CN113683431A - 一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法 - Google Patents

一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法 Download PDF

Info

Publication number
CN113683431A
CN113683431A CN202110701385.4A CN202110701385A CN113683431A CN 113683431 A CN113683431 A CN 113683431A CN 202110701385 A CN202110701385 A CN 202110701385A CN 113683431 A CN113683431 A CN 113683431A
Authority
CN
China
Prior art keywords
aluminum borate
borate whisker
composite material
based composite
toughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110701385.4A
Other languages
English (en)
Inventor
贾碧
施金良
邸永江
刘银
王雪怡
�田�浩
朱俊
唐睿
陈星宇
张丹瑕
张文轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Stiou Measurement And Control Technology Co ltd
Chongqing University of Science and Technology
Original Assignee
Chongqing Stiou Measurement And Control Technology Co ltd
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Stiou Measurement And Control Technology Co ltd, Chongqing University of Science and Technology filed Critical Chongqing Stiou Measurement And Control Technology Co ltd
Priority to CN202110701385.4A priority Critical patent/CN113683431A/zh
Publication of CN113683431A publication Critical patent/CN113683431A/zh
Priority to US17/847,386 priority patent/US11999831B2/en
Priority to US18/502,532 priority patent/US20240067782A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种硼酸铝晶须增强补韧非金属基复合材料,采用硼酸铝晶须增强补韧非金属材料;通过硼酸铝晶须增强补韧非金属基复合材料以提高非金属基复合材料的弯曲强度和断裂韧性,降低非金属基复合材料的耐磨损性能。一是硼酸铝晶须形成液相后通过流动进入到晶界处并重结晶,包覆晶粒,起到抑制晶粒长大的作用,同时填补孔隙增加致密度;二是液化后的硼酸铝晶须被晶粒挤出在晶粒表面重结晶成晶须,由于晶须的插拔机制而提高基体强度;三是液化的硼酸铝晶须被来自隔离碳纸、石墨模具、石墨发热体以及碳毡中的固相C和部分气化C还原,进而与内部晶界处的ZrO2反应生成ZrB2,而ZrB2具有很好的增韧作用。

Description

一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法
技术领域
本发明涉及增强补韧非金属基复合材料领域,具体涉及一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法。
背景技术
硼酸铝晶须最早是由一位日本科学家研究发现的,它具有极高的杨氏模量,较大的拉伸强度和莫氏硬度。硼酸铝晶须种类繁多,其化学通式为nAl2O3·B2O3,根据烧结温度和制备方法不同,常见的有9Al2O3·2B2O3、Al2O3·B2O3、2Al2O3·B2O3这三种类型。其中9Al2O3·2B2O3的密度为2.93g cm-3,熔点1450℃左右,高硬度、高强度,不溶于酸性和碱性溶液,综合性能最佳,且价格低廉,适合大规模生产。非金属材料,如氧化铝陶瓷材料拥有高硬度、高强度、耐高温、耐磨损与耐腐蚀等优异性能,被广泛应用于结构陶瓷和耐磨元件。由于陶瓷材料固有的脆性,较差的断裂韧性限制了氧化铝陶瓷材料的工业应用。现有技术中,并没有采用硼酸铝晶须增强、增韧非金属材料(包括无机非金属材料和有机高分子材料)的先例。
发明内容
有鉴于此,本发明的目的在于提供一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法,通过硼酸铝晶须增强补韧非金属基复合材料以提高非金属基复合材料的弯曲强度和断裂韧性,进而提高非金属基复合材料的耐磨性。
本发明的硼酸铝晶须增强补韧非金属基复合材料,采用硼酸铝晶须增强补韧非金属材料;
进一步,所述非金属材料为无机非金属材料或/和有机高分子材料;
进一步,所述硼酸铝晶须占复合材料的体积含量为1-50%;
进一步,所述硼酸铝晶须的长度为1~50μm,直径为0.05~1.0μm。
本发明还公开一种硼酸铝晶须增强补韧非金属基复合材料的制备方法,包括以下步骤:
a.将硼酸铝晶须和非金属材料进行混合处理;
b.将混合料进行真空热压烧结处理或有机高分子材料成型加工;
进一步,所述非金属材料为无机非金属材料,步骤a中,将硼酸铝晶须与无机非金属材料球磨混合处理;步骤b中,将混合料进行真空热压烧结处理,烧结温度为1300~1650℃,烧结压力为5~60MPa,保温时间为30~300 min。
进一步,所述非金属材料为有机高分子材料(树脂基复合材料)(硼酸铝晶须在增强补韧树脂基复合材料),步骤a中,将将硼酸铝晶须与有机高分子材料搅拌混合处理;步骤b中,将混合料进行有机高分子材料成型加工,成型加工温度为200~400℃,成型加工压力为5~100MPa,成型加工时间为5~ 300sec;
进一步,硼酸铝晶须在增强补韧无机非金属基复合材料时,步骤a中,球磨至粉体粒度小于1.0μm。
进一步,硼酸铝晶须在增强补韧树脂基复合材料时,步骤a中,搅拌混合均匀即可。
本发明的有益效果是:本发明公开的硼酸铝晶须增强补韧非金属基复合材料及其制备方法,通过硼酸铝晶须增强补韧非金属基复合材料以提高非金属基复合材料的弯曲强度和断裂韧性。硼酸铝晶须形成液相后通过流动进入到晶界处并重结晶,包覆晶粒,起到抑制晶粒长大的作用,同时填补孔隙增加致密度;二是液化后的硼酸铝晶须被晶粒挤出在晶粒表面重结晶成晶须,由于晶须的插拔机制而提高基体强度;三是液化的硼酸铝晶须被来自隔离碳纸、石墨模具、石墨发热体以及碳毡中的固相C和部分气化C还原,进而与内部晶界处的ZrO2反应生成ZrB2,而ZrB2具有很好的增韧作用。在这三种机制共同作用下,硼酸铝晶须的加入能够显著提高非金属基复合材料的力学性能,尤其是非金属基复合材料的耐磨损性。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1为图1为不同硼酸铝晶须添加量的氧化铝陶瓷断口的形貌的SEM图;
图2为添加20%硼酸铝增强补韧的氧化铝基复合材料的两处结构进行的EDS图像;
图3为硼酸铝晶须增强补韧氧化铝陶瓷的XRD图;
图4为复合陶瓷中硼酸铝相的EDS图;
图5为不同硼酸铝纤维添加量氧化铝陶瓷的相对密度;
图6为不同烧结温度制备的硼酸铝增强补韧氧化铝陶瓷的SEM图:(a)1460℃; (b)1480℃;(c)1500℃;(d)1520℃;
图7不同烧结温度制备的硼酸铝增强补韧氧化铝陶瓷的弯曲强度和硬度;
图8为不同烧结温度制备的硼酸铝增强补韧氧化铝陶瓷的断裂韧性;
图9为硼酸铝晶须增强补韧氧化铝基陶瓷EBSD图像及图中点5、点6、点7、点8、点9、点13、点14对应的EDS能谱;
图10为20%硼酸铝晶须增强补韧氧化铝基陶瓷EBSD图像及对应的Al、O、Ti、 Zr、B元素的EDS面扫图;
图11为(a)Al2O3、(b)TiB2/Al2O3、(c)9Al2O3B2O3W/TiB2/Al2O3陶瓷材料断面边缘区域的EDS能谱;
图12为(a)Al2O3、(b)TiB2/Al2O3、(c)9Al2O3B2O3W/TiB2/Al2O3陶瓷材料断面中心区域的EDS能谱。
具体实施方式
本实施例的硼酸铝晶须增强补韧非金属基复合材料——氧化铝基复合陶瓷,采用硼酸铝晶须增强补韧氧化铝基复合陶瓷;复合材料的断裂强度主要取决于材料微结构中最大的晶粒或簇的尺寸。复合材料断裂韧性的增加则主要由于晶须增韧所导致,烧结过程中液化后的硼酸铝晶须被晶粒挤出并在晶粒表面重结晶形成类似针状的晶须,同时部分晶须之间出现了桥接现象。通过由桥接晶须而导致的复合材料断裂韧性的增加。同时,由于增韧晶须而发生的裂纹偏转和桥接等也进一步提升材料断裂韧性。硼酸铝晶须种类繁多,其化学通式为nAl2O3·B2O3,根据烧结温度和制备方法不同,常见的有9Al2O3·2B2O3、Al2O3·B2O3、 2Al2O3·B2O3这三种类型。其中9Al2O3·2B2O3的密度为2.93g cm-3,熔点1450℃左右,高硬度、高强度,不溶于酸性和碱性溶液,综合性能最佳,且价格低廉,适合大规模生产。陶瓷材料的磨损性能和其硬度及韧性有着密切的关系,材料的强度和韧性越大,那么材料的耐磨损性能越好。没有添加硼酸铝的氧化铝陶瓷,虽然其硬度较高,但其韧性过低,因而磨损性能较差。
本实施例中,所述无机非非金属材料为氧化铝陶瓷;为优选实施例。以体积比为4:1的Al2O3/TiB2为基准,添加不同体积含量的9Al2O3·2B2O3硼酸铝晶须在氧化铝陶瓷原料体系中,并在高于晶须熔点的温度上进行烧结,使其起到熔剂的作用,实现液相烧结过程。
本实施例中,所述硼酸铝晶须占复合材料的体积含量为0-30%;随着硼酸铝晶须体积分数的增加,氧化铝陶瓷基复合材料的弯曲强度和密度都呈现先增加后减小的趋势,材料的断裂韧性则逐渐增加。复合材料磨损率随着硼酸铝晶须体积分数的增加呈现先降低后升高的趋势。
图1为不同硼酸铝晶须添加量的氧化铝陶瓷断口的形貌的SEM图((a)0%; (b)10%;(c)20%;(d)30%)。如图所示:颗粒状的物相为Al2O3和TiB2相,连续分布状的物相为硼酸铝,氧化铝颗粒被硼酸铝所包裹。这是因为 9Al2O3·2B2O3的熔点为1450℃,在1500℃的烧结温度下会发生固相到液相的转变,然后在冷却过程中再次凝固成连续分布的固相。在烧结完成的过程中,硼酸铝起到了粘结相的作用。用粒径分布计算软件对所有试样进行分析,测得试样(a)中平均晶粒尺寸2.21μm,最大晶粒尺寸2.4μm;试样(b)中平均晶粒尺寸1.58μm,最大晶粒尺寸2.0μm;试样(c)中平均晶粒尺寸1.98μm,最大晶粒尺寸2.5μm;试样(d)中平均晶粒尺寸1.77μm,最大晶粒尺寸2.1μm。由此可见,加入硼酸铝晶须的样品的晶粒要小于未添加的样品,这是因为烧结过程中产生的液相抑制了固相颗粒因直接接触而发生的扩散长大。此外,烧结温度的降低也是材料晶粒细化的原因之一。添加硼酸铝试样中Al2O3和TiB2颗粒的形状仍为无规则的多边形,这说明Al2O3和TiB2颗粒在液态硼酸铝熔液中的溶解度较小,否则固相颗粒将变成边角圆润的卵石形。
通过添加20%硼酸铝晶须增强补韧的氧化铝基复合材料的两处结构进行了 EDS测试,如图2所示。有图可知,虽然硼酸铝晶须在烧结过程中发生了熔融现象,但是在冷却过程中重新生成了接近针状的晶须,同时部分晶须之间出现了桥接现象。
不同硼酸铝晶须含量的增强补韧氧化铝陶瓷的晶相结构如图2所示。从图中可以看出,添加了硼酸铝晶须的陶瓷主要包含了3个相成分:9Al2O3·2B2O3、 Al2O3、TiB2。由此可见,高温烧结过程并没有生成新的相。随着硼酸铝晶须含量的增加,其衍射峰强度也依次增强,这也与它们添加的9Al2O3·2B2O3含量依次增加相一致。此外,还检测到ZrO2的衍射峰,这是因为在混料的过程中,用的是ZrO2球磨球,因此杂质会由于球磨球的磨损而被带入体系的,故所有试样均存在少量的ZrO2杂质。
不同硼酸铝晶须含量的增强补韧氧化铝陶瓷的晶相结构如图3所示。从图中可以看出,添加了硼酸铝晶须的陶瓷主要包含了3个相成分:9Al2O3·2B2O3、 Al2O3、TiB2。由此可见,高温烧结过程并没有生成新的相。随着硼酸铝晶须含量的增加,其衍射峰强度也依次增强,这也与它们添加的9Al2O3·2B2O3含量依次增加相一致。此外,还检测到ZrO2的衍射峰,这是因为在混料的过程中,用的是ZrO2球磨球,因此杂质会由于球磨球的磨损而被带入体系的,故所有试样均存在少量的ZrO2杂质。图4为复合陶瓷中硼酸铝相的EDS图,添加了20%硼酸铝晶须的陶瓷中硼酸铝相的EDS检测结果如图4所示,其中的Pt元素是由于试样做了喷金处理而引入的,另外,还出现了钛元素,这说明烧结过程中钛元素固溶进了硼酸铝相。
从图5可以看出,随着硼酸铝晶须添加量的增加,材料的相对密度呈现先增加后降低的趋势。当硼酸铝晶须含量从增加到20%时,陶瓷材料的相对密度达到最大值99.02%,随着硼酸铝晶须含量的继续增加,陶瓷材料的相对密度下降较快。相对密度的显著增加与烧结过程中硼酸铝晶须的液化行为密切相关。当在液相烧结时,材料的致密化过程大致可分为三个阶段[5]:颗粒重排、溶解- 沉淀及固体骨架聚合。在颗粒重排阶段,液态相填充到固相颗粒之间[6],固相颗粒产生粘性流动而发生重排,材料体系通过这种重排能够获得紧密堆积从而提高材料的相对密度;第二阶段是通过溶解-沉淀过程来提高材料的相对密度,在此阶段,小颗粒溶解,并在大颗粒上析出,固体颗粒尺寸均匀长大,在此过程中固相颗粒进一步靠拢,烧结体相对密度进一步提高。材料的致密化主要在以上三个阶段完成,从其机理可以看出,液相数量越多,越有利于材料致密化的进行。因此,在本研究中,随着硼酸铝晶须添加量的增加,烧结过程中产生的液相体积分数也随之增加,而Al2O3和TiB2颗粒仍以固相形式存在。在烧结时,硼酸铝晶须首先被液化,Al2O3和TiB2颗粒在液相的硼酸铝晶须熔融液中发生重排,随后固相的Al2O3和TiB2颗粒和硼酸铝晶须熔融液之间发生一定程度的扩散,最后在液相硼酸铝晶须的凝固过程中发生骨架聚合,这三个过程使得该材料的相对密度大大提升。但是,当低熔点的硼酸铝晶须含量过高时,会产生大量的液相,导致封闭气孔的产生,因此,陶瓷的相对密度反而会下降。在本研究中,当硼酸铝晶须含量增加至20%时,经过液相烧结的三个阶段,材料的相对密度已高达99.02%,接近完全致密。
不同烧结温度下制备的硼酸铝晶须增强补韧氧化铝陶瓷的形貌如图6所示。由图可知,随着烧结温度的升高,陶瓷硬质相晶粒尺寸呈变大的趋势,这是由于烧结温度升高,提高了物质扩散传质的速度,晶界移动能力增强,因此晶粒长大。1460℃(图6a)下,晶粒尺寸分布不均匀,平均晶粒尺寸0.95μm,最大晶粒尺寸1.2μm,大小颗粒混杂在一起,且孔洞较多。当温度上升为 1480℃和1500℃(图6b、图6c),试样中晶粒尺寸较均匀,平均晶粒尺寸均为1.22μm,最大晶粒尺寸1.4μm和1.6μm,且孔洞数量减少。当温度进一步上升至1520℃(图6d),平均晶粒尺寸为1.24μm,最大晶粒尺寸为1.8 μm。试样中出现了异常长大的颗粒,这是因为随着温度的升高,奥斯瓦尔德熟化现象变得越来越显著,即小颗粒溶解然后沉淀析出在大颗粒上,这个过程会导致小颗粒消失,固相颗粒发生均匀长大,但当温度过高时,奥斯瓦尔德熟化现象以较高的速度发生,会导致一些固相颗粒的过分长大。从图中还可以看出,随着温度的升高,断裂方式从沿晶断裂向穿晶断裂转变,这是由于烧结温度较低时,界面与晶界之间的结合力相对较弱,因而断裂方式以沿晶断裂为主,随着烧结温度的提高,界面与晶界之间的结合力增加,于是断裂方式开始向穿晶断裂转变。
从图7可知,烧结温度对陶瓷的性能有直接影响。这是因为:第一,烧结温度升高,冷却时温度梯度加大,残余热应力增韧效果也随着增加,有利于断裂韧性的提高;第二,烧结温度升高,固溶强化作用增强,有利于断裂韧性的提高;第三,组成陶瓷材料的晶粒中尖角部位易发生应力集中,加速了裂纹的扩展,因而不利于材料断裂韧性的提高,烧结温度升高,由于奥斯瓦尔德熟化效应的作用,硬质相颗粒尖角的边缘消失,颗粒趋于圆润,因而有利于材料断裂韧性的升高。第四,随着烧结温度的提高,晶粒的尺寸增大,这将使材料的断裂韧性降低。
本实施例中,所述硼酸铝晶须的长度为1~50μm,直径为0.05~1.0μm。
本发明还公开一种硼酸铝晶须增强补韧非金属基复合材料的制备方法,包括以下步骤:
a.将硼酸铝晶须和非金属材料混合并球磨处理;
b.将球磨后的混合料进行真空热压烧结处理;复合材料断裂韧性的增加则主要由于晶须增韧所导致,烧结过程中液化后的硼酸铝晶须被晶粒挤出并在晶粒表面重结晶形成类似针状的晶须,同时部分晶须之间出现了桥接现象。通过由桥接晶须而导致的复合材料断裂韧性的增加量模型可知随着晶须体积分数的增加,复合材料断裂韧性增加。同时,由于增韧晶须而发生的裂纹偏转和桥接等也会提升材料断裂韧性。复合材料磨损性能主要受到材料强度、硬度与韧性的综合影响。此外,本工作发现液化的硼酸铝晶须被来自隔离碳纸、石墨模具、石墨发热体以及碳毡中的固相C和部分气化C还原,进而与内部晶界处的ZrO2反应生成了ZrB2颗粒,进一步达到了增韧强化的作用。烧结过程中如果材料体系中有部分成分发生相变,由固相转化为液相,此烧结过程就是液相烧结过程。相对于固相烧结过程,液相烧结更有利于物质的迁移和扩散传输,因此有利于提高材料的相对密度。
本实施例中,步骤b中,烧结温度为1460~1580℃,烧结压力为24~40 MPa,保温时间为30~120min;随着硼酸铝晶须热压烧结温度的增加,氧化铝陶瓷基复合材料的弯曲强度和密度都呈现先增加后减小的趋势,材料的断裂韧性则逐渐增加。
本实施例中,步骤a中,将硼酸铝晶须和氧化铝粉、二硼化钛以及氧化锆磨球加入球磨罐中进行球磨;步骤a中,球磨至粉体粒度小于1.0μm。
通过热力学分析,我们发现9Al2O2B2O3+ZrO2联合被C还原为ZrB2的反应的吉布斯自由能分别从1545℃为负,说明在本文的烧结工艺条件下9Al2O2B2O3和ZrO2很可能被C还原为ZrB2;同时,在真空热压烧结中,一方面由于加热加压同时进行,粉料处于热塑性状态,有助于颗粒的接触扩散、流动传质过程的进行,因而有利于降低成型压力和烧结温度、缩短烧结时间,加速烧结反应过程,另一方面由于反应产物中有气体CO存在,在真空热压烧结过程更有利于 ZrB2生成反应的进行。
为了验证这一机制,我们以20%硼酸铝晶须增强补韧氧化铝基复合陶瓷为研究对象,通过电子背散射扫描(EBSD)对其断面进行成分分析,结果如图9 所示。其中,深灰色部分为Al2O3相,灰色部分为TiB2,白色部分为ZrO2相。在晶界处存在的黑色部分为9Al2O2B2O3W相,证明了液相的9Al2O2B2O3W会扩散到晶界处重结晶并包覆晶粒。另外,还可以看到存在浅灰色部分,成分分析显示是ZrB2相。通过热力学分析可知,Al2O3和TiB2在烧结条件不与ZrO2反应,因此 ZrO2是均匀分散在两者的晶粒之间,而ZrB2则存在于ZrO2的边缘,这证明9Al2O2B2O3W成为液相后流入到晶界处与ZrO2发生反应生成ZrB2
进一步通过面扫分析,可以很清楚的看到体系中各元素的分布,结果如图 10所示。从图中可以看到,Al、O、Ti、B、Zr各元素面扫结果与背散射成分分析结果一致,ZrB2均匀的存在于ZrO2的边缘,这说明ZrO2并不是全部硼化,这是由于扩散限制,因此只是部分硼化。值得注意的是,在晶界处B元素密度很高,这进一步证明了液化的9Al2O2B2O3W确实重结晶于晶界处。
通过理论计算表明,在热压烧结条件下生成ZrB2的必须有C的存在,而C 源可能来自陶瓷制备过程中使用的隔离碳纸、石墨模具、石墨发热体以及碳毡中的固相C和部分气化C,因此为了阐明C元素的作用,利用EDS对20%硼酸铝晶须作为增强体补强增韧的9Al2O3B2O3W/TiB2/Al2O3、Al2O3、TiB2/Al2O3的复合陶瓷样品的断面边界和内部进行元素分析,结果如图11、图12所示。从图11 (a)、(b)和图12(a)、(b)可以看出,纯的Al2O3和TiB2/Al2O3复合陶瓷样品的边界晶粒处存在少量的碳,而其内部晶粒则几乎没有C的存在,这表明在烧结的过程中C从碳纸及石墨模具等碳源中通过固相扩散和气相扩散进入到陶瓷边界处的晶粒表面,但是由于陶瓷内部晶粒较为致密以及在热压烧结过程中会加速致密化,因此通过固相扩散和气相扩散难以进入到内部晶粒和晶界中,所以在纯的Al2O3和TiB2/Al2O3复合陶瓷样品几乎不存在C。从图4、图11(c)和图 12(c)可以看出,20%硼酸铝晶须作为增强体补强增韧的9Al2O3B2O3W/TiB2/Al2O3复合陶瓷样品的边界和内部都存在较高的C含量,这是由于硼酸铝晶须疏松的结构降低了陶瓷中Al2O3和TiB2/Al2O3晶粒的堆积密度,晶粒间形成的疏松结构为C的扩散提供了新途径,另外硼酸铝晶须在烧结温度下熔化后形成液相,也有利于C元素在陶瓷内部晶界间的扩散。由于液相扩散的传质阻力小、流动传质速度快,因此C更容易进入到陶瓷内部晶界处,并将晶界处的9Al2O2B2O3还原为AlB2,再进而与ZrO2反应生成ZrB2。根据相关文献,ZrB2同时拥有金属键和共价键,故其具有陶瓷和金属的双重性,因此它具有熔点、硬度高,导电导热性好,且抗钢水腐蚀等优点,所以将其作为第二相物质加入其它陶瓷材料基体中,可提高材料的强度、韧性、导电性等。因此在体系中生成ZrB2是有利于材料性能的提升。
综上所述,9Al2O2B2O3增强补韧存在三种机制:一是硼酸铝晶须形成液相后通过流动进入到晶界处并重结晶,包覆晶粒,起到抑制晶粒长大的作用,同时填补孔隙增加致密度;二是液化后的硼酸铝晶须被晶粒挤出在晶粒表面重结晶成晶须,由于晶须的插拔机制而提高基体强度;三是液化的硼酸铝晶须被来自隔离碳纸、石墨模具、石墨发热体以及碳毡中的固相C和部分气化C还原,进而与内部晶界处的ZrO2反应生成ZrB2,而ZrB2具有很好的增韧作用。在这三种机制共同作用下,硼酸铝晶须对氧化铝基陶瓷起到很好的增韧作用。
实施例一
本实施例的硼酸铝晶须增强补韧氧化铝基复合陶瓷,采用9Al2O3·2B2O3硼酸铝晶须增强补韧氧化铝陶瓷材料(体积比为4:1的Al2O3/TiB2);所述硼酸铝晶须的长度为5μm,直径为0.4μm;硼酸铝晶须的添加量为20%(复合材料原料总量),其制备方法为:
a.将硼酸铝晶须和氧化铝陶瓷材料以及氧化锆磨球加入球磨罐中球磨至粉体粒度小于1.0μm;
b.将球磨后的混合料进行真空热压烧结处理;烧结温度为1500℃,烧结压力为36MPa,保温时间为60min。
实施例二
本实施例的硼酸铝晶须增强补韧氧化铝基复合陶瓷,采用9Al2O3·2B2O3硼酸铝晶须增强补韧氧化铝陶瓷材料(体积百分比为56%Al2O3、14%TiB2);所述硼酸铝晶须的长度为15μm,直径为1.0μm;硼酸铝晶须的添加量为30%(复合材料原料总量),其制备方法为:
a.将硼酸铝晶须和氧化铝、二硼化钛粉体以及氧化锆磨球加入球磨罐中球磨至粉体粒度小于1.0μm;
b.将球磨后的混合料进行真空热压烧结处理;烧结温度为1380℃,烧结压力为5MPa,保温时间为30min。
实施例三
本实施例的硼酸铝晶须增强补韧氧化铝基复合陶瓷,采用9Al2O3·2B2O3硼酸铝晶须增强补韧氧化铝陶瓷材料(体积百分比为72%Al2O3、18%TiB2);所述硼酸铝晶须的长度为10μm,直径为0.6μm;硼酸铝晶须的添加量为10%(复合材料原料总量),其制备方法为:
a.将硼酸铝晶须和氧化铝陶瓷材料以及氧化锆磨球加入球磨罐中球磨至粉体粒度小于1.0μm;
b.将球磨后的混合料进行真空热压烧结处理;烧结温度为1650℃,烧结压力为60MPa,保温时间为300min。
实施例四
本实施例的硼酸铝晶须增强补韧氧化铝基复合陶瓷,采用9Al2O3·2B2O3硼酸铝晶须增强补韧氧化铝陶瓷材料(体积百分比64%Al2O3、16%TiB2);所述硼酸铝晶须的长度为8μm,直径为0.8μm;硼酸铝晶须的添加量为20%(复合材料原料总量),其制备方法为:
a.将硼酸铝晶须和氧化铝陶瓷材料以及氧化锆磨球加入球磨罐中球磨至粉体粒度小于1.0μm;
b.将球磨后的混合料进行真空热压烧结处理;烧结温度为1580℃,烧结压力为36MPa,保温时间为60min。
实施例五
本实施例的硼酸铝晶须增强补韧氧化铝基复合陶瓷,采用9Al2O3·2B2O3硼酸铝晶须增强补韧氧化铝陶瓷材料(体积百分比为56%Al2O3、14%TiB2);所述硼酸铝晶须的长度为12μm,直径为0.6μm;硼酸铝晶须的添加量为30%(复合材料原料总量),其制备方法为:
a.将硼酸铝晶须和氧化铝陶瓷材料以及氧化锆磨球加入球磨罐中球磨至粉体粒度小于1.0μm;
b.将球磨后的混合料进行真空热压烧结处理;烧结温度为1460℃,烧结压力为30MPa,保温时间为120min。
实施例六
本实施例的硼酸铝晶须在增强补韧树脂基复合材料,采用9Al2O3·2B2O3硼酸铝晶须增强补韧环氧树脂;所述硼酸铝晶须的长度为20μm,直径为0.8μ m;硼酸铝晶须的添加量为30%(复合材料原料总量),其制备方法为:
a.将硼酸铝晶须和环氧树脂搅拌混合处理;
b.将混合料进行成型加工处理,成型加工温度为200℃,成型加工压力为 5MPa,成型加工时间为5sec。
实施例七
本实施例的硼酸铝晶须在增强补韧树脂基复合材料,采用9Al2O3·2B2O3硼酸铝晶须增强补韧环氧树脂;所述硼酸铝晶须的长度为8μm,直径为0.08μ m;硼酸铝晶须的添加量为30%(复合材料原料总量),其制备方法为:
a.将硼酸铝晶须和环氧树脂搅拌混合处理;
b.将混合料进行成型加工处理,成型加工温度为400℃,成型加工压力为 100MPa,成型加工时间为300sec。
实施例八
本实施例的硼酸铝晶须在增强补韧树脂基复合材料,采用9Al2O3·2B2O3硼酸铝晶须增强补韧环氧树脂;所述硼酸铝晶须的长度为40μm,直径为0.36 μm;硼酸铝晶须的添加量为30%(复合材料原料总量),其制备方法为:
a.将硼酸铝晶须和环氧树脂搅拌混合处理;
b.将混合料进行成型加工处理,成型加工温度为300℃,成型加工压力为 60MPa,成型加工时间为150sec。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种硼酸铝晶须增强补韧非金属基复合材料,其特征在于:采用硼酸铝晶须增强补韧非金属材料。
2.根据权利要求1所述的硼酸铝晶须增强补韧非金属基复合材料,其特征在于:所述非金属材料为无机非金属材料或有机高分子材料。
3.根据权利要求2所述的硼酸铝晶须增强补韧非金属基复合材料,其特征在于:所述硼酸铝晶须占复合材料的体积含量为1-50%。
4.根据权利要求3所述的硼酸铝晶须增强补韧非金属基复合材料,其特征在于:所述硼酸铝晶须的长度为1~50μm,直径为0.05~1.0μm。
5.根据权利要求1所述的硼酸铝晶须增强补韧非金属基复合材料的制备方法,其特征在于:包括以下步骤:
a.将硼酸铝晶须和非金属材料进行混合处理;
b.将混合料进行真空热压烧结处理或有机高分子材料成型加工。
6.根据权利要求5所述的硼酸铝晶须增强补韧非金属基复合材料的制备方法,其特征在于:所述非金属材料为无机非金属材料,步骤a中,将硼酸铝晶须与无机非金属材料球磨混合处理;步骤b中,将混合料进行真空热压烧结处理,烧结温度为1300~1650℃,烧结压力为5~60MPa,保温时间为30~300min。
7.根据权利要求5所述的硼酸铝晶须增强补韧非金属基复合材料的制备方法,其特征在于:所述非金属材料为有机高分子材料,步骤a中,将将硼酸铝晶须与有机高分子材料搅拌混合处理;步骤b中,将混合料进行有机高分子材料成型加工,成型加工温度为200~400℃,成型加工压力为5~100MPa,成型加工时间为5~300sec。
8.根据权利要求6所述的硼酸铝晶须增强补韧非金属基复合材料的制备方法,其特征在于:步骤a中,将硼酸铝晶须和非金属材料以及氧化锆磨球加入球磨罐中进行球磨。
9.根据权利要求8所述的硼酸铝晶须增强补韧非金属基复合材料的制备方法,其特征在于:步骤a中,球磨至粉体粒度小于1.0μm。
CN202110701385.4A 2021-06-23 2021-06-23 一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法 Pending CN113683431A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110701385.4A CN113683431A (zh) 2021-06-23 2021-06-23 一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法
US17/847,386 US11999831B2 (en) 2021-06-23 2022-06-23 Aluminum borate whisker reinforced and toughened non-metallic matrix composite and preparation method thereof
US18/502,532 US20240067782A1 (en) 2021-06-23 2023-11-06 Aluminum borate whisker reinforced and toughened non-metallic matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110701385.4A CN113683431A (zh) 2021-06-23 2021-06-23 一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113683431A true CN113683431A (zh) 2021-11-23

Family

ID=78576615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110701385.4A Pending CN113683431A (zh) 2021-06-23 2021-06-23 一种硼酸铝晶须增强补韧非金属基复合材料及其制备方法

Country Status (2)

Country Link
US (2) US11999831B2 (zh)
CN (1) CN113683431A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677365A (zh) * 2022-10-10 2023-02-03 广州秋倩贸易有限公司 一种高强度日用陶瓷及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1210117A (zh) * 1998-07-09 1999-03-10 厦门大学 定向晶须增强聚合物基复合材料的生产工艺
CN1611532A (zh) * 2003-10-29 2005-05-04 中国科学院化学研究所 无机晶须增强聚烯烃复合材料的原位填充聚合制备方法
CN1796590A (zh) * 2004-12-23 2006-07-05 中国科学院金属研究所 一种高性能晶须和弥散粒子复合增强铝基复合材料及其制备方法
CN106542839A (zh) * 2016-10-28 2017-03-29 宁波鑫汇力精密工具有限公司 一种晶须型增韧陶瓷的制备方法
CN108220831A (zh) * 2017-12-29 2018-06-29 滨州渤海活塞有限公司 一种硼酸铝晶须增强锌基合金复合材料及其制备方法
CN108570630A (zh) * 2018-05-21 2018-09-25 西南交通大学 一种氧化铝颗粒和晶须共增强铜基复合材料及其制备方法
CN110483085A (zh) * 2019-08-01 2019-11-22 广东工业大学 一种晶须增强氧化铝复合陶瓷及其制备方法与应用
CN111018540A (zh) * 2020-01-14 2020-04-17 山东建筑大学 一种基于低温热压烧结的高强度氮化硼陶瓷复合材料
CN112410688A (zh) * 2020-10-30 2021-02-26 上海交通大学 硼酸铝晶须增强稀土镁合金复合材料及其制备方法
CN112939582A (zh) * 2021-02-05 2021-06-11 福建华清电子材料科技有限公司 一种掺杂氧化锆的氧化铝陶瓷及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262145B2 (en) * 2004-04-23 2007-08-28 Kennametal Inc. Whisker-reinforced ceramic containing aluminum oxynitride and method of making the same
CN111825432A (zh) * 2020-07-31 2020-10-27 中南大学湘雅医院 一种细晶粒粉色zta陶瓷及其制备方法
CN111848179B (zh) * 2020-08-04 2022-12-02 山东理工大学 一种可在超高温环境中使用的高强度氮化硼陶瓷的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1210117A (zh) * 1998-07-09 1999-03-10 厦门大学 定向晶须增强聚合物基复合材料的生产工艺
CN1611532A (zh) * 2003-10-29 2005-05-04 中国科学院化学研究所 无机晶须增强聚烯烃复合材料的原位填充聚合制备方法
CN1796590A (zh) * 2004-12-23 2006-07-05 中国科学院金属研究所 一种高性能晶须和弥散粒子复合增强铝基复合材料及其制备方法
CN106542839A (zh) * 2016-10-28 2017-03-29 宁波鑫汇力精密工具有限公司 一种晶须型增韧陶瓷的制备方法
CN108220831A (zh) * 2017-12-29 2018-06-29 滨州渤海活塞有限公司 一种硼酸铝晶须增强锌基合金复合材料及其制备方法
CN108570630A (zh) * 2018-05-21 2018-09-25 西南交通大学 一种氧化铝颗粒和晶须共增强铜基复合材料及其制备方法
CN110483085A (zh) * 2019-08-01 2019-11-22 广东工业大学 一种晶须增强氧化铝复合陶瓷及其制备方法与应用
CN111018540A (zh) * 2020-01-14 2020-04-17 山东建筑大学 一种基于低温热压烧结的高强度氮化硼陶瓷复合材料
CN112410688A (zh) * 2020-10-30 2021-02-26 上海交通大学 硼酸铝晶须增强稀土镁合金复合材料及其制备方法
CN112939582A (zh) * 2021-02-05 2021-06-11 福建华清电子材料科技有限公司 一种掺杂氧化锆的氧化铝陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
詹益兴: "《精细化工新产品 第1集》", 北京:科学技术文献出版社, pages: 44 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677365A (zh) * 2022-10-10 2023-02-03 广州秋倩贸易有限公司 一种高强度日用陶瓷及其制备方法

Also Published As

Publication number Publication date
US20230112626A1 (en) 2023-04-13
US11999831B2 (en) 2024-06-04
US20240067782A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
Pazhouhanfar et al. Combined role of SiC particles and SiC whiskers on the characteristics of spark plasma sintered ZrB2 ceramics
Yin et al. Study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material
Zhao et al. Microstructure and mechanical properties of TiB2–SiC ceramic composites by reactive hot pressing
Tsang et al. In situ fracture observation of a TiC/Ti MMC produced by combustion synthesis
EP0282879B1 (en) Composite ceramic sintered body and process for production thereof
Istgaldi et al. Characterization of ZrB2–TiC composites reinforced with short carbon fibers
EP2261193B1 (en) Zirconia/carbon-containing refractory material and method for producing same
EP0217946A1 (en) High density reinforced ceramic bodies and method of making same
CN111850377B (zh) 一种原位Al2O3颗粒增强铝基复合材料的制备方法
CN109609814B (zh) 一种双尺度陶瓷颗粒混杂高弹性模量高强度铝合金及其制备方法
Kumar et al. Effect of ceramic reinforcement on mechanical properties of aluminum matrix composites produced by stir casting process
Leonov Effect of alumina nanofibers content on the microstructure and properties of ATZ composites fabricated by spark plasma sintering
CN110655404A (zh) 一种钛碳化硅基复合陶瓷材料及其制备工艺
Cao et al. Progress in densification and toughening of high entropy carbide ceramics
US20240067782A1 (en) Aluminum borate whisker reinforced and toughened non-metallic matrix composite
CN110157950B (zh) 一种还原氧化石墨烯增强的锌基医用材料及其制备方法
He et al. Effect of sintering additives on microstructures and mechanical properties of short-carbon-fiber-reinforced SiC composites prepared by precursor pyrolysis–hot pressing
CN109338159B (zh) 一种高塑性钛基复合材料制备方法
Eray Application of metal oxides in composites
CN1563455A (zh) 一种原位二硼化钛和三氧化二铝复合增强铝基复合材料的制备方法
CN113651628B (zh) 采用热压与热等静压制备硼酸铝晶须增强非金属基复合材料的方法
Sumarji et al. Effect of Variation of SiC Mass Fraction on Mechanical Properties of Al-SiC Composite Using Stir Casting Method
Ye et al. Spark plasma sintering of Ti (C, N)-based cermet tool material doped with refractory rare metal carbides (TaC/NbC/VC): Core-rim structure, grains and mechanical properties
WO1991011407A1 (en) Method of making large cross-section injection molded or slip cast ceramics shapes
Moore et al. Preliminary Investigations on Alumina-Fiber Reinforced Ni 3 Al Matrix Composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination