CN111170755B - 一种二硼化钛基纳米复合刀具材料及制备方法 - Google Patents

一种二硼化钛基纳米复合刀具材料及制备方法 Download PDF

Info

Publication number
CN111170755B
CN111170755B CN201911320573.1A CN201911320573A CN111170755B CN 111170755 B CN111170755 B CN 111170755B CN 201911320573 A CN201911320573 A CN 201911320573A CN 111170755 B CN111170755 B CN 111170755B
Authority
CN
China
Prior art keywords
nano
graphene
suspension
ceramic
titanium diboride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911320573.1A
Other languages
English (en)
Other versions
CN111170755A (zh
Inventor
孙加林
皇志富
闫柯
陈飞
坚永鑫
杨贺杰
李博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201911320573.1A priority Critical patent/CN111170755B/zh
Publication of CN111170755A publication Critical patent/CN111170755A/zh
Application granted granted Critical
Publication of CN111170755B publication Critical patent/CN111170755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种二硼化钛基纳米复合刀具材料及制备方法,以二硼化钛为基料,采用纳米氧化物陶瓷及纳米碳化物陶瓷作为烧结助剂,协同发挥缺陷强化烧结与液相强化烧结作用;碳化硅晶须掺杂石墨烯作为协同强韧化相,石墨烯具有较大的比表面积,为碳化硅晶须及纳米复相陶瓷提供负载体,而碳化硅晶须分布在石墨烯表面,可起到石墨烯聚集阻隔剂的作用,从而显著增大碳化硅晶须‑石墨烯与材料基体的接触面积且相容性好,形成碳化硅晶须/石墨烯/纳米复相陶瓷/二硼化钛基体界面,引入基于多元多尺度强弱混杂界面调控的协同强韧化机理,得到高致密、高性能的二硼化钛基纳米复合刀具材料;制备得到的抗弯强度、维氏硬度和断裂韧性力学性能大大提高。

Description

一种二硼化钛基纳米复合刀具材料及制备方法
技术领域
本发明属于材料科学技术领域,具体涉及一种二硼化钛基纳米复合刀具材料及制备方法。
背景技术
随着科技的发展,铝合金、高温合金以及超高强度钢等难加工材料在航空航天、兵器等领域应用越来越广泛,但这些难加工材料存在切削力大、切削温度高、刀具磨损严重等问题,一直是切削加工的难题。TiB2基陶瓷刀具材料具有较好的的耐磨性、耐腐蚀性、抗氧化性及导热性能,在高速切削超高强度钢等发热量大、硬度高的难加工材料方面具有优于传统陶瓷刀具的切削性能和刀具寿命,符合绿色加工理念。
TiB2基陶瓷刀具材料的致密化与强韧化已成为制约TiB2基陶瓷刀具发展的最主要原因。TiB2是一种高熔点碳化物(2980℃),在无金属粘结相存在的条件下,利用真空烧结、热压烧结等传统烧结方法很难获得致密的TiB2基陶瓷,虽然热等静压烧结(HIP)、放电等离子烧结(SPS)等先进烧结技术可在一定程度上提高TiB2基陶瓷致密度,但成本较高且效果不甚理想。强韧化方面则以传统的组分强韧化方法为主,通过颗粒弥散强韧化、相变强韧化、晶须或纤维强韧化以及协同强韧化等提高TiB2基陶瓷刀具材料的力学性能(增韧为主),其强韧化效果较为有限,严重限制了其广泛应用。
石墨烯作为复合材料的新生力,是目前公认的最薄、最强且最硬的材料,凭借其小尺寸化、高性能化和多性能化等优势,非常有可能成为新一代的纳米复合材料强韧化相,制备石墨烯强韧化纳米复合材料。由于石墨烯具有较大的比表面积,片层间的接触面积较大,引入大的范德华力,导致石墨烯极易在复合材料内部发生聚集,严重影响石墨烯的强韧化效果,无法有效提高TiB2基陶瓷刀具材料的力学性能。
发明内容
本发明的目的在于提供一种二硼化钛基纳米复合刀具材料及制备方法,以克服现有技术的不足。
为达到上述目的,本发明采用如下技术方案:
一种二硼化钛基纳米复合刀具材料制备方法,包括以下步骤:
1)、按质量百分比计取以下原料:纳米碳化物陶瓷:2.5%~7.5%,纳米氧化物陶瓷:2.5%~7.5%,石墨烯:0.1~0.5,碳化硅晶须:0.5%~5%,其余为二硼化钛;
2)、将石墨烯和碳化硅晶须混合均匀得到石墨烯-碳化硅晶须杂化悬浮液;
3)、将纳米碳化物陶瓷和纳米氧化物陶瓷混合分散均匀得到纳米陶瓷悬浮液;
4)、将二硼化钛加入纳米陶瓷悬浮液中混合均匀得到纳米复合粉体悬浮液,然后将石墨烯-碳化硅晶须杂化悬浮液加入纳米复合粉体悬浮液中进行超声分散得到混合悬浮液A,然后对混合悬浮液A球磨后干燥过筛即可得到二硼化钛基纳米复合刀具材料粉体;
5)、将二硼化钛基纳米复合刀具材料粉体放入模具、铺平、压制成型得到模坯初体,然后将模坯初体在炉体内烧结即可得到二硼化钛基纳米复合刀具材料。
进一步的,将石墨烯加入分散介质和分散剂中混合均匀得到石墨烯悬浮液,然后调节石墨烯悬浮液pH值为7-10,将调节pH值后的石墨烯悬浮液在70-90℃水浴加热超声分散30-90min;然后将碳化硅晶须加入到超声分散后的石墨烯悬浮液中,继续超声分散30-90min制得石墨烯-碳化硅晶须杂化悬浮液。
进一步的,分散介质采用去离子水、无水乙醇、二甲基甲酰胺和N-甲基吡咯烷酮中一种或几种;分散剂采用聚乙二醇、聚乙烯吡咯烷酮、十八烷基二甲基苄基氯化铵和十二烷基苯磺酸钠中的一种或几种,分散剂的加入量为石墨烯质量的50-100%。
进一步的,将纳米碳化物陶瓷和纳米氧化物陶瓷在分散介质和分散剂中充分混合均匀;将纳米碳化物陶瓷加入分散介质和分散剂中分散,得到纳米碳化物陶瓷悬浮液;同理得到纳米氧化物陶瓷悬浮液,然后将纳米氧化物陶瓷悬浮液和纳米碳化物陶瓷悬浮液混合分散均匀得到纳米陶瓷悬浮液。
进一步的,分散介质采用去离子水、无水乙醇、二甲基甲酰胺和N-甲基吡咯烷酮中一种或几种;分散剂采用聚乙二醇、聚乙烯吡咯烷酮、十八烷基二甲基苄基氯化铵和十二烷基苯磺酸钠中的一种或几种,分散剂的加入量为纳米碳化物陶瓷质量的1%-2%。
进一步的,石墨烯-碳化硅晶须杂化悬浮液滴加加入到纳米复合粉体悬浮液中。
进一步的,步骤5)中,以60--80℃/min升温至1650-1800℃,在1650-1800℃下保温15-45min后随炉冷却至室温得到二硼化钛基纳米复合刀具材料,烧结过程中炉体内真空度小于10Pa;随炉冷却至室温过程中,在室温至1200℃期间,压力保持至少20MPa;高于1200℃温度下压力保持至少40MPa。
进一步的,步骤5)中,60--80℃/min升温至1700-1850℃,在1700-1850℃下保温1-5min然后按60-70℃/min速率冷却至1600-1650℃并保温1-6h后随炉冷却至室温得到二硼化钛基纳米复合刀具材料,烧结过程中炉体内真空度小于10Pa;随炉冷却至室温过程中,在室温至1200℃期间,压力保持至少20MPa;高于1200℃温度下压力保持至少40MPa。
一种二硼化钛基纳米复合刀具材料,按质量百分比计包括:纳米碳化物陶瓷:2.5%~7.5%,纳米氧化物陶瓷:2.5%~7.5%,石墨烯:0.1~0.5,碳化硅晶须:0.5%~5%,其余为二硼化钛。
进一步的,纳米碳化物陶瓷采用WC、TiC、TaC、VC、Cr3C2和SiC中至少一种;纳米氧化物陶瓷采用Al2O3、ZrO2、MgO和Y2O3中至少一种。
与现有技术相比,本发明具有以下有益的技术效果:
本发明一种二硼化钛基纳米复合刀具材料制备方法,以二硼化钛为基料,首先制备石墨烯-碳化硅晶须杂化悬浮液和纳米陶瓷悬浮液,然后将二硼化钛加入到石墨烯-碳化硅晶须杂化悬浮液和纳米陶瓷悬浮液内,确保纳米碳化物陶瓷、纳米氧化物陶瓷、石墨烯和碳化硅晶须分散均匀至二硼化钛表面,采用纳米氧化物陶瓷及纳米碳化物陶瓷作为烧结助剂,协同发挥缺陷强化烧结与液相强化烧结作用;采用碳化硅晶须掺杂石墨烯作为协同强韧化相,石墨烯具有较大的比表面积,可以为碳化硅晶须及纳米复相陶瓷提供负载体,而碳化硅晶须分布在石墨烯表面,可起到石墨烯聚集阻隔剂的作用,从而显著增大碳化硅晶须-石墨烯与材料基体的接触面积且相容性好,形成碳化硅晶须/石墨烯/纳米复相陶瓷/二硼化钛基体界面,引入基于多元多尺度强弱混杂界面调控的协同强韧化机理,得到高致密、高性能的二硼化钛基纳米复合刀具材料;制备得到的二硼化钛基纳米复合刀具材料抗弯强度、维氏硬度和断裂韧性力学性能大大提高。
本发明通过控制石墨烯作为碳化硅晶须负载体,碳化硅晶须充当石墨烯聚集阻隔剂,显著增大石墨烯-碳化硅晶须与材料基体的接触面积且相容性好,引入石墨烯/碳化硅晶须/纳米复相陶瓷/二硼化钛基体多元多尺度强弱混杂界面,形成石墨烯与碳化硅晶须协同强韧化机制。
进一步的,以60--80℃/min升温至1650-1800℃,在1650-1800℃下保温15-45min,采用烧结温度低,从而避免基体相二硼化钛及纳米烧结助剂晶粒增长以及高温对于石墨烯-碳化硅晶须的结构损伤和性能退化。石墨烯-碳化硅晶须强韧化与减摩润滑效应协同作用,可显著提高刀具寿命及加工表面质量。
具体实施方式
下面对本发明做进一步详细描述:
一种二硼化钛基纳米复合刀具材料,按质量百分比计包括:纳米碳化物陶瓷:2.5%~7.5%,纳米氧化物陶瓷:2.5%~7.5%,石墨烯:0.1~0.5,碳化硅晶须(SiCw):0.5%~5%,其余为二硼化钛。
其中,纳米碳化物陶瓷采用WC、TiC、TaC、VC、Cr3C2和SiC中至少一种;纳米氧化物陶瓷采用Al2O3、ZrO2、MgO和Y2O3中至少一种;
所述二硼化钛粉末的粒度为100-500nm;纳米碳化物陶瓷和纳米氧化物陶瓷粒度为20-100nm,石墨烯层数为5-50层;碳化硅晶须直径≤500nm,长径比≥20。纳米碳化物陶瓷和纳米氧化物陶瓷协同作为烧结助剂,质量分数为5~15%。石墨烯和碳化硅晶须协同强韧化相与润滑减摩相。
一种二硼化钛基纳米复合刀具材料制备方法,包括以下步骤:
1)、按质量百分比计取以下原料:纳米碳化物陶瓷:2.5%~7.5%,纳米氧化物陶瓷:2.5%~7.5%,石墨烯:0.1~0.5,碳化硅晶须:0.5%~5%,其余为二硼化钛;
2)、将石墨烯和碳化硅晶须混合均匀得到石墨烯-碳化硅晶须杂化悬浮液;
具体的,将石墨烯加入分散介质和分散剂中混合均匀得到石墨烯悬浮液,然后调节石墨烯悬浮液pH值为7-10,将调节pH值后的石墨烯悬浮液在70-90℃水浴加热超声分散30-90min;然后将碳化硅晶须加入到超声分散后的石墨烯悬浮液中,继续超声分散30-90min制得石墨烯-碳化硅晶须杂化悬浮液;
通过氨水和盐酸调节石墨烯悬浮液pH值。
分散介质采用去离子水、无水乙醇、二甲基甲酰胺和N-甲基吡咯烷酮中一种或几种;分散剂采用聚乙二醇、聚乙烯吡咯烷酮、十八烷基二甲基苄基氯化铵和十二烷基苯磺酸钠中的一种或几种,分散剂的加入量为石墨烯质量的50-100%;
3)、将纳米碳化物陶瓷和纳米氧化物陶瓷混合分散均匀得到纳米陶瓷悬浮液;
具体的,将纳米碳化物陶瓷和纳米氧化物陶瓷在分散介质和分散剂中充分混合均匀;将纳米碳化物陶瓷加入分散介质和分散剂中分散,得到纳米碳化物陶瓷悬浮液;同理得到纳米氧化物陶瓷悬浮液,然后将纳米氧化物陶瓷悬浮液和纳米碳化物陶瓷悬浮液混合,在超声分散及机械搅拌条件下分散得到纳米陶瓷悬浮液;
分散介质采用去离子水、无水乙醇、二甲基甲酰胺和N-甲基吡咯烷酮中一种或几种;分散剂采用聚乙二醇、聚乙烯吡咯烷酮、十八烷基二甲基苄基氯化铵和十二烷基苯磺酸钠中的一种或几种,分散剂的加入量为纳米碳化物陶瓷质量的1%-2%;
4)、将二硼化钛加入纳米陶瓷悬浮液中混合均匀得到纳米复合粉体悬浮液,然后将石墨烯-碳化硅晶须杂化悬浮液加入纳米复合粉体悬浮液中进行超声分散得到混合悬浮液A,然后对混合悬浮液A球磨后干燥过筛即可得到二硼化钛基纳米复合刀具材料粉体。具体的,石墨烯-碳化硅晶须杂化悬浮液滴加加入到纳米复合粉体悬浮液中,滴加能够使石墨烯-碳化硅晶须杂化悬浮液中的石墨烯和碳化硅晶须充分分散到纳米复合粉体悬浮液中。
一种二硼化钛基纳米复合刀具制备方法,包括以下步骤:
1、将上述制备得到的二硼化钛基纳米复合刀具材料粉体放入模具、铺平、压制成型;
2、然后连同模具一起烧结得到二硼化钛基纳米复合刀具材料;
具体的,在真空度保持在10Pa以下,按60--80℃/min升温至1650-1800℃,在1650-1800℃下保温15-45min后随炉冷却至室温得到二硼化钛基纳米复合刀具材料;随炉冷却至室温过程中,在室温至1200℃期间,压力保持至少20MPa;高于1200℃温度下压力保持至少40MPa。
或者在真空度保持在10Pa以下,按60--80℃/min升温至1700-1850℃,在1700-1850℃下保温1-5min然后按60-70℃/min速率冷却至1600-1650℃并保温1-6h后随炉冷却至室温得到二硼化钛基纳米复合刀具材料;随炉冷却至室温过程中,在室温至1200℃期间,压力保持至少20MPa;高于1200℃温度下压力保持至少40MPa。
下面对本发明的结构原理和使用步骤作进一步说明:
实施例1
(1)以0.4μm二硼化钛(TiB2)、50nm碳化钛(TiC)、50nm氧化镁(MgO)、多层石墨烯及SiCw为原料,按82.8%TiB2,7.5%TiC,7.5%MgO,0.2%石墨烯和2.0%SiCw的质量配比;
(2)石墨烯分散采用N-甲基吡咯烷酮作为分散介质,加入相对石墨烯质量65%的复式分散剂(十八烷基二甲基苄基氯化铵:聚乙烯吡咯烷酮:十二烷基苯磺酸钠=1:1:1),配置成石墨烯悬浮液,通过氨水和盐酸调节pH为9,在80℃水浴加热超声分散60min;将SiCw加入到石墨烯悬浮液中,继续超声分散60min制得石墨烯-SiCw杂化悬浮液;纳米TiC分散采用无水乙醇为分散介质,加入相对纳米TiC颗粒质量1.5%的聚乙烯吡咯烷酮,配置成纳米TiC悬浮液,纳米MgO分散工艺与纳米TiC分散工艺相同得到纳米MgO悬浮液,在超声分散及机械搅拌条件下,将纳米MgO悬浮液滴加到纳米TiC悬浮液,继续超声分散60min制得纳米陶瓷悬浮液;
(3)按照步骤(1)配比,将TiB2粉末与步骤(2)制得的纳米陶瓷悬浮液混合,保持pH为9,在80℃水浴加热继续超声分散60min得到TiB2基纳米复合粉体悬浮液,然后将步骤(2)中制得的石墨烯-SiCw杂化悬浮液,在超声分散及搅拌的状态下滴加到TiB2基纳米复合粉体悬浮液继续超声分散60min。按15:1的球料比加入磨球,球磨30小时,然后在真空干燥箱中干燥,过筛即得各相混合均匀的石墨烯-SiCw/TiB2基纳米复合刀具粉体;
(4)采用二步热压烧结工艺;在真空度保持在10Pa以下,按60℃/min升温至1750℃,保温5min然后按60℃/min冷却至1600℃保温1h,然后随炉冷却;在室温至1200℃期间,压力保持20MPa,1200-1750℃压力保持40MPa。至烧结程序运行结束,即可获得高致密、高性能的添加石墨烯-SiCw的TiB2基纳米复合刀具材料。
对实施例1TiB2基纳米复合刀具材料进行力学性能测试,得到的其力学性能为:抗弯强度963±13.6MPa,维氏硬度HV20 21.2±0.5GPa,断裂韧性8.63±0.5MPa·m1/2
实施例2
(1)以0.3μm二硼化钛(TiB2)、80nm碳化铬(Cr3C2)、20nm氧化铝(Al2O3)、石墨烯纳米片及SiCw为原料,按88.2%TiB2,2.5%Cr3C2,6.5%Al2O3,0.3%石墨烯和2.5%SiCw质量配比。
(2)石墨烯分散采用二甲基甲酰胺作为分散介质,加入相对石墨烯质量80%的复式分散剂(聚乙烯吡咯烷酮:十二烷基苯磺酸钠=2:1),配置成石墨烯悬浮液,通过氨水和盐酸调节pH为10,在70℃水浴加热超声分散90min;将SiCw加入到石墨烯悬浮液中,继续超声分散90min制得石墨烯-SiCw杂化悬浮液;纳米Cr3C2分散采用无水乙醇为分散介质,加入相对纳米Cr3C2颗粒质量1.5%聚乙烯吡咯烷酮,配置成纳米Cr3C2悬浮液,纳米Al2O3分散工艺与纳米Cr3C2分散工艺相同得到纳米Al2O悬浮液,在超声分散及机械搅拌条件下,将纳米Al2O悬浮液滴加到纳米3Cr3C2悬浮液,继续超声分散60min制得纳米陶瓷悬浮液。
(3)按照步骤(1)配比,将TiB2粉末与步骤(2)制得的纳米陶瓷悬浮液混合,保持pH为10,在70℃水浴加热继续超声分散90min得到TiB2基纳米复合粉体悬浮液,然后将步骤(2)中制得的石墨烯-SiCw杂化悬浮液,在超声分散及搅拌的状态下滴加到TiB2基纳米复合粉体悬浮液继续超声分散60min。按15:1的球料比加入磨球,球磨30小时,然后在真空干燥箱中干燥,过筛即得各相混合均匀的石墨烯-SiCw/TiB2基纳米复合刀具粉体;
(4)采用一步热压烧结工艺,在真空度保持在10Pa以下,按80℃/min升温至1650℃,保温45min,然后断电随炉冷却;在室温至1200℃期间,压力保持20MPa,1200-1650℃,压力保持40MPa。至烧结程序运行结束,即可获得高致密、高性能的添加石墨烯-SiCw的TiB2基纳米复合刀具材料。
实施例3
(1)以0.4μm二硼化钛(TiB2)、80nm碳化钨(WC)、30nm氧化锆(ZrO2)、多层石墨烯及SiCw为原料,按89.0%TiB2,3.0%WC,6.0%ZrO2,0.5%石墨烯和1.5%SiCw质量配比;
(2)石墨烯分散采用无水乙醇作为分散介质,加入相对石墨烯质量80%的复式分散剂(十八烷基二甲基苄基氯化铵:聚乙烯吡咯烷酮:十二烷基苯磺酸钠=1:1:1),配置成石墨烯悬浮液,通过氨水和盐酸调节pH为7,在90℃水浴加热超声分散45min;将SiCw加入到石墨烯悬浮液中,继续超声分散45min制得石墨烯-SiCw杂化悬浮液;纳米WC分散采用无水乙醇为分散介质,加入相对纳米WC颗粒质量1.5%聚乙烯吡咯烷酮,配置成纳米WC悬浮液,纳米ZrO2分散工艺与纳米WC分散工艺相同,在超声分散及机械搅拌条件下,将纳米ZrO2悬浮液滴加到纳米WC悬浮液,继续超声分散60min制得纳米陶瓷悬浮液。
(3)按照步骤(1)配比,将TiB2粉末与步骤(2)制得的纳米陶瓷悬浮液混合,保持pH为9,在80℃水浴加热继续超声分散60min得到TiB2基纳米复合粉体悬浮液,然后将步骤(2)中制得的石墨烯-SiCw杂化悬浮液,在超声分散及搅拌的状态下滴加到TiB2基纳米复合粉体悬浮液继续超声分散60min。按14:1的球料比加入磨球,球磨24小时,然后在真空干燥箱中干燥,过筛即得各相混合均匀的石墨烯-SiCw/TiB2基纳米复合刀具粉体;
(4)采用二步热压烧结工艺:在真空度保持在10Pa以下,按60℃/min升温至1750℃,保温3min然后按60℃/min冷却至1630℃保温2h,然后随炉冷却;在室温至1200℃期间,压力保持20MPa,1200-1700℃压力保持40MPa。至烧结程序运行结束,即可获得高致密、高性能的添加石墨烯-SiCw的TiB2基纳米复合刀具材料。
实施例4
(1)以0.1μm二硼化钛(TiB2)、80nm碳化硅(SiC)、80nm氧化钇(Y2O3)、多层石墨烯及SiCw为原料,按85.0%TiB2,6.6%SiC,7.5%Y2O3,0.4%石墨烯和0.5%SiCw质量配比。
(2)石墨烯分散采用N-甲基吡咯烷酮作为分散介质,加入相对石墨烯质量85%的复式分散剂(聚乙烯吡咯烷酮:聚乙二醇=1:1),配置成石墨烯悬浮液,通过氨水和盐酸调节pH为8,在75℃水浴加热超声分散70min;将SiCw加入到石墨烯悬浮液中,继续超声分散70min制得石墨烯-SiCw杂化悬浮液;纳米SiC分散采用无水乙醇为分散介质,加入相对纳米SiC颗粒质量1.5%聚乙烯吡咯烷酮,配置成纳米SiC悬浮液,纳米Y2O3分散工艺与纳米SiC分散工艺相同,在超声分散及机械搅拌条件下,将纳米Y2O3悬浮液滴加到纳米SiC悬浮液,继续超声分散60min制得纳米陶瓷悬浮液。
(3)按照步骤(1)配比,将TiB2粉末与步骤(2)制得的纳米陶瓷悬浮液混合,保持pH为9,在80℃水浴加热继续超声分散60min得到TiB2基纳米复合粉体悬浮液,然后将步骤(2)中制得的石墨烯-SiCw杂化悬浮液,在超声分散及搅拌的状态下滴加到TiB2基纳米复合粉体悬浮液继续超声分散60min。按15:2的球料比加入磨球,球磨30小时,然后在真空干燥箱中干燥,过筛即得各相混合均匀的石墨烯-SiCw/TiB2基纳米复合刀具粉体;
(4)采用二步热压烧结工艺;在真空度保持在10Pa以下,按60℃/min升温至1700℃,保温5min然后按60℃/min冷却至1600℃保温6h,然后随炉冷却;在室温至1200℃期间,压力保持20MPa,1200-1750℃压力保持40MPa。至烧结程序运行结束,即可获得高致密、高性能的添加石墨烯-SiCw的TiB2基纳米复合刀具材料。
实施例5
(1)以0.4μm二硼化钛(TiB2)、50nm碳化钛(TiC)、80nm碳化硅(SiC)、50nm氧化锆(ZrO2)、80nm氧化钇(Y2O3)、多层石墨烯及SiCw为原料,按84.0%TiB2,2.0%TiC,2.0%SiC,5.5%ZrO2,2.0%Y2O3,0.5%石墨烯和4.0%SiCw质量配比;
(2)石墨烯分散采用N-甲基吡咯烷酮作为分散介质,加入相对石墨烯质量65%的复式分散剂(十八烷基二甲基苄基氯化铵:聚乙烯吡咯烷酮:十二烷基苯磺酸钠=1:1:1),配置成石墨烯悬浮液,通过氨水和盐酸调节pH为8,在85℃水浴加热超声分散30min;将SiCw加入到石墨烯悬浮液中,继续超声分散30min制得石墨烯-SiCw杂化悬浮液;纳米TiC分散采用无水乙醇为分散介质,加入相对纳米TiC颗粒质量1.5%聚乙烯吡咯烷酮,配置成纳米TiC悬浮液,纳米SiC、ZrO2、Y2O3分散工艺与纳米TiC分散工艺相同,在超声分散及机械搅拌条件下,将纳米SiC、ZrO2、Y2O3悬浮液滴加到纳米TiC悬浮液,继续超声分散60min制得纳米陶瓷悬浮液。
(3)按照步骤(1)配比,将TiB2粉末与步骤(2)制得的纳米陶瓷悬浮液混合,保持pH为8,在70℃水浴加热继续超声分散70min得到TiB2基纳米复合粉体悬浮液,然后将步骤(2)中制得的石墨烯-SiCw杂化悬浮液,在超声分散及搅拌的状态下滴加到TiB2基纳米复合粉体悬浮液继续超声分散70min。按15:1的球料比加入磨球,球磨30小时,然后在真空干燥箱中干燥,过筛即得各相混合均匀的石墨烯-SiCw/TiB2基纳米复合刀具粉体;
(4)采用一步热压烧结工艺。在真空度保持在10Pa以下,按80℃/min升温至1800℃,保温30min,然后断电随炉冷却;在室温至1200℃期间,压力保持20MPa,1200-1675℃,压力保持40MPa。至烧结程序运行结束,即可获得高致密、高性能的添加石墨烯-SiCw的TiB2基纳米复合刀具材料。
实施例6
(1)以0.4μm二硼化钛(TiB2)、50nm碳化钽(TaC)、50nm氧化铝(Al2O3)、石墨烯纳米片及SiCw为原料,按89.8%TiB2,2.6%TaC,2.5%Al2O3,0.1%石墨烯和5%SiCw质量配比。
(2)石墨烯分散采用二甲基甲酰胺作为分散介质,加入相对石墨烯质量65%的复式分散剂(十八烷基二甲基苄基氯化铵:聚乙烯吡咯烷酮:十二烷基苯磺酸钠=1:1:1),配置成石墨烯悬浮液,通过氨水和盐酸调节pH为9,在80℃水浴加热超声分散60min;将SiCw加入到石墨烯悬浮液中,继续超声分散60min制得石墨烯-SiCw杂化悬浮液;纳米TaC分散采用无水乙醇为分散介质,加入相对纳米TaC颗粒质量1.5%聚乙烯吡咯烷酮,配置成纳米TaC悬浮液,纳米Al2O3分散工艺与纳米TaC分散工艺相同,在超声分散及机械搅拌条件下,将纳米Al2O3悬浮液滴加到纳米TaC悬浮液,继续超声分散60min制得纳米陶瓷悬浮液。
(3)按照步骤(1)配比,将TiB2粉末与步骤(2)制得的纳米陶瓷悬浮液混合,保持pH为9,在80℃水浴加热继续超声分散60min得到TiB2基纳米复合粉体悬浮液,然后将步骤(2)中制得的石墨烯-SiCw杂化悬浮液,在超声分散及搅拌的状态下滴加到TiB2基纳米复合粉体悬浮液继续超声分散60min。按15:1的球料比加入磨球,球磨30小时,然后在真空干燥箱中干燥,过筛即得各相混合均匀的石墨烯-SiCw/TiB2基纳米复合刀具粉体;
(4)采用二步热压烧结工艺;在真空度保持在10Pa以下,按80℃/min升温至1850℃并保温1min然后按70℃/min冷却至1650℃保温1h,然后随炉冷却;在室温至1200℃期间,压力保持20MPa,1200-1750℃压力保持40MPa。至烧结程序运行结束,即可获得高致密、高性能的添加石墨烯-SiCw的TiB2基纳米复合刀具材料。

Claims (5)

1.一种二硼化钛基纳米复合刀具材料制备方法,其特征在于,包括以下步骤:
1)、按质量百分比计取以下原料:纳米碳化物陶瓷:2.5%~7.5%,纳米氧化物陶瓷:2.5%~7.5%,石墨烯:0.1~0.5,碳化硅晶须:0.5%~5%,其余为二硼化钛;纳米碳化物陶瓷采用WC、TiC、TaC、VC、Cr3C2和SiC中至少一种;纳米氧化物陶瓷采用Al2O3、ZrO2、MgO和Y2O3中至少一种;
2)、将石墨烯和碳化硅晶须混合均匀得到石墨烯-碳化硅晶须杂化悬浮液,具体的,将石墨烯加入分散介质和分散剂中混合均匀得到石墨烯悬浮液,然后调节石墨烯悬浮液pH值为7-10,将调节pH值后的石墨烯悬浮液在70-90℃水浴加热超声分散30-90min;然后将碳化硅晶须加入到超声分散后的石墨烯悬浮液中,继续超声分散30-90min制得石墨烯-碳化硅晶须杂化悬浮液;
3)、将纳米碳化物陶瓷和纳米氧化物陶瓷混合分散均匀得到纳米陶瓷悬浮液,具体的,将纳米碳化物陶瓷和纳米氧化物陶瓷在分散介质和分散剂中充分混合均匀;将纳米碳化物陶瓷加入分散介质和分散剂中分散,得到纳米碳化物陶瓷悬浮液;同理得到纳米氧化物陶瓷悬浮液,然后将纳米氧化物陶瓷悬浮液和纳米碳化物陶瓷悬浮液混合分散均匀得到纳米陶瓷悬浮液;
4)、将二硼化钛加入纳米陶瓷悬浮液中混合均匀得到纳米复合粉体悬浮液,然后将石墨烯-碳化硅晶须杂化悬浮液加入纳米复合粉体悬浮液中进行超声分散得到混合悬浮液A,然后对混合悬浮液A球磨后干燥过筛即可得到二硼化钛基纳米复合刀具材料粉体;
5)、将二硼化钛基纳米复合刀具材料粉体放入模具、铺平、压制成型得到模坯初体,然后将模坯初体在炉体内烧结即可得到二硼化钛基纳米复合刀具材料,具体的,以60--80℃/min升温至1650-1800℃,在1650-1800℃下保温15-45min后随炉冷却至室温得到二硼化钛基纳米复合刀具材料,烧结过程中炉体内真空度小于10Pa,在室温至1200℃期间,压力保持至少20MPa;高于1200℃温度下压力保持至少40MPa。
2.根据权利要求1所述的一种二硼化钛基纳米复合刀具材料制备方法,其特征在于,分散介质采用去离子水、无水乙醇、二甲基甲酰胺和N-甲基吡咯烷酮中一种或几种;分散剂采用聚乙二醇、聚乙烯吡咯烷酮、十八烷基二甲基苄基氯化铵和十二烷基苯磺酸钠中的一种或几种,分散剂的加入量为石墨烯质量的50-100%。
3.根据权利要求1所述的一种二硼化钛基纳米复合刀具材料制备方法,其特征在于,分散介质采用去离子水、无水乙醇、二甲基甲酰胺和N-甲基吡咯烷酮中一种或几种;分散剂采用聚乙二醇、聚乙烯吡咯烷酮、十八烷基二甲基苄基氯化铵和十二烷基苯磺酸钠中的一种或几种,分散剂的加入量为纳米碳化物陶瓷质量的1%-2%。
4.根据权利要求1所述的一种二硼化钛基纳米复合刀具材料制备方法,其特征在于,石墨烯-碳化硅晶须杂化悬浮液滴加加入到纳米复合粉体悬浮液中。
5.一种根据权利要求1所述方法制备的二硼化钛基纳米复合刀具材料,其特征在于按质量百分比计包括:纳米碳化物陶瓷:2.5%~7.5%,纳米氧化物陶瓷:2.5%~7.5%,石墨烯:0.1~0.5,碳化硅晶须:0.5%~5%,其余为二硼化钛。
CN201911320573.1A 2019-12-19 2019-12-19 一种二硼化钛基纳米复合刀具材料及制备方法 Active CN111170755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911320573.1A CN111170755B (zh) 2019-12-19 2019-12-19 一种二硼化钛基纳米复合刀具材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911320573.1A CN111170755B (zh) 2019-12-19 2019-12-19 一种二硼化钛基纳米复合刀具材料及制备方法

Publications (2)

Publication Number Publication Date
CN111170755A CN111170755A (zh) 2020-05-19
CN111170755B true CN111170755B (zh) 2021-11-19

Family

ID=70646617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911320573.1A Active CN111170755B (zh) 2019-12-19 2019-12-19 一种二硼化钛基纳米复合刀具材料及制备方法

Country Status (1)

Country Link
CN (1) CN111170755B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940585A (zh) * 2022-03-16 2022-08-26 成都中浦石墨烯应用技术有限公司 一种石墨烯玻璃盖板材料及制备方法
CN114956846B (zh) * 2022-06-21 2023-10-27 郑州大学 一种SiC晶须增韧氧化铝陶瓷刀具材料的制备方法
CN115504789A (zh) * 2022-09-20 2022-12-23 武汉科技大学 一种高强韧耐磨wc复合材料的制备方法
CN115521149B (zh) * 2022-10-25 2023-04-11 山东大学 一种高熵陶瓷基梯度纳米复合刀具材料及其制备方法
CN115849912B (zh) * 2023-02-22 2023-07-21 潍坊衡瑞硼业新材料科技有限公司 一种防弹陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385509B1 (en) * 1989-03-03 1994-01-05 Toray Industries, Inc. Process for producing ceramic composites
CN105481365A (zh) * 2014-09-15 2016-04-13 中国科学院上海硅酸盐研究所 一种高致密化碳化钛陶瓷的制备方法
CN105801154A (zh) * 2016-02-29 2016-07-27 中原工学院 一种石墨烯增韧碳化硅陶瓷复合材料的制备方法
CN106542839A (zh) * 2016-10-28 2017-03-29 宁波鑫汇力精密工具有限公司 一种晶须型增韧陶瓷的制备方法
CN108439990A (zh) * 2018-05-11 2018-08-24 东北大学 一种二硼化钛基陶瓷复合材料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8701172D0 (sv) * 1987-03-20 1987-03-20 Sandvik Ab Whiskerforsterkt keramiskt skerverktyg
JPH01103205A (ja) * 1987-10-15 1989-04-20 Toshiba Ceramics Co Ltd 炭素加工用工具
JPH01298073A (ja) * 1988-05-25 1989-12-01 Toray Ind Inc ホウ化物系セラミックス
WO1991008992A1 (en) * 1989-12-13 1991-06-27 The Dow Chemical Company Silicon carbide whisker reinforced ceramic composites and method for making the same
KR101355541B1 (ko) * 2011-07-29 2014-01-27 한국과학기술원 그래핀/세라믹 나노복합분말 및 그의 제조방법
KR101659700B1 (ko) * 2015-12-24 2016-09-23 영남대학교 산학협력단 질화알루미늄 및 질화알루미늄기 복합상 물질의 합성 방법
CN107266101A (zh) * 2017-08-10 2017-10-20 巩义市泛锐熠辉复合材料有限公司 一种短切碳纤维增强碳化硼基复合材料的制备方法
CN107500782B (zh) * 2017-09-19 2020-05-05 迟逞 一种增材制造用改性减摩耐磨抗蚀纳米陶瓷粉体材料的制备方法
CN109467446A (zh) * 2018-10-17 2019-03-15 中国兵器科学研究院宁波分院 一种热压烧结碳化硼陶瓷用的增韧烧结助剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385509B1 (en) * 1989-03-03 1994-01-05 Toray Industries, Inc. Process for producing ceramic composites
CN105481365A (zh) * 2014-09-15 2016-04-13 中国科学院上海硅酸盐研究所 一种高致密化碳化钛陶瓷的制备方法
CN105801154A (zh) * 2016-02-29 2016-07-27 中原工学院 一种石墨烯增韧碳化硅陶瓷复合材料的制备方法
CN106542839A (zh) * 2016-10-28 2017-03-29 宁波鑫汇力精密工具有限公司 一种晶须型增韧陶瓷的制备方法
CN108439990A (zh) * 2018-05-11 2018-08-24 东北大学 一种二硼化钛基陶瓷复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effect of SiC whiskers and grapheme nanosheets on the mechanical properties of ZrB2-SiCw-Graphene ceramic composites;Yumin An等;《Ceramics International》;20160606;第42卷;第14066段摘要 *

Also Published As

Publication number Publication date
CN111170755A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
CN111170755B (zh) 一种二硼化钛基纳米复合刀具材料及制备方法
CN111056852A (zh) 一种无粘结相wc基硬质合金刀具材料及其制备方法
CN104630533B (zh) 一种刀具材料的复合硬质合金的制备方法
US11634333B2 (en) Boron-containing titanium-based composite powder for 3D printing and method of preparing same
CN109487141B (zh) 一种板状碳化物固溶体增韧混晶Ti(C,N)基金属陶瓷的制备方法
CN107460391B (zh) 一种添加石墨烯的梯度硬质合金刀具材料及其快速制备方法
WO2015192815A1 (zh) 一种碳化钨-立方氮化硼复合材料及其制备方法
CN109576545B (zh) 一种具有混晶结构的Ti(C,N)基金属陶瓷及其制备方法
CN104876598A (zh) 薄带连铸用Max相-氮化硼复合陶瓷侧封板及其制造方法
CN106216687B (zh) 一种梯度碳化钨基微纳复合刀具材料及其制备方法
CN110468320B (zh) 一种高硬度和高韧性的金属陶瓷及其制备方法和应用
CN104630589B (zh) 一种碳化钨包覆的复合硬质合金材料及其制备方法
CN112846198B (zh) 一种纳米颗粒增强金属基复合材料及其制备方法
WO2022089379A1 (zh) 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
CN112111684B (zh) 3D打印三元硼化物Mo2NiB2合金粉末及其生产工艺
CN107937792B (zh) 一种梯度复合陶瓷刀具材料及其制备方法
CN107244918B (zh) 一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法
CN108017392B (zh) 梯度及非梯度SiCw增韧硼化物基复合陶瓷材料及其制备方法
CN111778436B (zh) 一种冷压-热压烧结制备wc-y2o3无粘结相硬质合金的方法
CN104131206A (zh) 碳氮化钛基硬质合金高速线材导轮材料及其制备方法
CN104690273A (zh) 一种纳米改性Ti(C&N)基金属陶瓷刀具的制备工艺
CN114875291B (zh) 一种高熵合金粉末及其制备方法和一种高熵合金激光熔覆层及其制备方法
CN112941389B (zh) 一种碳氮化钛基金属陶瓷及其制备方法和应用
CN112080678B (zh) 三元硼化物合金螺杆材料及其生产工艺
CN115007871A (zh) 一种制备高强高塑钼合金的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant