利要求8所述的高韧性耐氧化的织构化高熵陶瓷的制备方法,其特征在于,步骤S1中所述溶剂为乙醇、丙醇、甲醇或丙酮。
10.权利要求1-7任一项所述的高韧性耐氧化的织构化高熵陶瓷在超高温耐氧化或刀具领域中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010724840.8A CN111943682B (zh) | 2020-07-24 | 2020-07-24 | 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010724840.8A CN111943682B (zh) | 2020-07-24 | 2020-07-24 | 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111943682A true CN111943682A (zh) | 2020-11-17 |
CN111943682B CN111943682B (zh) | 2022-07-05 |
Family
ID=73338848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010724840.8A Active CN111943682B (zh) | 2020-07-24 | 2020-07-24 | 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111943682B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115403385A (zh) * | 2022-09-13 | 2022-11-29 | 燕山大学 | 一种掺杂氧离子的高熵陶瓷及制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109734451A (zh) * | 2019-01-31 | 2019-05-10 | 四川大学 | 一种过渡金属二硼化物高熵陶瓷及其制备方法 |
CN109987941A (zh) * | 2019-03-11 | 2019-07-09 | 广东工业大学 | 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用 |
CN110002879A (zh) * | 2019-03-22 | 2019-07-12 | 广东工业大学 | 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用 |
CN110204341A (zh) * | 2019-05-29 | 2019-09-06 | 华南理工大学 | 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法 |
CN110511035A (zh) * | 2019-08-05 | 2019-11-29 | 广东工业大学 | 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用 |
CN110606749A (zh) * | 2019-09-29 | 2019-12-24 | 石家庄铁道大学 | 一种高熵硼化物陶瓷材料及其制备方法 |
CN110615681A (zh) * | 2019-09-23 | 2019-12-27 | 航天材料及工艺研究所 | 一种多孔高熵六硼化物陶瓷及其制备方法 |
WO2020077771A1 (zh) * | 2018-10-15 | 2020-04-23 | 广东工业大学 | 一种超细高熵固熔体粉末及其制备方法和应用 |
-
2020
- 2020-07-24 CN CN202010724840.8A patent/CN111943682B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020077771A1 (zh) * | 2018-10-15 | 2020-04-23 | 广东工业大学 | 一种超细高熵固熔体粉末及其制备方法和应用 |
CN109734451A (zh) * | 2019-01-31 | 2019-05-10 | 四川大学 | 一种过渡金属二硼化物高熵陶瓷及其制备方法 |
CN109987941A (zh) * | 2019-03-11 | 2019-07-09 | 广东工业大学 | 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用 |
CN110002879A (zh) * | 2019-03-22 | 2019-07-12 | 广东工业大学 | 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用 |
CN110204341A (zh) * | 2019-05-29 | 2019-09-06 | 华南理工大学 | 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法 |
CN110511035A (zh) * | 2019-08-05 | 2019-11-29 | 广东工业大学 | 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用 |
CN110615681A (zh) * | 2019-09-23 | 2019-12-27 | 航天材料及工艺研究所 | 一种多孔高熵六硼化物陶瓷及其制备方法 |
CN110606749A (zh) * | 2019-09-29 | 2019-12-24 | 石家庄铁道大学 | 一种高熵硼化物陶瓷材料及其制备方法 |
Non-Patent Citations (5)
Title |
---|
GU JUNFENG 等: "Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach", 《SCIENCE CHINA MATERIALS》 * |
JOSHUA GILD 等: "Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering", 《CERAMICS INTERNATIONAL》 * |
LIU HAI-TAO 等: "Anisotropy oxidation of textured ZrB2-MoSi2 ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
ZHANG YAN 等: "Dense high-entropy boride ceramics with ultra-high hardness", 《SCRIPTA MATERIALIA》 * |
ZHANG YAN 等: "Fabrication of textured (Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 high-entropy ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115403385A (zh) * | 2022-09-13 | 2022-11-29 | 燕山大学 | 一种掺杂氧离子的高熵陶瓷及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111943682B (zh) | 2022-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109678523B (zh) | 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用 | |
CN110002879B (zh) | 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用 | |
CN109516811B (zh) | 一种具有多元高熵的陶瓷及其制备方法和应用 | |
CN109987941B (zh) | 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用 | |
CN109879669B (zh) | 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用 | |
JP5444384B2 (ja) | 高熱伝導性窒化アルミニウム焼結体 | |
Li et al. | Microstructure and mechanical properties of aluminum nitride co-doped with cerium oxide via hot-pressing sintering | |
JP5930317B2 (ja) | 高強度強靱性ZrO2‐Al2O3系固溶体セラミックスの作製法 | |
CN112679213B (zh) | 一种超多元高熵陶瓷及其制备方法和应用 | |
CN112830791A (zh) | 一种高熵陶瓷及其制备方法和应用 | |
Shan et al. | Highly infrared transparent spark plasma sintered AlON ceramics | |
CN109665848B (zh) | 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用 | |
CN112830792B (zh) | 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用 | |
CN110204337B (zh) | 一种航天陀螺仪轴承用碳化硼陶瓷材料的制备方法及其碳化硼陶瓷材料 | |
CN111943682B (zh) | 一种高韧性耐氧化的织构化高熵陶瓷及其制备方法和应用 | |
WO2018117161A1 (ja) | 配向AlN焼結体及びその製法 | |
CN115557793B (zh) | 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用 | |
CN108892528B (zh) | 一种多孔氮化硅陶瓷材料及其制备方法 | |
CN111732436A (zh) | 易烧结钛和钨共掺杂碳化锆粉体及其制备方法 | |
Akarsu et al. | Comparative Study of Reactive and Non-reactive Spark Plasma Sintering Routes for The Production of TaB2-TaC Composites | |
Ozturk et al. | The grain growth in alumina compacts sintered under high pressure | |
CN115872749B (zh) | 一种高熵硼化物增强b4c复合陶瓷及其原位合成方法 | |
JP7116234B1 (ja) | 複合セラミックスの製造方法 | |
JP3979680B2 (ja) | 窒化ケイ素質焼結体用窒化ケイ素粉末ならびに窒化ケイ素質焼結体およびその製造方法 | |
Gevorkyan et al. | Technical ceramics based on zirconia dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |