CN111592356B - 一种多晶SiC—B4C—金刚石三层复合材料及其制备方法 - Google Patents
一种多晶SiC—B4C—金刚石三层复合材料及其制备方法 Download PDFInfo
- Publication number
- CN111592356B CN111592356B CN202010516760.3A CN202010516760A CN111592356B CN 111592356 B CN111592356 B CN 111592356B CN 202010516760 A CN202010516760 A CN 202010516760A CN 111592356 B CN111592356 B CN 111592356B
- Authority
- CN
- China
- Prior art keywords
- diamond
- polycrystalline
- sic
- layer
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3821—Boron carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/427—Diamond
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明涉及一种多晶SiC—B4C—金刚石三层复合材料及其制备方法,属于无机非金属材料领域,所述方法以B4C多晶块体或粉末、SiC多晶块体或粉末、金刚石粉末为原料,通过对原料进行净化处理,预压成型,预压成型的原料用金属包裹体包裹,装配高压组装单元,放置于超高压设备中,在600‑2300℃,1‑25 GPa高温高压条件下烧结,制得多晶SiC—B4C—金刚石三层复合材料;利用本发明所制备的SiC—B4C—金刚石三层复合块体材料具有多晶金刚石、多晶B4C与多晶SiC三层结构,金刚石层、B4C层与SiC层经高温高压烧结在一起,三层多晶体结合紧密,晶粒大小分布均匀,致密度高;该多晶SiC—B4C—金刚石三层复合材料既具备金刚石层高硬度高断裂韧性的特点,又结合了B4C密度小以及SiC成本低的优点。
Description
技术领域
本发明涉及一种多晶SiC—B4C—金刚石三层复合材料及其制备方法,属于无机非金属材料领域。
技术背景
碳化硅(α-SiC)陶瓷的耐化学腐蚀性好、强度高、硬度高,耐磨性能好、摩擦系数小,且耐高温,是一类重要的陶瓷材料;碳化硅主要有四大应用领域:1.磨料和切割工具:由于碳化硅的耐用性和低成本,在现代工业加工中作为常用磨料使用;2.结构材料:碳化硅有潜力作为结构材料代替镍高温合金制造涡轮机叶片或喷嘴叶片;3.天文学:碳化硅可作为天文望远镜的镜面材料使用;4.催化剂载体:碳化硅本身的抗氧化性质使其可作为非均相催化剂的载体;碳化硅产量大、生产成本低,但多晶碳化硅块材作为结构材料使用时的断裂韧性低,一定程度上限制了碳化硅作为结构材料的应用。
碳化硼分子式为B4C,为灰黑色微粉,是已知最坚硬的三种材料之一(其他两种为金刚石、立方相氮化硼),B4C因具有密度低、强度大、高温稳定性以及化学稳定性好的特点,在耐磨材料、陶瓷增强相,尤其在轻质装甲,反应堆中子吸收剂等方面使用;此外,和金刚石、立方氮化硼相比,碳化硼制造容易、成本相对低廉,因而使用更加广泛,在某些地方可以取代价格昂贵的金刚石在磨削、研磨、钻孔等方面的应用;但是,B4C块材作为结构材料耐冲击性和断裂韧度较低、高温稳定性较差(在空气环境下、800℃以下基本稳定,在更高的温度会氧化形成氧化硼呈气相流失,导致其不稳定),在一定程度上限制了B4C的大规模应用。
金刚石是自然界中已知最硬的物质,具有极高的耐磨性、抗压强度、散热速率,是目前工业中应用广泛的超硬材料;金刚石单晶价格昂贵且具有解离面,工业中很多领域使用性价比更高的多晶金刚石材料来代替金刚石单晶;传统的人造金刚石多晶烧结体是经人造金刚石粉末与Co、Ni 、Si等金属粉末均匀混合后,在高压高温下烧结而成的一种复合多晶超硬材料,它在宏观上表现出各向同性和较高的硬度及韧性,在某些方面的应用性能优于单晶,被广泛应用于非铁金属、不含铁合金以及陶瓷材料的切削加工,石油天然气及矿业勘采,木质地板加工等领域,但是用于制备多晶金刚石的金刚石粉末价格昂贵,在一定程度上限制了多晶金刚石的大规模应用。
复合材料是运用先进的材料制备技术,将不同性质的材料组分优化组合而成的新材料,复合材料具有两种或两种以上化学、物理性质不同的材料组分,各组分之间存在明显的界面;复合材料具有结构可设计性,可进行复合结构设计;复合材料不仅保持各组分材料性能的优点,而且通过各组分性能的互补和关联可以获得单一组成材料所不能达到的综合性能;若将多晶SiC、多晶B4C与多晶金刚石烧结复合在一起得到多晶SiC—B4C—金刚石三层复合材料,不仅能够具备金刚石层高硬度高断裂韧性的特点,又可兼具SiC成本低、易烧结以及B4C密度小的优点,但是,目前并未出现制备多晶SiC—B4C—金刚石三层复合材料的报道。
发明内容
本发明的目的在于克服现有技术中存在的缺陷,提供一种利用B4C多晶块体或粉末、SiC多晶块体或粉末、金刚石粉末为原料,在高温高压条件下制备多晶SiC—B4C—金刚石三层复合材料的方法。
为实现上述目的,本发明采用的技术方案是,一种多晶SiC—B4C—金刚石三层复合材料的制备方法,包括以下步骤:
a、原料处理:用无水乙醇分别处理晶粒尺寸为3 nm-500 μm的金刚石粉末、晶粒尺寸为3 nm-500 μm的SiC多晶块体或粉末、晶粒尺寸为3 nm-500 μm的B4C多晶块体或粉末,废液倒出后,在100-120 ℃条件下进行烘干;干燥后的金刚石粉末、SiC多晶块体或粉末和B4C多晶块体或粉末中分别加适量的去离子水,分别进行预压成型,把成型样品放入真空干燥箱中真空干燥;
b、装配烧结单元:将预压成型的原料用金属包裹体进行包裹,避免样品在高温高压下污染;将带有金属包裹体的原料装入高压烧结单元中,将组装好的高压烧结单元放入干燥箱中恒温干燥备用;
c、高温高压烧结:将高压烧结单元放入高压设备的合成腔体中,然后开始升压,达到设定压力后,升温加热,保温一段时间;保温结束后,停止加热,保压一段时间后再开始缓慢降压;
d、样品处理:取出合成腔体内的样品,去除样品外面包裹的金属包裹体,对内部样品进行打磨、抛光以及酸洗后,得到多晶SiC—B4C—金刚石三层复合材料。
优选的,晶粒尺寸为3 nm-500 μm的金刚石粉末添加有烧结助剂A,晶粒尺寸为3nm-500 μm的SiC多晶块体或粉末原料中添加有烧结助剂B,晶粒尺寸为3 nm-500 μm的B4C多晶块体或粉末原料中添加有烧结助剂C。
优选的,所述烧结助剂A为Fe、Co、Ni、Si中的一种或多种,所述烧结助剂B为Fe、Si中的一种或两者的混合物,所述烧结助剂C为Ti、Si、B、石墨中的一种或多种
优选的,所述高温高压烧结的条件是烧结压力1-25 GPa、烧结温度600-2300 ℃、保温时间20秒-5小时。
优选的,所述高温高压烧结的条件是烧结压力1-4.5 GPa、烧结温度600-1300 ℃、保温时间20秒-15分钟。
优选的,制备得到的多晶SiC—B4C—金刚石三层复合材料的厚度为3-300 mm,其中多晶B4C层厚度为1-298mm,多晶SiC厚度为1-298mm,金刚石的厚度为1-298 mm。
优选的,所述高压设备是国产六面顶压机。
本发明具有以下有益效果:
1、本发明制备的多晶SiC—B4C—金刚石三层复合材料,具有多晶金刚石、B4C与多晶SiC三层结构,多晶金刚石层的主相为金刚石,多晶B4C层的主相为B4C,多晶SiC层的主相为α-SiC,三层多晶材料结合紧密,致密度高,气孔率低,晶粒大小均匀分布,具有高温稳定性以及良好的力学性能,如多晶B4C层的高温稳定性为820-980 ℃,高硬度(多晶金刚石层的维氏硬度为63-95 GPa,多晶B4C层的硬度为35-45 GPa,多晶SiC层的硬度为20-32 GPa)、高韧性(多晶金刚石层的断裂韧性为8.2-15.1 MPa·m1/2,多晶SiC层的断裂韧性为2.5-5MPa·m1/2,多晶B4C层的断裂韧性为3.7-7.5 MPa·m1/2)等,既具备金刚石高硬度高断裂韧性的特点,又结合了B4C密度小、易烧结的优点以及碳化硅产量大,生产成本低的优点,具有广泛的应用前景;
2、本发明利用高温高压条件制备多晶SiC—B4C—金刚石三层复合材料,高压可以抑制晶粒在高温条件下异常长大,成功解决了B4C、SiC在高温常压烧结过程中晶粒异常长大的问题;
3、本发明可利用国产六面顶压机制备多晶SiC—B4C—金刚石三层复合材料,能够实现大规模的工业化生产,降低生产成本。
附图说明
图1为本发明工艺流程图;
图2为实例1多晶SiC—B4C—金刚石三层复合材料的扫描电镜分析图;
图3为实例1多晶SiC—B4C—金刚石三层复合材料的多晶B4C层扫描电镜分析图;
图4为实例1多晶SiC—B4C—金刚石三层复合材料的多晶SiC层扫描电镜分析图;
图5为实例1多晶SiC—B4C—金刚石三层复合材料的多晶金刚石层扫描电镜分析图;
图6为实例2多晶SiC—B4C—金刚石三层复合材料的扫描电镜分析图;
图7为实例2多晶SiC—B4C—金刚石三层复合材料的多晶SiC层扫描电镜分析图;
图8为实例2多晶SiC—B4C—金刚石三层复合材料的多晶B4C层扫描电镜分析图;
图9为实例2多晶SiC—B4C—金刚石三层复合材料的多晶金刚石层扫描电镜分析图;
图10为实例3多晶SiC—B4C—金刚石三层复合材料的扫描电镜分析图;
图11为实例3多晶SiC—B4C—金刚石三层复合材料的多晶SiC层扫描电镜分析图;
图12为实例3多晶SiC—B4C—金刚石三层复合材料的多晶金刚石层扫描电镜分析图;
图13为实例3多晶SiC—B4C—金刚石三层复合材料的多晶B4C层扫描电镜分析图。
具体实施方式
下面通过附图和具体实施方式对本发明做进一步说明,有必要在此指出的是本实施例是对于本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述发明的内容做出一些非本质的改进和调整。
实施例1:
a、原料处理检测:取纯度为96%、平均晶粒尺寸为25 μm的多晶B4C块材32 g;取纯度为98%、平均晶粒尺寸为1 μm的多晶SiC块材43 g;取纯度为97%、平均晶粒尺寸为10 μm的金刚石粉末30 g,金刚石粉末中加入体积分数为3% 的Si粉作为烧结助剂,用100 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干;多晶B4C块材中加入体积分数为3% 的B粉作为烧结助剂,用100 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干,多晶SiC块材用80 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干;烘干后的多晶B4C块材和金刚石粉末中分别加50 ml去离子水并分别预压成型,把成型样品在真空干燥箱中干燥;
b、装配烧结单元:对用来包裹原料的金属包裹体进行处理,打磨并抛光,然后去油、超声波清洗、真空烘干,将预压成型的金刚石粉末层、B4C块材层和SiC块材层按照上、中、下的顺序贴在一起并用金属包裹体包裹,防止样品在高温高压环境下被污染;将包裹后的试样装入高压装配烧结单元中,将组装好的烧结单元放入干燥箱中在120 ℃恒温作用下干燥备用;
c、高温高压烧结:利用六面顶压机进行高温高压烧结,达到设定压力4.5 GPa后,升温加热,在1400℃的条件下保温25分钟,待保温结束后,停止加热,保压2 min后,再开始缓慢降压;
d、样品处理:取出合成腔体内的样品,去除样品外面包裹的金属,对合成样品进行打磨、抛光以及酸洗,得到多晶SiC—B4C—金刚石三层复合材料。
样品性能检测:制备得到的多晶SiC—B4C—金刚石三层复合材料的厚度为10 mm,其中多晶B4C层厚度为3mm,多晶SiC层厚度为4 mm,金刚石层的厚度为3 mm,利用XRD检测样品物相组成,多晶金刚石层的主相为金刚石,多晶B4C层的主相为B4C,多晶SiC层的主相为α-SiC;SEM检测样品微观形貌,样品致密度高,气孔率低;维氏硬度测试表明多晶金刚石层的维氏硬度为67 GPa,多晶B4C层的硬度为37 GPa,多晶SiC层的硬度为26 GPa,多晶B4C层的断裂韧性为5.7 MPa·m1/2,多晶SiC层的断裂韧性为4.4 MPa·m1/2,多晶金刚石层的断裂韧性为9.7 MPa·m1/2,采用差热分析法检测B4C层的高温稳定性为859 ℃。
实施例2:
a、原料处理检测:取纯度为97%、平均晶粒尺寸为2 μm的多晶B4C块材35 g,取纯度为97%、平均晶粒尺寸为10 μm的多晶SiC块材58 g,取纯度为98%,平均晶粒尺寸为15 μm的金刚石粉末44 g,金刚石粉末中加入体积分数为4% 的Co粉作为烧结助剂,用90 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干;多晶B4C块材用85 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干,多晶SiC块材用90 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干;烘干后的多晶B4C块材和金刚石粉末中分别加60 ml去离子水并分别预压成型,把成型样品在真空干燥箱中干燥;
b、该步骤与实施例1中的步骤b相同;
c、高温高压烧结:利用六面顶压机进行高温高压烧结,达到设定压力5.5 GPa后,升温加热,在1550℃的条件下保温15分钟,待保温结束后,停止加热,保压2 min后,再开始缓慢降;
d、该步骤与实施例1中的步骤d相同。
样品性能检测:制备得到的多晶SiC—B4C—金刚石三层复合材料的厚度为12 mm,其中多晶SiC层厚度为3 mm,多晶B4C层厚度为5mm,金刚石层的厚度为4 mm,利用XRD检测样品物相组成,多晶金刚石层的主相为金刚石,多晶B4C层的主相为B4C,多晶SiC层的主相为α-SiC;SEM检测样品微观形貌,样品致密度高,气孔率低;维氏硬度测试表明多晶金刚石层的维氏硬度为75 GPa,多晶B4C层的硬度为43 GPa,多晶SiC层的硬度为28 GPa,多晶金刚石层的断裂韧性为11 MPa·m1/2,多晶B4C层的断裂韧性为5.6 MPa·m1/2,多晶SiC层的断裂韧性为4.5 MPa·m1/2,采用差热分析法检测B4C层的高温稳定性为874 ℃
实施例3:
a、原料处理检测:取纯度为98%、平均晶粒尺寸为2 μm的多晶B4C块材66 g;取纯度为98%、平均晶粒尺寸为5 μm的多晶SiC块材72 g;取纯度为99%,平均晶粒尺寸为20 μm的金刚石粉末75 g,金刚石粉末用170 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干;多晶B4C块材用180 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干,多晶SiC块材用160 ml无水乙醇处理,倒出废液后,在烘箱内120 ℃下烘干;烘干后的多晶B4C块材和金刚石粉末中分别加100 ml去离子水并分别预压成型,把成型样品在真空干燥箱中干燥;
b、该步骤与实施例1中的步骤b相同;
c、高温高压烧结:利用六面顶压机进行高温高压烧结,达到设定压力7 GPa后,升温加热,在1300℃的条件下保温40分钟,待保温结束后,停止加热,保压2 min后,再开始缓慢降;
d、该步骤与实施例1中的步骤d相同。
样品性能检测:制备得到的多晶SiC—B4C—金刚石三层复合材料的厚度为20 mm,其中多晶SiC层厚度为6 mm,金刚石层的厚度为7 mm,多晶B4C层厚度为7 mm,利用XRD检测样品物相组成,多晶金刚石层的主相为金刚石,多晶B4C层的主相为B4C,多晶SiC层的主相为α-SiC;SEM检测样品微观形貌,样品致密度高,气孔率低;维氏硬度测试表明多晶金刚石层的维氏硬度为84 GPa,多晶B4C层的硬度为39 GPa,多晶SiC层的硬度为26 GPa,多晶金刚石层的断裂韧性为13.3 MPa·m1/2,多晶B4C层的断裂韧性为5.9 MPa·m1/2,多晶SiC层的断裂韧性为3.9 MPa·m1/2,采用差热分析法检测B4C层的高温稳定性为950 ℃。
Claims (7)
1.一种多晶SiC—B4C—金刚石三层复合材料的制备方法,其特征在于:以B4C多晶块体或粉末、SiC多晶块体或粉末、金刚石粉末为原料,在高温高压条件下烧结,具体包括如下步骤:
a、原料处理:用无水乙醇分别处理晶粒尺寸为3nm-500μm的金刚石粉末、晶粒尺寸为3nm-500 μm的SiC多晶块体或粉末、晶粒尺寸为3 nm-500 μm的B4C多晶块体或粉末,废液倒出后,在100-120℃条件下进行烘干;干燥后的金刚石粉末、SiC多晶块体或粉末和B4C多晶块体或粉末中分别加适量的去离子水,分别进行预压成型,把成型样品放入真空干燥箱中真空干燥;
b、装配烧结单元:将预压成型的原料用金属包裹体进行包裹,避免样品在高温高压下污染;将带有金属包裹体的原料装入高压烧结单元中,将组装好的高压烧结单元放入干燥箱中恒温干燥备用;
c、高温高压烧结:将高压烧结单元放入高压设备的合成腔体中,然后开始升压,达到设定压力后,升温加热,保温一段时间;保温结束后,停止加热,保压一段时间后再开始缓慢降压;
d、样品处理:取出合成腔体内的样品,去除样品外面包裹的金属包裹体,对内部样品进行打磨、抛光以及酸洗后,得到多晶SiC—B4C—金刚石三层复合材料。
2.根据权利要求1所述的制备方法,其特征在于:晶粒尺寸为3 nm-500 μm的金刚石粉末添加有烧结助剂A,晶粒尺寸为3 nm-500 μm的SiC多晶块体或粉末原料中添加有烧结助剂B,晶粒尺寸为3 nm-500 μm的B4C多晶块体或粉末原料中添加有烧结助剂C;所述烧结助剂A为Fe、Co、Ni、Si中的一种或多种,所述烧结助剂B为Fe、Si中的一种或两者的混合物,所述烧结助剂C为Ti、Si、B、石墨中的一种或多种。
3.根据权利要求1所述的制备方法,其特征在于:高温高压烧结的条件是烧结压力1-25GPa、烧结温度600-2300 ℃、保温时间20秒-5小时。
4.根据权利要求3所述的制备方法,其特征在于:高温高压烧结的条件是烧结压力1-4.5 GPa、烧结温度600-1300 ℃、保温时间20秒-15分钟。
5.根据权利要求1所述的制备方法,其特征在于:制备得到的多晶SiC—B4C—金刚石三层复合材料的厚度为3-300 mm,其中多晶B4C层厚度为1-298 mm,多晶SiC厚度为1-298 mm,金刚石的厚度为1-298 mm。
6.根据权利要求1所述的制备方法,其特征在于:所述高压设备是国产六面顶压机。
7.一种多晶SiC—B4C—金刚石三层复合材料,其特征在于由权利要求1-6任一所述的制备方法制备得到。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010516760.3A CN111592356B (zh) | 2020-06-09 | 2020-06-09 | 一种多晶SiC—B4C—金刚石三层复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010516760.3A CN111592356B (zh) | 2020-06-09 | 2020-06-09 | 一种多晶SiC—B4C—金刚石三层复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111592356A CN111592356A (zh) | 2020-08-28 |
CN111592356B true CN111592356B (zh) | 2021-12-31 |
Family
ID=72184671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010516760.3A Active CN111592356B (zh) | 2020-06-09 | 2020-06-09 | 一种多晶SiC—B4C—金刚石三层复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111592356B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115947612B (zh) * | 2022-12-09 | 2023-09-12 | 秦皇岛琨煜晶材科技有限公司 | 一种用于高温高压的传压介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3218052A1 (de) * | 1982-05-13 | 1983-11-17 | Elektroschmelzwerk Kempten GmbH, 8000 München | Polykristalline, praktisch porenfreie sinterkoerper aus (alpha)-siliciumcarbid, borcarbid und freiem kohlenstoff und verfahren zu ihrer herstellung |
US4543345A (en) * | 1984-02-09 | 1985-09-24 | The United States Of America As Represented By The Department Of Energy | Silicon carbide whisker reinforced ceramic composites and method for making same |
EP1099256A2 (en) * | 1998-07-02 | 2001-05-16 | Astropower | Silicon thin-film, integrated solar cell, module, and methods of manufacturing the same |
CN103331129A (zh) * | 2013-08-07 | 2013-10-02 | 四川大学 | 利用铰链式六面顶压机制备高性能聚晶金刚石的方法 |
CN105859300A (zh) * | 2016-04-05 | 2016-08-17 | 吉林师范大学 | 一种金刚石-立方氮化硼-碳化硼复合材料的制备方法 |
CN106757333A (zh) * | 2017-02-08 | 2017-05-31 | 河南工业大学 | 一种类金刚石直接转化合成纯相多晶金刚石的制备方法 |
CN109574666A (zh) * | 2018-12-30 | 2019-04-05 | 南方科技大学 | 纳米结构含硼六方金刚石聚晶超硬复合材料及其制备方法和应用 |
CN109896870A (zh) * | 2017-11-24 | 2019-06-18 | 微复合股份有限公司 | 包含多重金属层的金刚石·镍复合结构粒子及其制造方法 |
-
2020
- 2020-06-09 CN CN202010516760.3A patent/CN111592356B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3218052A1 (de) * | 1982-05-13 | 1983-11-17 | Elektroschmelzwerk Kempten GmbH, 8000 München | Polykristalline, praktisch porenfreie sinterkoerper aus (alpha)-siliciumcarbid, borcarbid und freiem kohlenstoff und verfahren zu ihrer herstellung |
US4543345A (en) * | 1984-02-09 | 1985-09-24 | The United States Of America As Represented By The Department Of Energy | Silicon carbide whisker reinforced ceramic composites and method for making same |
EP1099256A2 (en) * | 1998-07-02 | 2001-05-16 | Astropower | Silicon thin-film, integrated solar cell, module, and methods of manufacturing the same |
CN103331129A (zh) * | 2013-08-07 | 2013-10-02 | 四川大学 | 利用铰链式六面顶压机制备高性能聚晶金刚石的方法 |
CN105859300A (zh) * | 2016-04-05 | 2016-08-17 | 吉林师范大学 | 一种金刚石-立方氮化硼-碳化硼复合材料的制备方法 |
CN106757333A (zh) * | 2017-02-08 | 2017-05-31 | 河南工业大学 | 一种类金刚石直接转化合成纯相多晶金刚石的制备方法 |
CN109896870A (zh) * | 2017-11-24 | 2019-06-18 | 微复合股份有限公司 | 包含多重金属层的金刚石·镍复合结构粒子及其制造方法 |
CN109574666A (zh) * | 2018-12-30 | 2019-04-05 | 南方科技大学 | 纳米结构含硼六方金刚石聚晶超硬复合材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN111592356A (zh) | 2020-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101892411B (zh) | 一种新型wc基硬质合金材料及其制备方法 | |
CN110029942B (zh) | 适用于钻探的热稳定型聚晶金刚石复合片及其制备方法 | |
CN107973606B (zh) | 聚晶立方氮化硼、制备方法及其应用、包含该聚晶立方氮化硼的刀具 | |
Zhao et al. | Effect of Fe-based pre-alloyed powder on the microstructure and holding strength of impregnated diamond bit matrix | |
CN109706370B (zh) | 一种原位合成max相增强镍基高温润滑复合材料的制备方法 | |
Yin et al. | Microstructure and mechanical properties of Lu2O3‐doped porous silicon nitride ceramics using phenolic resin as pore‐forming agent | |
CN102731093A (zh) | 一种低温致密化烧结碳化硼基陶瓷材料的方法 | |
CN101875562A (zh) | 一种炭纤维增强炭和六方氮化硼双基体摩擦材料的制备方法 | |
KR20160089395A (ko) | 질화티탄-티타늄 2붕화물-입방정계 질화붕소 복합재료의 제조방법 | |
CN111606711B (zh) | 一种多晶B4C—SiC双层复合材料及其制备方法 | |
US20150027065A1 (en) | Diamond composite and a method of making a diamond composite | |
CN111592356B (zh) | 一种多晶SiC—B4C—金刚石三层复合材料及其制备方法 | |
CN113416076A (zh) | 一种自增强碳化硅陶瓷材料的制备方法 | |
CN111517772A (zh) | 一种大腔体压机制备宝石级矿物烧结体的方法 | |
CN106518119B (zh) | 一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法 | |
CN101508572B (zh) | 高致密单相TiB2陶瓷的快速制备方法 | |
CN100429326C (zh) | 一种铝碳二铬块体材料的制备方法 | |
CN101555136B (zh) | 一种钛硅化碳/二硼化钛-碳化钛复合材料及其制备方法 | |
CN111548165A (zh) | 一种多晶SiC—金刚石双层复合材料及其制备方法 | |
US20100308256A1 (en) | Boron suboxide composite material | |
US8741797B2 (en) | Composite body including a nitride material, a carbide material, and an amorphous phase material | |
Tan et al. | Effect of TiO2 on sinterability and physical properties of pressureless sintered Ti3AlC2 ceramics | |
Li et al. | SiC/C machinable ceramics surface hardening by silicon infiltration | |
CN111592360A (zh) | 一种多晶b4c—金刚石双层复合材料及其制备方法 | |
CN110590376B (zh) | 一种pcbn刀具材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |