CN115504789A - 一种高强韧耐磨wc复合材料的制备方法 - Google Patents

一种高强韧耐磨wc复合材料的制备方法 Download PDF

Info

Publication number
CN115504789A
CN115504789A CN202211143212.6A CN202211143212A CN115504789A CN 115504789 A CN115504789 A CN 115504789A CN 202211143212 A CN202211143212 A CN 202211143212A CN 115504789 A CN115504789 A CN 115504789A
Authority
CN
China
Prior art keywords
powder
preparation
composite
resistant
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211143212.6A
Other languages
English (en)
Inventor
朱天彬
张宇航
杨一凡
李亚伟
桑绍柏
向紫阳
邹航
周艺
戴金宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202211143212.6A priority Critical patent/CN115504789A/zh
Publication of CN115504789A publication Critical patent/CN115504789A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

一种高强韧耐磨WC复合材料的制备方法,涉及一种陶瓷材料的制备方法。高强韧耐磨WC复合材料按质量分数为0.1~2%的GNPs‑SiCw复合粉体原料和余量的WC粉体制备而成。主要工艺:将GNPs‑SiCw复合粉体原料加入液体介质中进行超声搅拌,随后加入WC粉体后得到混合溶液;将混合溶液进行球磨,干燥和筛分,得到陶瓷复合粉体;陶瓷复合粉体烧结,得到高强韧耐磨WC复合材料。本发明很好解决了不同增强相间的结合性问题以及外加晶须的难分散问题,减少了战略性稀缺资源Co的使用,有效提高了WC复合材料力学性能及耐磨性,扩大了材料在工业领域的应用范围。

Description

一种高强韧耐磨WC复合材料的制备方法
技术领域
本发明涉及一种高强韧耐磨WC复合材料的制备方法。
背景技术
WC复合材料以其高硬度、高韧性以及优异的耐磨性成为现代工业中一种不可或缺的材料,且在切削刀具、凿岩采掘和耐磨部件等关键领域中均有广泛应用。Co作为最常见的粘结相,虽然能在较低的温度下实现WC材料的致密化,提高材料的强韧化。但Co的加入会降低WC的硬度和耐腐蚀性,尤其是在高温和腐蚀性环境中,WC硬质合金会迅速降解失效,进而无法满足某些极端工况环境下的应用要求。
为改善WC-Co硬质合金强韧性和耐磨性,专利“一种含有高熵陶瓷相的WC基硬质合金及其制备方法”(公开号CN111961940 A)通过引入微量高熵陶瓷相,优化硬质合金显微结构从而促进其强韧化,但没有考虑到应用过程中摩擦磨损问题。而“一种高耐磨性的WC-Co基合金及其制备方法”(公开号CN 114000025 A)专利公开了通过优化原料配方来提升材料的耐磨性,但是其抗弯强度也会有所降低。鉴于此,目前国内外通过开发无粘结相WC陶瓷来替代WC-Co材料,专利“一种碳化钨-硅化钨-氮化硅复合陶瓷材料及其制备方法”(公开号CN105801120A)公开了通过向WC体系中添加第二相组分对其力学性能进行改善,但韧性提升不明显。而专利“自生氮化硅晶须增韧碳化钨复合材料及其制备方法”(公开号CN102701773A)公开了通过原位生成晶须的方式提升了材料的断裂韧性,但是材料硬度降低会导致其在实际工况中发生灾难性破坏。因此,如何同时有效提升WC复合材料的强韧性和耐磨性,仍是本领域技术人员待解决的问题。
发明内容
针对现有技术存在的上述不足,本发明提供高强韧耐磨WC复合材料的制备方法,以解决现有技术中无法同时有效提升WC复合材料力学及摩擦学性能的问题。
本发明高强韧耐磨WC复合材料的制备方法按照以下步骤进行:
步骤一:按质量分数称取0.1~2%的GNPs-SiCw复合粉体和余量的WC粉体;
所述GNPs-SiCw复合粉体通过化学气相沉积法制备而成,制备方法:将硅源均匀填充于石墨模具底部,然后在硅源上方覆盖石墨夹层,在石墨夹层表面均匀铺石墨烯,然后在真空环境和1100~1400℃保温1~3小时,取出石墨夹层上表面反应得到石墨烯混合物,即为GNPs-SiCw复合粉体;
所述石墨夹层的厚度为5mm;所述石墨夹层由三层多孔石墨板构成,多孔石墨板中具有孔径为0.8mm左右的通孔,数层多孔石墨板叠放后通孔错开能够避免上面的石墨烯掉落,而高温下硅蒸汽或一氧化硅蒸汽能够穿过石墨夹层。
所述硅源为单质硅粉、二氧化硅微粉中的一种或两种任意比例的混合物;
所述石墨烯和硅源的摩尔比为(0.2~0.8):1;
步骤二:首先将GNPs-SiCw复合粉体加入液体介质中进行超声搅拌,然后加入WC粉体后再次超声搅拌,得到混合溶液;
步骤三:将混合溶液进行球磨,干燥和筛分,得到陶瓷复合粉体;
步骤四:陶瓷复合粉体烧结,得到高强韧耐磨WC复合陶瓷材料;
所述陶瓷粉体烧结工艺为振荡压力烧结,升温速度为20℃/min,烧结温度为1800~1920℃,烧结时间为60~120min,1100℃前向复合粉末施加10MPa的恒定压力,超过1100℃后向烧结粉体施加恒定压力和振荡压力,恒定压力20~80MPa,振荡压力±1~±6MPa,振荡频率为1~3Hz,烧结气氛为真空或高纯氩气气氛。
本发明原理及有益效果为:
1、本发明采用振荡压力烧结技术,在动态压力下能促进晶粒的塑性变形和晶界滑移,加速晶界处气孔的运动与合并,使闭气孔加速排出,在烧结过程中能有效抑制晶粒长大,通过颗粒重排、扩散和迁移等机制加速材料致密化进程。
2、相比于传统WC-Co硬质合金相比,本发明制备的WC基复合材料不含有Co,它降低了成本,能节约战略性稀缺资源Co的使用,并避免了金属粘结相带来的不利影响,改善了WC材料在极端环境下的使用性能。
3、本发明制备的GNPs-SiCw复合粉体,通过一维增强相SiCw和二维增强相GNPs的协同作用有效促进了复合材料的强韧化进程。相对于单独添加石墨烯或碳化硅晶须,通过化学气相沉积法制备的GNPs-SiCw复合粉体能减少SiCw在基体中的分散问题,改善不同增强相间的结合程度,有效提升WC复合陶瓷材料的断裂韧性及抗弯强度。
4、由于片状石墨烯纳米片的加入,其自润滑性能在复合材料表面形成一层保护膜,能有效降低复合材料的磨损量,提升耐磨性。此外,材料的强度和韧性的提升进一步阻止了摩擦过程中裂纹的产生与传播,减少了试样的破损,进一步提高了耐磨性,延长了材料的使用寿命,扩大了材料在工业领域的适用范围。
5、本发明制备的WC基陶瓷拥有良好的韧性以及优异的耐磨性,致密度均达到99%以上,可靠性强。制备出的WC基陶瓷力学性能优良,其中维氏硬度达到27~30GPa,断裂韧性可达8~12MPa·m1/2,抗弯强度可达1300~1600MPa。采用Si3N4陶瓷球作为摩擦副并施加载荷90N,摩擦系数仅为0.1~0.4,磨损率为1×10-7~4×10-7mm3·N-1·m-1,满足WC陶瓷在实际生产工况下应用要求。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意合理组合。
具体实施方式一:本实施方式高强韧耐磨WC复合材料的制备方法按照以下步骤进行:
步骤一:按质量分数称取0.1~2%的GNPs-SiCw复合粉体和余量的WC粉体;
所述GNPs-SiCw复合粉体通过化学气相沉积法制备而成,制备方法:将硅源均匀填充于石墨模具底部,在硅源上方覆盖石墨夹层,在石墨夹层表面均匀铺石墨烯,然后在真空环境和1100~1400℃保温1~3小时,取出石墨夹层上表面反应后的石墨烯混合物,即为GNPs-SiCw复合粉体;
所述石墨夹层的厚度为5mm;所述石墨夹层由三层多孔石墨板构成,多孔石墨板中具有孔径为0.8mm左右的通孔,三层多孔石墨板叠放后通孔错开能够避免上面的石墨烯掉落,而高温下硅蒸汽或一氧化硅蒸汽能够穿过石墨夹层;
所述硅源为单质硅粉、二氧化硅微粉中的一种或两种任意比例的混合物;
所述石墨烯和硅源的摩尔比为(0.2~0.8):1;
步骤二:首先将GNPs-SiCw复合粉体加入液体介质中进行超声搅拌,然后加入WC粉体后再次超声搅拌,得到混合溶液;
步骤三:将混合溶液进行球磨,干燥和筛分,得到陶瓷复合粉体;
步骤四:陶瓷复合粉体烧结,得到高强韧耐磨WC复合陶瓷材料;
所述陶瓷粉体烧结工艺为振荡压力烧结,升温速度为20℃/min,烧结温度为1800~1920℃,烧结时间为60~120min,1100℃前向复合粉末施加10MPa的恒定压力,超过1100℃后向烧结粉体施加恒定压力和振荡压力,恒定压力20~80MPa,振荡压力±1~±6MPa,振荡频率为1~3Hz,烧结气氛为真空或高纯氩气气氛。
本实施方式具备以下有益效果:
1、本实施方式采用振荡压力烧结技术,在动态压力下能促进晶粒的塑性变形和晶界滑移,加速晶界处气孔的运动与合并,使闭气孔加速排出,在烧结过程中能有效抑制晶粒长大,通过颗粒重排、扩散和迁移等机制加速材料致密化进程。
2、相比于传统WC-Co硬质合金相比,本实施方式制备的WC基复合材料不含有Co,它降低了成本,能节约战略性稀缺资源Co的使用,并避免了金属粘结相带来的不利影响,改善了WC材料在极端环境下的使用性能。
3、本实施方式制备的GNPs-SiCw复合粉体,通过一维增强相SiCw和二维增强相GNPs的协同作用有效促进了复合材料的强韧化进程。相对于单独添加石墨烯或碳化硅晶须,通过化学气相沉积法制备的GNPs-SiCw复合粉体能减少SiCw在基体中的分散问题,改善不同增强相间的结合程度,有效提升WC复合陶瓷材料的断裂韧性及抗弯强度。
4、由于片状石墨烯纳米片的加入,其自润滑性能在复合材料表面形成一层保护膜,能有效降低复合材料的磨损量,提升耐磨性。此外,材料的强度和韧性的提升进一步阻止了摩擦过程中裂纹的产生与传播,减少了试样的破损,进一步提高了耐磨性,延长了材料的使用寿命,扩大了材料在工业领域的适用范围。
5、本实施方式制备的WC基陶瓷拥有良好的韧性以及优异的耐磨性,致密度均达到99%以上,可靠性强。制备出的WC基陶瓷力学性能优良,其中维氏硬度达到27~30GPa,断裂韧性可达8~12MPa·m1/2,抗弯强度可达1300~1600MPa。采用Si3N4陶瓷球作为摩擦副并施加载荷90N,摩擦系数仅为0.1~0.4,磨损率为1×10-7~4×10-7mm3·N-1·m-1,满足WC陶瓷在实际生产工况下应用要求。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一所述WC粉体的平均粒径≤300nm;WC粉体的纯度≥99.9wt.%。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一所述单质硅粉粒度<0.08mm,所述二氧化硅微粉粒度≤5μm。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一所述石墨烯D50<10μm,比表面积≤280m2/g;石墨烯的纯度≥99wt.%。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二所述混合溶液中GNPs-SiCw复合粉体的质量分数是0.1~2%。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二所述液体介质为无水乙醇或去离子水。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二所述GNPs-SiCw复合粉体在液体介质中超声搅拌0.5h;加入WC粉体后再次超声搅拌0.5h。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤三所述混合溶液进行球磨的时间为12~24h;所述筛分时过60目筛。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤三所述球磨采用行星式球磨机,研磨球材质为碳化钨,混合溶液和研磨球的质量比为1:(5~10)。
实施例1:
本实施一种高强韧耐磨WC陶瓷及其制备方法按照以下步骤进行:
步骤一:按质量分数称取0.5%的GNPs-SiCw复合粉体和余量的WC粉体;
所述WC粉体的平均粒径≤300nm;所述WC粉体的纯度≥99.9wt.%;
所述的GNPs-SiCw复合粉体的制备方法按以下步骤进行:单质硅粉(粒度≤0.08mm,纯度>98.47%)放入石墨模具底部,在单质硅粉上方覆盖石墨夹层(孔径为0.8mm),将石墨烯纳米片放在石墨夹层上表面。将模具放入振荡压力烧结炉中,再将炉内真空压力抽至-0.1MPa后加热升温至1200℃中保温1小时,随炉自然冷却后取出烧结反应后的石墨烯纳米片混合物,获得用于WC复合材料的GNPs-SiCw复合粉体;
所述石墨烯D50<10μm,比表面积≤280m2/g;石墨烯的纯度≥99wt.%;
其中石墨烯和单质硅粉的摩尔比为0.4:1;
步骤二:首先将上述获得的GNPs-SiCw复合粉体加入液体介质中进行超声搅拌,得到混合溶液;
所述混合溶液中GNP-SiCw复合粉体的质量分数是0.5%;
所述液体介质为无水乙醇;
所述GNPs-SiCw复合粉体在液体介质中超声搅拌0.5h,加入WC粉体后再次超声搅拌0.5h;
步骤三:将混合溶液进行球磨,得到陶瓷浆料,烘干和筛分,得到陶瓷粉体;
所述混合溶液进行球磨的时间为16h;所述筛分时过60目筛;
所述球磨采用行星式球磨机,研磨球材质为碳化钨,混合溶液和研磨球的质量比为1:5;
步骤四:陶瓷复合粉体烧结,得到高强韧耐磨WC复合陶瓷材料;
所述陶瓷粉体烧结工艺为振荡压力烧结,升温速度为20℃/min,烧结温度为1850℃,烧结时间为90min,1100℃前向复合粉末施加10MPa的恒定压力,超过1100℃后向烧结粉体施加恒定压力和振荡压力,恒定压力40MPa,振荡压力±2MPa,振荡频率为2Hz,烧结气氛为真空气氛。
本实施例所制得的WC陶瓷致密度高达99%,维氏硬度为28.2GPa,断裂韧性达到9.2MPa·m1/2,抗弯强度为1430MPa,采用Si3N4陶瓷球作为摩擦副施加载荷90N,摩擦系数为0.28,磨损率为3.2×10-7mm3·N-1·m-1
实施例2:
本实施一种高强韧耐磨WC陶瓷及其制备方法按照以下步骤进行:
步骤一:按质量分数称取1%的GNPs-SiCw复合粉体和余量的WC粉体;
所述WC粉体的平均粒径≤300nm,所述WC粉体的纯度≥99.9wt.%;
所述的GNPs-SiCw复合粉体的制备方法按以下步骤进行:将二氧化硅微粉(粒度≤5μm)放入石墨模具底部,在单质硅粉上方覆盖石墨夹层(孔径为0.8mm),再将石墨烯纳米片放在石墨夹层上表面。将模具放入振荡压力烧结炉中,再将炉内真空压力抽至-0.1MPa后加热升温至1300℃中保温2小时,随炉自然冷却后取出烧结反应后的石墨烯纳米片混合物,获得用于WC复合材料的GNPs-SiCw复合粉体;
所述石墨烯D50<10μm,比表面积≤280m2/g;石墨烯的纯度≥99wt.%;
其中石墨烯纳米片和二氧化硅微粉的摩尔比为0.6:1;
步骤二:首先将上述获得的GNPs-SiCw复合粉体加入液体介质中进行超声搅拌,得到混合溶液;
所述混合溶液中GNP-SiCw复合粉体的质量分数是1%;
所述液体介质为无水乙醇;
所述GNPs-SiCw复合粉体在液体介质中超声搅拌0.5h,加入WC粉体后再次超声搅拌0.5h;
步骤三:将混合溶液进行球磨,干燥和筛分,得到陶瓷复合粉体;
所述混合溶液进行球磨的时间为20h;所述筛分时过60目筛;
所述球磨采用行星式球磨机,研磨球材质为碳化钨,混合溶液和研磨球的质量比为1:5;
步骤四:陶瓷复合粉体烧结,得到高强韧耐磨WC复合陶瓷材料;
所述陶瓷粉体烧结工艺为振荡压力烧结,升温速度为20℃/min,烧结温度为1900℃,烧结时间为90min,1100℃前向复合粉末施加10MPa的恒定压力,超过1100℃后向烧结粉体施加恒定压力和振荡压力,恒定压力60MPa,振荡压力±5MPa,振荡频率为4Hz,烧结气氛为真空气氛。
本实施例所制得的WC陶瓷致密度高达99%,维氏硬度为29.5GPa,断裂韧性达到11.5MPa·m1/2,抗弯强度为1580MPa,采用Si3N4陶瓷球作为摩擦副施加载荷90N,摩擦系数为0.16,磨损率为2.1×10-7mm3·N-1·m-1
实施例3:
本实施一种高强韧耐磨WC陶瓷及其制备方法按照以下步骤进行:
步骤一:按质量分数称取2%的GNPs-SiCw复合粉体和余量的WC粉体;
所述WC粉体的平均粒径≤300nm,所述WC粉体的纯度≥99.9wt.%;
所述的GNPs-SiCw复合粉体的制备方法按以下步骤进行:将二氧化硅微粉(粒度≤5μm)放入石墨模具底部,在单质硅粉上方覆盖石墨夹层(孔径为0.8mm),再将石墨烯纳米片放在石墨夹层上表面。将模具放入振荡压力烧结炉中,再将炉内真空压力抽至-0.1MPa后加热升温至1400℃中保温3小时,随炉自然冷却后取出烧结反应后的石墨烯纳米片混合物,获得用于WC复合材料的GNPs-SiCw复合粉体。
其中石墨烯纳米片和二氧化硅微粉的摩尔比为0.8:1;
所述石墨烯D50<10μm,比表面积≤280m2/g;石墨烯纳米片的纯度≥99wt.%;
步骤二:首先将上述获得的GNPs-SiCw复合粉体加入液体介质中进行超声搅拌,得到混合溶液;
所述混合溶液中GNP-SiCw复合粉体的质量分数是2%;
所述液体介质为无水乙醇;
所述GNPs-SiCw复合粉体在液体介质中超声搅拌0.5h,加入WC粉体后再次超声搅拌0.5h;
步骤三:将混合溶液进行球磨,干燥和筛分,得到陶瓷复合粉体;
所述混合溶液进行球磨的时间为24h;所述筛分时过60目筛;
所述球磨采用行星式球磨机,研磨球材质为碳化钨,混合溶液和研磨球的质量比为1:5;
步骤四:陶瓷复合粉体烧结,得到高强韧耐磨WC复合陶瓷材料;
所述陶瓷粉体烧结工艺为振荡压力烧结,升温速度为20℃/min,烧结温度为1920℃,烧结时间为120min,1100℃前向复合粉末施加10MPa的恒定压力,超过1100℃后向烧结粉体施加恒定压力和振荡压力,恒定压力80MPa,振荡压力±6MPa,振荡频率为4Hz,烧结气氛为真空气氛。
本实施例所制得的WC陶瓷致密度高达99%,维氏硬度为28.7GPa,断裂韧性达到10.8MPa·m1/2,抗弯强度为1520MPa,采用Si3N4陶瓷球作为摩擦副施加载荷90N,摩擦系数为0.26,磨损率为2.8×10-7mm3·N-1·m-1

Claims (9)

1.一种高强韧耐磨WC复合材料的制备方法,其特征在于:高强韧耐磨WC复合材料的制备方法按照以下步骤进行:
步骤一:按质量分数称取0.1~2%的GNPs-SiCw复合粉体和余量的WC粉体;
所述GNPs-SiCw复合粉体通过化学气相沉积法制备而成,制备方法:将硅源均匀填充于石墨模具底部,在硅源上方覆盖石墨夹层,在石墨夹层表面均匀铺放石墨烯;将模具置于真空环境下,于1100~1400℃保温1~3小时,取出石墨夹层上表面反应后的石墨烯混合物,即为GNPs-SiCw复合粉体;
所述石墨夹层的厚度为5mm;所述石墨夹层由三层多孔石墨板构成;
所述硅源为单质硅粉、二氧化硅微粉中的一种或两种任意比例的混合物;
所述石墨烯和硅源的摩尔比为(0.2~0.8):1;
步骤二:首先将GNPs-SiCw复合粉体加入液体介质中进行超声搅拌,然后加入WC粉体后再次超声搅拌,得到混合溶液;
步骤三:将混合溶液进行球磨,干燥和筛分,得到陶瓷复合粉体;
步骤四:陶瓷复合粉体烧结,得到高强韧耐磨WC复合陶瓷材料;
所述陶瓷粉体烧结工艺为振荡压力烧结,升温速度为20℃/min,烧结温度为1800~1920℃,烧结时间为60~120min,1100℃前向复合粉末施加10MPa的恒定压力,超过1100℃后向烧结粉体施加恒定压力和振荡压力,恒定压力20~80MPa,振荡压力±1~±6MPa,振荡频率为1~3Hz,烧结气氛为真空或高纯氩气气氛。
2.根据权利要求1所述的高强韧耐磨WC复合材料的制备方法,其特征在于:步骤一所述WC粉体的平均粒径≤300nm;WC粉体的纯度≥99.9wt.%。
3.根据权利要求1所述的高强韧耐磨WC复合材料的制备方法,其特征在于:步骤一所述单质硅粉粒度<0.08mm,所述二氧化硅微粉粒度≤5μm。
4.根据权利要求1所述的高强韧耐磨WC复合材料的制备方法,其特征在于:步骤一所述石墨烯D50<10μm,比表面积≤280m2/g;石墨烯的纯度≥99wt.%。
5.根据权利要求1所述的高强韧耐磨WC复合材料的制备方法,其特征在于:步骤二所述混合溶液中GNPs-SiCw复合粉体的质量分数是0.1~2%。
6.根据权利要求1所述的高强韧耐磨WC复合材料的制备方法,其特征在于:步骤二所述液体介质为无水乙醇或去离子水。
7.根据权利要求1所述的高强韧耐磨WC复合材料的制备方法,其特征在于:步骤二所述GNPs-SiCw复合粉体在液体介质中超声搅拌0.5h;加入WC粉体后再次超声搅拌0.5h。
8.根据权利要求1所述的高强韧耐磨WC复合材料的制备方法,其特征在于:步骤三所述混合溶液进行球磨的时间为12~24h;所述筛分时过60目筛。
9.根据权利要求1所述的高强韧耐磨WC复合材料的制备方法,其特征在于:步骤三所述球磨采用行星式球磨机,研磨球材质为碳化钨,混合溶液和研磨球的质量比为1:(5~10)。
CN202211143212.6A 2022-09-20 2022-09-20 一种高强韧耐磨wc复合材料的制备方法 Pending CN115504789A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211143212.6A CN115504789A (zh) 2022-09-20 2022-09-20 一种高强韧耐磨wc复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211143212.6A CN115504789A (zh) 2022-09-20 2022-09-20 一种高强韧耐磨wc复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN115504789A true CN115504789A (zh) 2022-12-23

Family

ID=84503175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211143212.6A Pending CN115504789A (zh) 2022-09-20 2022-09-20 一种高强韧耐磨wc复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN115504789A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299140A1 (en) * 2012-05-10 2013-11-14 National Tsing Hua University Insulated thermal interface material
CN105801154A (zh) * 2016-02-29 2016-07-27 中原工学院 一种石墨烯增韧碳化硅陶瓷复合材料的制备方法
CN106132907A (zh) * 2014-03-21 2016-11-16 伊格尔博格曼德国有限公司 含有石墨烯的滑环
CN108611539A (zh) * 2018-06-15 2018-10-02 武汉科技大学 一种复合强化硬质合金及其制备方法
CN111056852A (zh) * 2019-12-19 2020-04-24 西安交通大学 一种无粘结相wc基硬质合金刀具材料及其制备方法
CN111170755A (zh) * 2019-12-19 2020-05-19 西安交通大学 一种二硼化钛基纳米复合刀具材料及制备方法
US20200331064A1 (en) * 2011-04-12 2020-10-22 Powdermet, Inc. Low Thermal Stress Engineered Metal Structures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200331064A1 (en) * 2011-04-12 2020-10-22 Powdermet, Inc. Low Thermal Stress Engineered Metal Structures
US20130299140A1 (en) * 2012-05-10 2013-11-14 National Tsing Hua University Insulated thermal interface material
CN106132907A (zh) * 2014-03-21 2016-11-16 伊格尔博格曼德国有限公司 含有石墨烯的滑环
CN105801154A (zh) * 2016-02-29 2016-07-27 中原工学院 一种石墨烯增韧碳化硅陶瓷复合材料的制备方法
CN108611539A (zh) * 2018-06-15 2018-10-02 武汉科技大学 一种复合强化硬质合金及其制备方法
CN111056852A (zh) * 2019-12-19 2020-04-24 西安交通大学 一种无粘结相wc基硬质合金刀具材料及其制备方法
CN111170755A (zh) * 2019-12-19 2020-05-19 西安交通大学 一种二硼化钛基纳米复合刀具材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QINGHU WANG等: "Facile synthesis of SiOx spheres or dumbbell-shaped β-SiC whiskers on expanded graphite by silicon vapor deposition" *

Similar Documents

Publication Publication Date Title
Hotta et al. Densification and microstructure of Al2O3-cBN composites prepared by spark plasma sintering
KR100638228B1 (ko) 다이아몬드 복합체 제조방법 및 이 방법에 의해 제조된복합체
RU2515663C2 (ru) Композиционный материал на основе карбида бора
US6995103B2 (en) Toughness enhanced silicon-containing composite bodies, and methods for making same
US8354353B2 (en) Cubic boron nitride ceramic composites and methods of making thereof
WO2003084872A2 (en) Toughness enhanced silicon-containing composite bodies, and methods for making same
JP2012513361A (ja) 超硬質/硬質複合材料
CN108439995B (zh) 一种复相陶瓷及其制备方法
CN112159231B (zh) 一种超硬轻质金刚石-B4C-SiC三元复合陶瓷的快速制备方法
EP2636659B1 (en) High rigidity ceramic material and method for producing same
CN113121240B (zh) 一种高耐磨氮化物结合碳化硅复合陶瓷过流件的制备方法
CN112500178B (zh) 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法
CN106904985B (zh) 一种钛-硅-碳增强型氧化铝基多相复合材料及其制备方法
CN111018540A (zh) 一种基于低温热压烧结的高强度氮化硼陶瓷复合材料
CN113024257A (zh) 一种液相烧结注浆成型SiC陶瓷阀件材料及其制备方法
Zhao et al. Effect of SiC whiskers on mechanical properties of thermally stable polycrystalline diamond prepared by HPHT sintering
Lv et al. Effect of controllable decomposition of MAX phase (Ti3SiC2) on mechanical properties of rapidly sintered polycrystalline diamond by HPHT
US8197780B2 (en) Method of producing a boron suboxide material
Gordeev et al. Low-pressure fabrication of diamond–SiC–Si composites
Wang et al. In-situ formation of fine-grained carbide composite interlayer during diffusion bonding of SiC ceramic
CN115504789A (zh) 一种高强韧耐磨wc复合材料的制备方法
Evans et al. Reaction bonded silicon carbide: SFF, process refinement and applications
KR102660216B1 (ko) 치밀질 복합 재료, 그 제법, 접합체 및 반도체 제조 장치용 부재
CN111592356B (zh) 一种多晶SiC—B4C—金刚石三层复合材料及其制备方法
CN112876253B (zh) 一种低温烧结高韧耐磨wc陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination