CN106542839A - 一种晶须型增韧陶瓷的制备方法 - Google Patents

一种晶须型增韧陶瓷的制备方法 Download PDF

Info

Publication number
CN106542839A
CN106542839A CN201610965544.0A CN201610965544A CN106542839A CN 106542839 A CN106542839 A CN 106542839A CN 201610965544 A CN201610965544 A CN 201610965544A CN 106542839 A CN106542839 A CN 106542839A
Authority
CN
China
Prior art keywords
sintering
whisker
microwave
preparation
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610965544.0A
Other languages
English (en)
Inventor
李战会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Xinhui Precision Tools Co Ltd
Original Assignee
Ningbo Xinhui Precision Tools Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Xinhui Precision Tools Co Ltd filed Critical Ningbo Xinhui Precision Tools Co Ltd
Priority to CN201610965544.0A priority Critical patent/CN106542839A/zh
Publication of CN106542839A publication Critical patent/CN106542839A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种晶须型增韧陶瓷的制备方法,采用晶须增韧的结构陶瓷材料,不仅可以提高复合材料的各种性能,提高抗弯强度,断裂韧性,耐磨型等,还扩大了结构陶瓷材料的应用范围;本发明在烧结的时候加入三氧化二钇和氧化镁或其混合物的结合剂,可以起到增强成品致密性的效果,通过微波烧结的方式,降低材料的烧结温度,由于烧结时间短,可以防止晶粒在烧结过程中长大;微波可以实现快速均匀加热而不会引起试样开裂或在试样内形成热应力,更重要的是快速烧结可使材料内部形成均匀的细晶结构和较高的致密性,从而改善材料性能,使成品具有更好的韧性,强度和耐磨性。

Description

一种晶须型增韧陶瓷的制备方法
技术领域
本发明主要涉及一种增韧陶瓷的制备方法,尤其涉及一种晶须型增韧陶瓷的制备方法。
背景技术
结构陶瓷具有高硬度,高强度,耐磨,抗化学腐蚀,耐高温等优良特性。被广泛应用于航空航天的零备件,耐磨件和刀具等。但结构陶瓷也其致命的弱点:脆性。主要体现在材料的韧性低,抗弯强度不高,抗热震性能欠佳。这无疑限制了结构陶瓷的应用范围和可靠性。因此,改善陶瓷材料的脆性成为推广使用结构陶瓷材料和扩大其应用范围的关键所在。近几十年来,人们在改善结构陶瓷材料的韧性和强度方面所用的主要方法有:粒子弥散增韧、氧化锆相变增韧和晶须增韧。实践证明这三种增韧方式中,晶须增韧不仅增韧效果高,提高了抗弯轻度,而且还适用于室温和高温下的各种应用, 特别是在用于刀具材料加工高温合金材料时具有其它材料制作的刀具不可比拟的优越性。
晶须加入后对材料的性能有很大的影响。
1 对力学性能的影响
晶须增韧陶瓷材料发展迅速,提供了一条有效的改善陶瓷材料脆性的方法。SiC晶须+ZrO2 复合材料在1000℃下抗弯强度是TZP基质的2倍,高达400MPa,显示了SiC晶须 增强高纯氧化浩(TZP)改善材料的高温力学性能;在TiB2材料中基体中加人适量的SiC晶须,其抗弯强度为560MPa,断裂韧性7. 3MPaM1/2,与纯TiB2陶瓷相比,复合材料的断裂韧性提高约15-25%;用SiC晶须增韧制成的陶瓷切削工具已应用于生产,当Al2O3为基体材料加入SiC晶须时,其刀具材料韧性和强度都有提高,特别是断裂韧性一般比基体材料提高20-30%,有的甚至提高一倍多。
2 提高陶瓷材料的抗热震能力
林广涌等研究表明,未加SiC晶须的A12O3 基体陶瓷材料经1次热震循环即有裂纹产生,而加人20%的SiC晶须经过6次才有裂纹,而经过8次仍没有开裂。罗学涛等在1000度和500 度温差的热震实验表明:SiC晶须对热冲击引起裂纹扩展的影响起着关键作用。
3 晶须的加入对耐磨性的影响
在实验条件下,Greason A.N.采用简单冲蚀装置研究了SiC粒子冲蚀晶须增韧氧化铝的磨损行为。王东方等研究了SiC晶须-Si3N4复合材料的抗冲蚀磨损性能,研究:SiC晶须-Si3N4复合材料在恶劣冲击条件下,仍能表现出良好的冲蚀磨损性,这是因为在冲蚀表面上的晶须拔出和晶须桥联减少了材料的薄片状剥落,因而控制了材料冲蚀磨损损失。
晶须增韧陶瓷复合材料的机理。
1 裂纹偏转效应
裂纹偏转增韧是裂纹非平面断裂效应的一种增韧方式。裂纹扩展到达晶须时,被迫沿晶须偏转,这意味着裂纹的前行路径更长,裂纹尖端的应力强度减少,裂纹偏转的角度越大,能量释放率就越低,增韧效果就越好,断裂韧性就提高。
2 微裂纹效应
微裂纹增韧是较早提出的在多种材料中都存在的一种增韧机理:即在裂纹尖端的应力场和残余应力作用下,晶须成为微裂纹源,而在裂纹前方形成散布的(不连通的)微裂纹区,可以消耗很多能量,阻止裂纹的发展。
3 晶须拔出效应
拔出效应是指当裂纹扩展遇到高强度晶须时,在裂纹尖端附近晶须与基体界面上存在较大的剪切应力,该应力极易造成晶须与界面的分离开裂,晶须可以从基体中拔出,因界面摩擦而消耗外界载荷的能量而达到增韧的目的。同时晶须从基体中拔出会产生微裂纹来吸收更多的能量。
4 裂纹桥联效应
裂纹桥联是一种裂纹尖端尾部效应。即裂纹扩展过程中遇上晶须时,裂纹有可能发生穿晶破坏,也有可能出现互锁现象(Interlocking)即裂纹绕过晶须并形成摩擦桥。研究表明,晶须增强陶瓷材料、微晶A1203陶瓷等中均发现了裂纹桥的存在。
5 晶须的加入引起基体相变增韧
增韧技术从单一的晶须增韧又发展到多重增韧,宋桂明等在研究SiC晶须-Zr02-A1203断裂韧性时发现,相变增韧和晶须桥联增韧、裂纹偏转增韧存在相干性,能够产生多重韧化效果,进一步提高陶瓷材料的断裂韧性。
通过以上的论述, 晶须增韧结构陶瓷材料, 不仅可以提高复合材料的各种性能,提高抗弯强度,断裂韧性,耐磨型等,还扩大了结构陶瓷材料的应用范围。在不久的将来,增韧陶瓷材料在应用方面将有很大的市场。
发明内容
本发明目的就是为了提供一种晶须型增韧陶瓷的制备方法。
本发明是通过以下技术方案实现的。
一种晶须型增韧陶瓷的制备方法,包括以下步骤:
(1)原料组成:所述的原料按照重量百分比,包括20-35%的SiC晶须、3-7%的结合剂,剩余的为陶瓷基体材料;所述的陶瓷基体材料为氧化铝(Al2O3)、氮化硅(Si3N4)、氧化锆(ZrO2), 碳化硼(B4C)、二硼化钛(TiB2)中的一种;
(2)混合浆料制备:取无水乙醇,滴加浓度为20-25%的氨水,调节pH为10-11,加入上述SiC晶须,超声搅拌15-30分钟,然后加入结合剂、陶瓷基体材料,继续超声搅拌30-60分钟,置入球磨机球磨15-20小时;
(3)混合粉末及造粒:将上述混合好的浆料送入120-130℃的烘箱中烘干,取出,捣碎后用60-80目筛子过筛和造粒;
(4)冷压制成型:将造粒后的物料送入模具中冷压成型,根据需要制作任意几何形状的粗品;
(5)微波烧结:将(4)冷压成型的毛坯放入微波炉内烧结, 微波工作频率为2.45GHZ,烧结升温速度控制在60-800C/min至1400-15000C后,升温速度控制在15-300C/min,加热到1600-16500C,然后在这个温度保温20-30分钟,随后关掉电源随炉冷却至室温。
一种晶须型增韧陶瓷的制备方法,所述的结合剂是由氧化镁、氧化钇或由二者的混合物组成。
一种晶须型增韧陶瓷的制备方法,所述的SiC晶须中还可以包含二硼化钛晶粒(TiB2)、碳化钛晶粒(TiC)中的一种或两种,所述晶粒的总重量为SiC晶须重量的0-20%。
微波烧结是利用微波具有的特殊波段与材料的分子或结构团耦合或谐振而产生热量,材料的在微波场中的介质损耗使其材料整体加热至烧结温度而实现致密化的方法。微波烧结原理与目前的常规烧结工艺有着本质区别在于:常规烧结是由发热体加热被烧结物体,达到烧结温度时使材料致密,烧结加热的过程是由外部到内部,烧结的时间长,效率低,很难达到100% 致密。特别是在烧结过程中材料晶体容易长大,使材料的性能下降。而微波烧结是由材料内外均匀地整体吸收微波能并被加热,被烧结材料处于温度均匀的加热。与常规烧结相比, 微波烧结具有:降低材料的烧结温度,烧结时间短, 节能,安全无污染,防止晶粒在烧结过程中长大等特性。 微波可以实现快速均匀加热而不会引起试样开裂或在试样内形成热应力,更重要的是快速烧结可使材料内部形成均匀的细晶结构和较高的致密性,从而改善材料性能。
本发明的优点:
本发明晶须增韧的结构陶瓷材料,不仅可以提高复合材料的各种性能,提高抗弯强度,断裂韧性,耐磨型等,还扩大了结构陶瓷材料的应用范围,本发明在烧结的时候加入的氧化镁或氧化钇结合剂,可以起到提高成品致密性的效果。通过微波烧结的方式,提高了能量利用率,防止晶粒长大,提高产品的致密性使成品具有更好的强度,韧性和耐磨性。
具体实施方式
实施例一。
一种晶须型增韧陶瓷的制备方法,包括以下步骤:
(1)原料组成:所述的原料按照重量百分比,包括26%的SiC晶须、6%三氧化二钇的结合剂、剩余的为氧化铝;
(2)混合浆料制备:取无水乙醇,滴加浓度为20%的氨水,调节pH为10,加入上述SiC晶须,超声搅拌20分钟,然后加入陶瓷基体材料、三氧化二钇,继续超声搅拌25分钟,置入球磨机球磨16小时;
(3)混合粉末及造粒:将上述混合好的浆料送入120-130℃的烘箱中烘干,取出,捣碎后用60目筛子过筛和造粒;
(4)冷压制成型:将造粒后的粉料在15T自动压机上压制成型,根据试验需要制作成RNGN190700的毛坯。 调节压机的压力使粉料毛坯的密度达到成品的理论密度55%, 并且确认毛坯没有明显的微裂纹;
(5)微波烧结:将(4)冷压成型的毛坯放入, 200X200X250微波炉内烧结, 微波工作频率为2.45GHZ。烧结升温速度控制在700C/min至14300C后,升温速度将控制在200C/min加热到16100C。 然后在这个温度保温25分钟,随后关掉电源随炉冷取至室温。
烧结后的样品经过性能测试:
断裂韧性:8.8 MPaM1/2,抗弯轻度:900 MPa, 硬度(HV):22.5 GPa。
实施例二。
一种晶须型增韧陶瓷的制备方法,包括以下步骤:
(1)原料组成:所述的原料按照重量百分比,包括30%的SiC晶须、3%的三氧化二钇,3%氧化镁的结合剂、剩余的为氧化铝;
(2)混合浆料制备:取无水乙醇,滴加浓度为25%的氨水,调节pH为11,加入上述SiC晶须,超声搅拌20分钟,然后加入三氧化二钇、氧化镁、陶瓷基体材料,继续超声搅拌30分钟,置入球磨机球磨18小时;
(3)混合粉末及造粒:将上述混合好的浆料送入120-130℃的烘箱中烘干,取出,捣碎后用60目筛子过筛和造粒;
(4)冷压制成型:将造粒后的粉料在15T自动压机上压制成型,根据试验需要制作成RNGN190700的毛坯。 调节压机的压力使粉料毛坯的密度达到成品的理论密度60%, 并且确认毛坯没有明显的微裂纹;
(5)微波烧结:将(4)冷压成型的毛坯放入,200X200X250微波炉内烧结, 微波工作频率为2.45GHZ,烧结升温速度控制在700C/min至14500C后,升温速度将控制在200C/min加热到16400C, 然后在这个温度保温30分钟,随后关掉电源随炉冷取至室温。
烧结后的样品经过性能测试:
断裂韧性:9.8 MPaM1/2, 抗弯轻度:980 MPa, 硬度(HV):23 GPa。

Claims (3)

1.一种晶须型增韧陶瓷的制备方法,其特征在于,包括以下步骤:
(1)原料组成:所述的原料按照重量百分比,包括20-35%的SiC晶须、3-7%的结合剂,剩余的为陶瓷基体材料;所述的陶瓷基体材料为氧化铝(Al2O3)、氮化硅(Si3N4)、氧化锆(ZrO2), 碳化硼(B4C)、二硼化钛(TiB2)中的一种;
(2)混合浆料制备:取无水乙醇,滴加浓度为20-25%的氨水,调节pH为10-11,加入上述SiC晶须,超声搅拌15-30分钟,然后加入结合剂、陶瓷基体材料,继续超声搅拌30-60分钟,置入球磨机球磨15-20小时;
(3)混合粉末及造粒:将上述混合好的浆料送入120-130℃的烘箱中烘干,取出,捣碎后用60-80目筛子过筛和造粒;
(4)冷压制成型:将造粒后的物料送入模具中冷压成型,根据需要制作任意几何形状的粗品;
(5)微波烧结:将(4)冷压成型的毛坯放入微波炉内烧结, 微波工作频率为2.45GHZ,烧结升温速度控制在60-800C/min至1400-15000C后,升温速度控制在15-300C/min,加热到1600-16500C,然后在这个温度保温20-30分钟,随后关掉电源随炉冷却至室温。
2.根据权利要求1所述的一种晶须型增韧陶瓷的制备方法,其特征在于,所述的结合剂是由氧化镁、氧化钇或由二者的混合物组成。
3.根据权利要求1所述的一种晶须型增韧陶瓷的制备方法,其特征在于,所述的SiC晶须中还可以包含二硼化钛晶粒(TiB2)、碳化钛晶粒(TiC)中的一种或两种,所述晶粒的总重量为SiC晶须重量的0-20%。
CN201610965544.0A 2016-10-28 2016-10-28 一种晶须型增韧陶瓷的制备方法 Withdrawn CN106542839A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610965544.0A CN106542839A (zh) 2016-10-28 2016-10-28 一种晶须型增韧陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610965544.0A CN106542839A (zh) 2016-10-28 2016-10-28 一种晶须型增韧陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN106542839A true CN106542839A (zh) 2017-03-29

Family

ID=58394243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610965544.0A Withdrawn CN106542839A (zh) 2016-10-28 2016-10-28 一种晶须型增韧陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106542839A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108374134A (zh) * 2018-04-08 2018-08-07 南京信息工程大学 一种金属增韧陶瓷基复合材料及其制备方法
CN108975763A (zh) * 2018-08-14 2018-12-11 泉州市智通联科技发展有限公司 一种硅化钼晶须增韧氧化锆陶瓷手机背板的制备方法
CN110157998A (zh) * 2019-05-27 2019-08-23 太原理工大学 一种超硬自润滑刀具材料及其制备方法
CN110981521A (zh) * 2019-11-15 2020-04-10 鞍钢集团矿业有限公司 ZrO2和TiC协同增韧的Al2O3基陶瓷材料及制备方法
CN111170755A (zh) * 2019-12-19 2020-05-19 西安交通大学 一种二硼化钛基纳米复合刀具材料及制备方法
CN112125653A (zh) * 2020-08-31 2020-12-25 江苏大学 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法
CN112194492A (zh) * 2020-09-15 2021-01-08 衡阳凯新特种材料科技有限公司 氮化硅陶瓷材料及其制备方法与应用、防弹插板
CN113004036A (zh) * 2021-03-15 2021-06-22 无锡市高宇晟新材料科技有限公司 高抗热震性中介微波介质陶瓷及制备方法
CN113683431A (zh) * 2021-06-23 2021-11-23 重庆科技学院 一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法
CN115353402A (zh) * 2022-08-26 2022-11-18 山东大学 一种具有裂纹自愈合功能的陶瓷刀具材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051900A (zh) * 1990-12-29 1991-06-05 清华大学 晶须增韧补强氮化硅复相陶瓷刀具材料
CN1148580A (zh) * 1995-10-26 1997-04-30 山东工业大学 复相陶瓷刀具材料及其加工工艺
CN1609057A (zh) * 2004-11-12 2005-04-27 清华大学 用微波技术快速烧结氮化硅结合碳化硅耐火材料的方法
CN101323529A (zh) * 2008-07-11 2008-12-17 中国科学院上海硅酸盐研究所 微波烧结中的梯度透波结构及其用于制备陶瓷材料的方法
CN102070341A (zh) * 2009-11-19 2011-05-25 长沙平拓新材料科技有限公司 一种自增韧氮化硅陶瓷微波固相合成制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051900A (zh) * 1990-12-29 1991-06-05 清华大学 晶须增韧补强氮化硅复相陶瓷刀具材料
CN1148580A (zh) * 1995-10-26 1997-04-30 山东工业大学 复相陶瓷刀具材料及其加工工艺
CN1609057A (zh) * 2004-11-12 2005-04-27 清华大学 用微波技术快速烧结氮化硅结合碳化硅耐火材料的方法
CN101323529A (zh) * 2008-07-11 2008-12-17 中国科学院上海硅酸盐研究所 微波烧结中的梯度透波结构及其用于制备陶瓷材料的方法
CN102070341A (zh) * 2009-11-19 2011-05-25 长沙平拓新材料科技有限公司 一种自增韧氮化硅陶瓷微波固相合成制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨秋红等: "《无机材料物理化学》", 31 August 2013, 同济大学出版社 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108374134A (zh) * 2018-04-08 2018-08-07 南京信息工程大学 一种金属增韧陶瓷基复合材料及其制备方法
CN108975763A (zh) * 2018-08-14 2018-12-11 泉州市智通联科技发展有限公司 一种硅化钼晶须增韧氧化锆陶瓷手机背板的制备方法
CN110157998A (zh) * 2019-05-27 2019-08-23 太原理工大学 一种超硬自润滑刀具材料及其制备方法
CN110981521A (zh) * 2019-11-15 2020-04-10 鞍钢集团矿业有限公司 ZrO2和TiC协同增韧的Al2O3基陶瓷材料及制备方法
CN111170755A (zh) * 2019-12-19 2020-05-19 西安交通大学 一种二硼化钛基纳米复合刀具材料及制备方法
CN111170755B (zh) * 2019-12-19 2021-11-19 西安交通大学 一种二硼化钛基纳米复合刀具材料及制备方法
CN112125653A (zh) * 2020-08-31 2020-12-25 江苏大学 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法
CN112194492A (zh) * 2020-09-15 2021-01-08 衡阳凯新特种材料科技有限公司 氮化硅陶瓷材料及其制备方法与应用、防弹插板
CN113004036A (zh) * 2021-03-15 2021-06-22 无锡市高宇晟新材料科技有限公司 高抗热震性中介微波介质陶瓷及制备方法
CN113683431A (zh) * 2021-06-23 2021-11-23 重庆科技学院 一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法
CN115353402A (zh) * 2022-08-26 2022-11-18 山东大学 一种具有裂纹自愈合功能的陶瓷刀具材料及其制备方法
CN115353402B (zh) * 2022-08-26 2023-03-14 山东大学 一种具有裂纹自愈合功能的陶瓷刀具材料及其制备方法

Similar Documents

Publication Publication Date Title
CN106542839A (zh) 一种晶须型增韧陶瓷的制备方法
Pazhouhanfar et al. Combined role of SiC particles and SiC whiskers on the characteristics of spark plasma sintered ZrB2 ceramics
Khodaei et al. Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites
Yin et al. Study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material
CN100534952C (zh) 氧化铝纳米棒增韧碳化硅陶瓷制造方法
Yin et al. Preparation and properties of an Al2O3/Ti (C, N) micro-nano-composite ceramic tool material by microwave sintering
RU2744543C1 (ru) Способ получения керамического композиционного материала на основе карбида кремния, армированного волокнами карбида кремния
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN106167413B (zh) 一种原位合成莫来石晶须增韧90氧化铝陶瓷及制备方法
CN107522485B (zh) 一种尖晶石纤维强化氧化锆耐火材料及其制备工艺
CN105906360B (zh) 一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法
CN112250442B (zh) 一种高强韧无粘结相纳米晶硬质合金的制备方法
CN112645726B (zh) 一种具有典型长颗粒形貌、富含层错和孪晶的碳化硅晶须陶瓷及其制备方法
CN104817327A (zh) 一种氮化硅复合陶瓷模具材料及其制备方法与应用
CN105384450B (zh) 硅铝溶胶增强碳化硅窑具的生产方法
CN110330316B (zh) 一种裂纹自愈合陶瓷刀具材料及其制备方法
CN113149676B (zh) 一种利用两步法烧结原位增韧碳化硼基复相陶瓷的方法
He et al. Effect of sintering additives on microstructures and mechanical properties of short-carbon-fiber-reinforced SiC composites prepared by precursor pyrolysis–hot pressing
Yang et al. Synthesis, sintering, and grain growth kinetics of Hf6Ta2O17
Hua et al. Fabrication and mechanical properties of short ZrO2 fiber reinforced NiFe2O4 matrix composites
CN106747433B (zh) 氧化锆基纳米陶瓷工模具材料及其制备方法
CN105777130B (zh) 反应烧结碳化硼陶瓷复合材料的凝胶注模成型制备方法
JPH085721B2 (ja) 複合セラミツク焼結体とその製造方法
CN105543609A (zh) 一种含锆的碳化硼基复合材料及其制备方法
CN107512921B (zh) 一种碳纤维粉增强氮化硅基复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170329