CN106518119B - 一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法 - Google Patents

一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法 Download PDF

Info

Publication number
CN106518119B
CN106518119B CN201610910480.4A CN201610910480A CN106518119B CN 106518119 B CN106518119 B CN 106518119B CN 201610910480 A CN201610910480 A CN 201610910480A CN 106518119 B CN106518119 B CN 106518119B
Authority
CN
China
Prior art keywords
alc
fiber
fibrous composite
microns
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610910480.4A
Other languages
English (en)
Other versions
CN106518119A (zh
Inventor
胡春峰
朱德贵
周加敏
许璐迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201610910480.4A priority Critical patent/CN106518119B/zh
Publication of CN106518119A publication Critical patent/CN106518119A/zh
Application granted granted Critical
Publication of CN106518119B publication Critical patent/CN106518119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法,采用商业购买的Ti2AlC粉末和Al2O3纤维,通过等离子放电烧结的技术,获得致密的Ti2AlC/Al2O3纤维复合材料。具体的制备方法是:先将Al2O3纤维在200‑400℃下进行处理,再手工研磨Al2O3纤维至长度为50‑200微米,将纤维与Ti2AlC粉末混合后球磨12‑24h,装入等离子放电烧结炉中,在10‑100MPa压力下和1000‑1500℃的温度下烧结,保温时间为1‑60min。本发明与一般的Ti2AlC的复合材料相比,具有更高的强度和断裂韧性,高的致密度,良好的导热率,可满足工业规模生产的要求。

Description

一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法
技术领域
本发明涉及Ti2AlC/Al2O3纤维复合材料及其制备方法,具体为一种制备具有高强度的致密的Ti2AlC/Al2O3纤维复合材料及其制备方法。
背景技术
Ti2AlC为三元层状化合物,六方晶系,晶格参数为a=0.304nm,c=1.360nm。Ti2AlC同时兼具金属和陶瓷的优良性能,使其在航空、航天、核工业以及化工等领域有着广阔的应用前景,受到了材料科学工作者的广泛研究。
Ti2AlC不仅能像金属一样,具有很好的导热性能和导电性能,具有较高的弹性模量和剪切模量,相对密度低,易于机械加工。
Ti2AlC也像陶瓷一样,具有较高的熔点,优异的耐化学腐蚀性能,抗热震性能好、高温下具有良好的热稳定性以及抗氧化性能,具有良好的高温塑性。因此Ti2AlC在高温、化学腐蚀条件下可以用作各类减摩构件,像风扇轴承、特殊的机械密封件、化学反应釜搅拌器轴承等。
由于Ti2AlC自身的层状结构,因此Ti2AlC能和石墨一样具有优良的自润滑性能和低的摩擦系数,可用作新一代的电刷和电极材料。
然而,由于Ti2AlC陶瓷材料强度和硬度低,抗蠕变强度较低,限制了其作为高温结构材料的应用。而向Ti2AlC陶瓷材料中加入其它传统陶瓷材料,可以明显地强化 Ti2AlC的综合性能。如向Ti2AlC中引入TiC、SiC、Al2O3等增强相,可以使其成为很好的增强增韧材料,增强效果明显,从而使其力学性能提高。因此Ti2AlC复合材料作为高温结构材料,是高温发动机理想的侯选材料。
引入第二相进行复合强化是目前改善Ti2AlC陶瓷材料综合性能的有效措施。由于Al2O3具有较高的硬度和高的弹性模量,优异的化学稳定性,具有耐高温、抗磨损、耐腐蚀等优点。尤其具有同Ti2AlC接近的热膨胀系数(Al2O3的热膨胀系数为8.3×10-6K-1;Ti2AlC的热膨胀系数为8.2±0.2×10-6K-1)。因此常选用Al2O3颗粒来改善Ti2AlC 材料的强度和硬度。
陶瓷制备方法有无压烧结、热压烧结、热等静压烧结和高温自蔓延烧结等技术。但热压烧结、热等静压烧结存在耗时长,成本高,生产效率低等缺点;高温自蔓延烧结反应条件苛刻,反应过程难以控制,难以获得较高的致密度;而无压烧结技术同样也存在致密度较低这一缺点。
发明内容
本发明的目的在于制备高强度的Ti2AlC为基体的复合材料,通过添加Al2O3纤维作为第二相,在等离子放电烧结下,制备的材料具有99%以上的致密度,具有高的强度和良好的韧性。
Al2O3纤维相较Al2O3颗粒性能更好,生产制备Al2O3纤维的方法有很多,包括气相法、前驱体法、熔融抽丝法、湿氢法等方法,目前市场上可以商业购买到Al2O3纤维。与碳纤维、碳化硅纤维等非氧化物纤维和金属纤维比较,Al2O3纤维同样具有高强度、高模量、热导率小、热膨胀系数低、抗化学侵蚀、高耐热和耐高温氧化,在高温下具有较高的拉伸强度。其表面活性好,易与陶瓷等基体复合,形成性能优异的复合材料。因此本发明选择采用商业购买的Al2O3纤维制备一种致密的Ti2AlC/Al2O3纤维复合材料。
等离子烧结技术制备过程中升温速度快,保温时间短,烧结的压力小,具有烧结温度低,烧结时间短,致密度高等优点,因此本发明选择在等离子放电烧结炉中制备一种致密的Ti2AlC/Al2O3纤维复合材料。
本发明的技术方案是:一种致密的Ti2AlC/Al2O3纤维复合材料,复合材料基体晶粒为片层状结构,Al2O3纤维均匀的分布在基体Ti2AlC中,基体晶粒的尺寸为5-20微米之间,阿基米德法测试的上述复合材料的致密度大于99%。
上述复合材料中Al2O3纤维含量为20vol.%。
本发明的另一目的是提供一种高强度和高致密度的Ti2AlC/Al2O3纤维复合材料的制备方法。
本发明的目的是这样实现的:一种致密的Ti2AlC/Al2O3纤维复合材料的制备方法,以Ti2AlC粉末和Al2O3纤维为原料,先将Al2O3纤维在200-400℃下进行处理,再手工研磨至长度为50-200微米,将该Al2O3纤维与Ti2AlC粉末混合后球磨12-24h;再在等离子放电烧结炉中在1000-1500℃温度下施加10-100MPa的压力加压成型,保温时间为1-60min。
上述Ti2AlC粉末的粒度为5微米-20微米,Al2O3纤维含量为20vol.%。
上述Ti2AlC粉末的粒度为5微米,Al2O3纤维为原料总量的20vol.%,将上述Ti2AlC粉末与手工研磨后的Al2O3纤维混合后球磨12h,装入等离子烧结炉中,在 40MPa压力下和1300℃温度下烧结成型,保温时间为20分钟。
上述Ti2AlC粉末的粒度为20微米,Al2O3纤维为原料总量的20vol.%,将上述Ti2AlC粉末与手工研磨后的Al2O3纤维混合后球磨24h,装入等离子烧结炉中,在 100MPa压力下和1200℃温度下烧结成型,保温时间为60分钟。
上述Ti2AlC粉末的粒度为10微米,Al2O3纤维为原料总量的20vol.%,将上述Ti2AlC粉末与手工研磨后的Al2O3纤维混合后球磨24h,装入等离子烧结炉中,在 60MPa压力下和1150℃温度下烧结成型,保温时间为30分钟。
本发明高强度的Ti2AlC复合材料,以Ti2AlC为基体,添加Al2O3纤维作为第二相,得到材料的晶粒尺寸为5-20微米,具有较高的强度。
本发明制备高强度Ti2AlC/Al2O3纤维复合材料的方法,通过等离子放电烧结的方法致密化,其Al2O3纤维能够均匀的分布在基体Ti2AlC上。
本发明制备高强度Ti2AlC/Al2O3纤维复合材料的方法,改变Al2O3纤维的含量,材料的强度、硬度和断裂韧性都有着明显的改变。
所述制备Ti2AlC/Al2O3纤维复合材料的方法,以商业化的Ti2AlC粉末、Al2O3纤维作为原料,Ti2AlC粉末的晶粒尺寸分布在5-20微米,纤维的直径大约为20微米。先将Al2O3纤维在400℃下进行处理,再手工研磨Al2O3纤维至长度为50-200微米,将纤维与Ti2AlC粉末混合后球磨12h,装入等离子放电烧结炉中,在10-100MPa压力下和1000-1500℃的温度下烧结,保温时间为1-60min。从而,制备出高强度,组织均匀的复相陶瓷材料。
本发明的优点是:
1.致密度高、烧结温度低,烧结时间短。本发明以商业板状的Ti2AlC粉末和Al2O3纤维为原料,通过等离子放电烧结的方法制备出致密的Ti2AlC/Al2O3纤维复合材料。制备过程中升温速度快,保温时间短,烧结的压力小。
2.力学性能好、导热性能好。所制备的复合材料,其致密度都达到99%以上,三点弯曲强度达到450MPa以上,能满足高温结构材料的强度要求。
附图说明
图1a为本发明Ti2AlC/610-Al2O3纤维复合材料的X射线衍射图谱。
图1b为本发明Ti2AlC/720-Al2O3纤维复合材料的X射线衍射图谱。
图2a和图2b分别为本发明Ti2AlC/Al2O3纤维复合材料的相对致密度曲线图和显微硬度曲线图。
图3a和图3b分别为本发明Ti2AlC/Al2O3纤维复合材料的弯曲强度曲线图和断裂韧性曲线图。
图4a为Ti2AlC/610-Al2O3纤维复合材料的SEM照片。
图4b为Ti2AlC/720-Al2O3纤维复合材料的SEM照片。
图4c为Ti2AlC/610-Al2O3纤维复合材料的EDS能谱。
图4d为Ti2AlC/720-Al2O3纤维复合材料的EDS能谱。
图5a为Ti2AlC/0vol.%Al2O3纤维复合材料的SEM弯曲断口照片。
图5b为Ti2AlC/20vol.%Al2O3纤维复合材料的SEM弯曲断口照片。
图5c为Ti2AlC/30vol.%Al2O3纤维复合材料的SEM弯曲断口照片。
具体实施方式
下面通过实例详述发明。
实施例1
采用平均颗粒粒度为5微米的商业Ti2AlC粉体(Ti2AlC粉体纯度95%,含有5%的Ti3AlC2),将直径为20微米的3M公司Nextel 610系列氧化铝纤维(610系列的氧化铝纤维纯度高达99%)在200℃下处理,再手工研磨Al2O3纤维,将纤维按照体积百分数为5%、10%、20%、30%分别与Ti2AlC粉末混合后球磨12h,装入等离子放电烧结炉中,在40MPa压力下和1300℃的温度下烧结,保温时间为20分钟,冷却后获得 Ti2AlC/610-Al2O3纤维复合材料。阿基米德法测试的致密度均大于99%,在氧化铝纤维含量达到20vol.%时(指原料总量的20vol.%,下同),材料的弯曲强度最大达到 687.6MPa,显微硬度为7.2GPa,断裂韧性为6.5MPa·m1/2
实施例2
采用平均颗粒粒度为20微米的商业Ti2AlC粉体(Ti2AlC粉体纯度95%,含有5%的Ti3AlC2),将直径为20微米的3M公司Nextel 720系列氧化铝纤维(720系列的Al2O3纤维中含有15%的SiO2)在400℃下处理,再手工研磨Al2O3纤维,将纤维按照体积百分数为5%、10%、20%、30%分别与Ti2AlC粉末混合后球磨24h,装入等离子放电烧结炉中,在100MPa压力下和1200℃的温度下烧结,保温时间为60分钟,冷却后获得 Ti2AlC/720-Al2O3纤维复合材料。阿基米德法测试的致密度均大于99%,在氧化铝纤维含量达到20vol.%时,材料的弯曲强度最大达到546.7MPa,显微硬度为6.6GPa,断裂韧性为6.6MPa·m1/2
比较例
采用平均颗粒粒度为10微米的商业Ti2AlC粉体,装入等离子放电烧结炉中,在60MPa压力下和1150℃的温度下烧结,保温时间为30分钟,冷却后获得纯Ti2AlC 材料。阿基米德法测试的密度为4.085g/cm3,致密度大于99%,在氧化铝纤维含量达到20vol.%时,纯Ti2AlC材料的显微硬度为4.8GPa,弯曲强度达到465MPa,断裂韧性为6.2MPa·m1/2。Ti2AlC/610-Al2O3纤维复合材料和Ti2AlC/720-Al2O3纤维复合材料与纯Ti2AlC材料相比,纤维复合材料的显微硬度、弯曲强度、断裂韧性都高于纯 Ti2AlC材料。
下面具体介绍采用等离子放电烧结技术,获得致致密的Ti2AlC/610-Al2O3纤维复合材料和Ti2AlC/720-Al2O3纤维复合材料的显微结构和力学性能的差异。
图1为制备的Ti2AlC/Al2O3纤维复合材料的X射线衍射图谱:(a)为Ti2AlC/610-Al2O3纤维复合材料的X射线衍射图谱,可以看到Ti2AlC的峰非常明显,由于Ti2AlC 原料中含有少量Ti3AlC2,所以在衍射图谱上可以看到Ti3AlC2的峰。随着Al2O3纤维体积百分数按照5%、10%、20%、30%不断提高,Al2O3峰的高度也不断增强,因此没有证据表明Al2O3与Ti2AlC发生反应。(b)为Ti2AlC/720-Al2O3纤维复合材料的X射线衍射图谱。可以看到Ti2AlC的峰非常明显,由于Ti2AlC原料中含有少量Ti3AlC2,所以在衍射图谱上可以看到Ti3AlC2的峰。随着Al2O3纤维体积百分数按照5%、10%、20%、30%不断提高,Al2O3峰的高度也不断增强,而720系列的Al2O3纤维中含有的SiO2非常少,因此没有看到SiO2的衍射峰。
图2为Ti2AlC/Al2O3纤维复合材料的相对致密度和显微硬度曲线:(a)为Ti2AlC/Al2O3纤维复合材料的相对致密度曲线,(b)为Ti2AlC/Al2O3纤维复合材料的显微硬度曲线。从图(b)中可以看到随着Al2O3纤维含量从0vol.%增加到30vol.%, Ti2AlC/Al2O3纤维复合材料的显微硬度确不断得到提高,说明Al2O3纤维的增强作用非常明显。从图(a)中可以对比发现随着Al2O3纤维含量从0vol.%增加到30vol.%, Ti2AlC/Al2O3纤维复合材料的相对致密度不断下降,说明Al2O3纤维含量过高并非有利,含量越高材料内部出现空洞缺陷的几率将大大增加,势必影响Ti2AlC/Al2O3纤维复合材料的性能。图3为Ti2AlC/Al2O3纤维复合材料的弯曲强度和断裂韧性曲线。(a)为 Ti2AlC/Al2O3纤维复合材料的弯曲强度曲线,(b)为Ti2AlC/Al2O3纤维复合材料的断裂韧性曲线。从图中可以对比发现随着Al2O3纤维含量从0vol.%增加到30vol.%, Ti2AlC/Al2O3纤维复合材料的抗弯强度和断裂韧性呈先增加然后减小的现象, Ti2AlC/610-Al2O3纤维复合材料在Al2O3纤维含量为20vol.%时抗弯强度达到最高为 687.6MPa;Ti2AlC/720-Al2O3纤维复合材料在Al2O3纤维含量为20vol.%时抗弯强度达到最高为546.7MPa。而Ti2AlC/610-Al2O3纤维复合材料在Al2O3纤维含量为5vol.%时断裂韧性达到最高为7.1MPa·m1/2;Ti2AlC/720-Al2O3纤维复合材料在Al2O3纤维含量为5vol.%时抗弯强度达到最高为7.4MPa·m1/2。可以发现Ti2AlC/610-Al2O3纤维复合材料比Ti2AlC/720-Al2O3纤维复合材料具有更高的硬度和抗弯强度,然而Ti2AlC/610- Al2O3纤维复合材料的断裂韧性却比Ti2AlC/720-Al2O3纤维复合材料偏低。
图4为Ti2AlC/20vol.%Al2O3纤维复合材料的SEM照片和EDS能谱。(a)为 Ti2AlC/610-Al2O3纤维复合材料的SEM照片,(b)为Ti2AlC/720-Al2O3纤维复合材料的 SEM照片,(c)为Ti2AlC/610-Al2O3纤维复合材料的EDS能谱,(d)为Ti2AlC/720- Al2O3纤维复合材料的EDS能谱。图5为Ti2AlC/610-Al2O3纤维复合材料的SEM弯曲断口照片:(a)为Ti2AlC/0vol.%Al2O3纤维复合材料的SEM弯曲断口照片,(b)为 Ti2AlC/20vol.%Al2O3纤维复合材料的SEM弯曲断口照片,(c)为Ti2AlC/30 vol.%Al2O3纤维复合材料的SEM弯曲断口照片。可以看到细小的Al2O3纤维均匀弥散的分布在Ti2AlC基体当中,一方面Al2O3纤维分散在Ti2AlC基体晶界,可以起到阻碍基体晶粒的生长,从而细化晶粒,提高复合材料强度;另一方面均匀弥散分布的Al2O3纤维可以对裂纹扩展有效起到阻碍作用,起到增韧作用。但是当Al2O3纤维含量超过一定值,由于Al2O3纤维含量较高会出现聚集现象,从而使得复合材料的力学性能下降。
复合材料基体晶粒为片状结构”中基体是指Ti2AlC基体。本发明的目的是在Ti2AlC陶瓷中引入Al2O3纤维作为第二相,进行复合强化Ti2AlC陶瓷材料,是目前改善Ti2AlC陶瓷材料综合性能的有效措施。因此本发明的一种致密的Ti2AlC/Al2O3纤维复合材料是以Ti2AlC陶瓷作为基体,以Al2O3纤维作为增强相,其中Ti2AlC陶瓷基体晶粒为片状结构,而Al2O3纤维呈短棒状。

Claims (1)

1.一种致密的Ti2AlC/Al2O3纤维复合材料的制备方法,其特征在于,按以下步骤进行:
采用平均颗粒粒度为5微米的商业Ti2AlC粉体,Ti2AlC粉体纯度95%,含有5%的Ti3AlC2,将直径为20微米的3M公司Nextel 610系列氧化铝纤维在200℃下处理,610系列的氧化铝纤维纯度高达99%,再手工研磨Al2O3纤维,将纤维按照体积百分数为20%与Ti2AlC粉末混合后球磨12h,装入等离子放电烧结炉中,在40MPa压力下和1300℃的温度下烧结,保温时间为20分钟,冷却后获得Ti2AlC/610-Al2O3纤维复合材料;阿基米德法测试的致密度大于99%,在氧化铝纤维含量达到20vol.%时,材料的弯曲强度最大达到687.6MPa,显微硬度为7.2GPa,断裂韧性为6.5MPa·m1/2;或者,
采用平均颗粒粒度为20微米的商业Ti2AlC粉体,Ti2AlC粉体纯度95%,含有5%的Ti3AlC2,将直径为20微米的3M公司Nextel 720系列氧化铝纤维在400℃下处理,720系列的Al2O3纤维中含有15%的SiO2,再手工研磨Al2O3纤维,将纤维按照体积百分数为20%与Ti2AlC粉末混合后球磨24h,装入等离子放电烧结炉中,在100MPa压力下和1200℃的温度下烧结,保温时间为60分钟,冷却后获得Ti2AlC/720-Al2O3纤维复合材料;阿基米德法测试的致密度大于99%,在氧化铝纤维含量达到20vol.%时,材料的弯曲强度最大达到546.7MPa,显微硬度为6.6GPa,断裂韧性为6.6MPa·m1/2
CN201610910480.4A 2016-10-19 2016-10-19 一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法 Active CN106518119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610910480.4A CN106518119B (zh) 2016-10-19 2016-10-19 一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610910480.4A CN106518119B (zh) 2016-10-19 2016-10-19 一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106518119A CN106518119A (zh) 2017-03-22
CN106518119B true CN106518119B (zh) 2019-05-10

Family

ID=58332622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610910480.4A Active CN106518119B (zh) 2016-10-19 2016-10-19 一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106518119B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10151362B1 (en) * 2017-05-16 2018-12-11 Goodrich Corporation Rapid ceramic matrix composite fabrication of aircraft brakes via field assisted sintering
CN107805071B (zh) * 2017-10-26 2020-12-18 西南交通大学 一种低玻璃润湿性钛三铝碳二/莫来石复合陶瓷的制备方法
CN109053206B (zh) * 2018-08-31 2021-07-23 中国科学院金属研究所 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN110219168B (zh) * 2019-07-05 2021-12-31 聊城大学 一种碳纤维表面改性方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328875A (en) * 1991-07-04 1994-07-12 Mitsubishi Materials Corporation Cubic boron nitride-base sintered ceramics for cutting tool
CN101037334A (zh) * 2007-04-27 2007-09-19 武汉理工大学 一种致密Ti2AlC-TiB2复合材料及其制备方法
CN101717252A (zh) * 2009-12-03 2010-06-02 陕西科技大学 一种Ti3AlC2/Al2O3复合材料及其制备方法
CN101723671A (zh) * 2009-12-03 2010-06-09 陕西科技大学 一种TiC/Al2O3复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328875A (en) * 1991-07-04 1994-07-12 Mitsubishi Materials Corporation Cubic boron nitride-base sintered ceramics for cutting tool
CN101037334A (zh) * 2007-04-27 2007-09-19 武汉理工大学 一种致密Ti2AlC-TiB2复合材料及其制备方法
CN101717252A (zh) * 2009-12-03 2010-06-02 陕西科技大学 一种Ti3AlC2/Al2O3复合材料及其制备方法
CN101723671A (zh) * 2009-12-03 2010-06-09 陕西科技大学 一种TiC/Al2O3复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ti_2AlC_Al_2O_3复合材料的原位合成及其力学性能;刘建科等;《功能材料》;20150731;第46卷(第7期);07143-07147

Also Published As

Publication number Publication date
CN106518119A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
Feng et al. Strength of single‐phase high‐entropy carbide ceramics up to 2300° C
Neuman et al. Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air
CN106518119B (zh) 一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法
Al Nasiri et al. Thermal properties of rare‐earth monosilicates for EBC on Si‐based ceramic composites
Krstic et al. Silicon nitride: the engineering material of the future
Neuman et al. Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 C
Golla et al. Titanium diboride
Yin et al. Preparation and properties of an Al2O3/Ti (C, N) micro-nano-composite ceramic tool material by microwave sintering
CN106083065B (zh) 一种高性能Si3N4-TiC0.5N0.5复合梯度陶瓷刀具材料及其制备方法
Fahrenholtz et al. Superhard boride–carbide particulate composites
Limeng et al. Microstructure and mechanical properties of spark plasma sintered TaC0. 7 ceramics
JPWO2018212139A1 (ja) 炭化ケイ素セラミックス
JP2002293636A (ja) SiC繊維強化型SiC複合材料のホットプレス製造方法
He et al. Microstructure and mechanical properties of short-carbon-fiber/Ti 3 SiC 2 composites
Hou et al. Effects of graphite flake diameter on mechanical properties and thermal shock behavior of ZrB2–nanoSiC–graphite ceramics
Qiu et al. Microstructural evolution and mechanical properties of h-BN composite ceramics with Y 2 O 3–AlN addition by liquid-phase sintering
Yao et al. The effects of BN addition on the mechanical properties of porous Si3N4/BN ceramics prepared via nitridation of silicon powder
Le et al. Fabrication of dense ZrB2/B4C composites using pulsed electric current pressure sintering and evaluation of their high-temperature bending strength
Sun et al. Effects of Ti (C, N) addition on the microstructure and mechanical properties of spark plasma sintered Si3N4/Ti (C, N) ceramic tool material
Ye et al. Effect of addition of micron-sized TiC particles on mechanical properties of Si3N4 matrix composites
Malik et al. Mechanical properties of silicon carbide—in situ zirconium carbonitride composites
CN101555136B (zh) 一种钛硅化碳/二硼化钛-碳化钛复合材料及其制备方法
Lee et al. Formation of Ti3SiC2 interphase coating on SiCf/SiC composite by electrophoretic deposition
Abubakar et al. Development and analysis of functionally-graded SiAlON composites with computationally designed properties for cutting inserts
Shimoda et al. Effect of BN nanoparticle content in SiC matrix on microstructure and mechanical properties of SiC/SiC composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant