CN112125653A - 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法 - Google Patents

一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法 Download PDF

Info

Publication number
CN112125653A
CN112125653A CN202010893483.8A CN202010893483A CN112125653A CN 112125653 A CN112125653 A CN 112125653A CN 202010893483 A CN202010893483 A CN 202010893483A CN 112125653 A CN112125653 A CN 112125653A
Authority
CN
China
Prior art keywords
composite material
graphene
ceramic composite
printing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010893483.8A
Other languages
English (en)
Inventor
王宏明
李凯
李桂荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010893483.8A priority Critical patent/CN112125653A/zh
Publication of CN112125653A publication Critical patent/CN112125653A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种基于3D打印制备的石墨烯陶瓷复合材料及其制备方法,属于陶瓷复合材料制备领域。石墨烯陶瓷复合材料是由Al2O3、SiC颗粒以及石墨烯三种原料制备而成。制备流程主要包括:球磨混合,制作浆料,3D打印,烘干,微波烧结。本发明的主要优点有:采用3D打印技术与微波加压烧结相结合的方法,在烧结过后,氧化铝与碳化硅组成纳米陶瓷复合材料,石墨烯对碳化硅氧化铝陶瓷进行了改性,制备出的复合材料具有良好的断裂韧性、导电与导热性等。该方法制备的陶瓷复合材料工艺简单,通用性强,实现了陶瓷复合材料的无模增材制造,同时大大降低了生产成本,具有良好的经济效益。

Description

一种基于3D打印制备的石墨烯陶瓷复合材料及其制备方法
技术领域
本发明属于陶瓷复合材料技术领域,涉及3D打印技术,尤其是一种基于3D打印制备的石墨烯陶瓷复合材料、及其制备方法。
背景技术
现代陶瓷材料具有耐高温、硬度高、耐磨损、耐腐蚀及相对密度轻等许多优良的性能,使其具有接替金属作为高温结构材料的潜力。但是,陶瓷材料的脆性大、耐热震性能差,而且陶瓷材料对裂纹、气孔和夹杂物细微的缺陷很敏感等缺点阻碍其实用化。陶瓷复合材料是以纤维、晶须或颗粒为增强体,以陶瓷为基体的复合材料。增强陶瓷复合材料常用的晶须有碳化硅晶须、Si3N4晶须、氧化铝晶须等。碳化硅晶须补强氧化铝陶瓷时,可以起到强化晶界、细化晶粒的作用,并且在发生断裂时SiC晶须还有裂纹桥联、裂纹偏转与分叉、拔出效应等作用,所以抗弯强度和断裂韧性都有显著提高。目前陶瓷复合材料主要应用于航空、航天等领域。
近年来,由于石墨烯优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料,以及其大规模量产的可行性,使其成为了研究热点。将石墨烯作为增强相添加到陶瓷复合材料中,可以提高复合材料的断裂韧性,又可以显著提升材料的导热/导电性,扩大陶瓷材料的应用范围。在陶瓷材料中加入石墨烯,石墨烯在陶瓷材料中可以实现自身增强增韧、拔出效应以及裂纹偏转等增韧机理,使得石墨烯/陶瓷基复合材料具有优异的力学性能。此外,石墨烯原子间作用力强,结构稳定,碳原子在受到外来缺陷和原子干扰的情况下不易发生散射,可以显著提高陶瓷基复合材料的导电性能。石墨烯具有极高的声子平均自由程,使得它具有优异的热导率,可以极大改善陶瓷基复合材料的导热性能。
3D打印是一种三维成型的方法,将设计和成型融为一体,借助计算机软件,将虚拟的结构变为真实的构件,可以打印多种多样的尺寸以及丰富多彩的形状。无模直写成型技术是3D打印的一种,使用计算机软件设计模型,将所制浆料通过气体动力挤出,按所设计模型层层打印,得到所需结构。无模直写成型技术具有以下优点:
(1)可以通过调配陶瓷浆料的添加剂等变量,使浆料的固相含量在一定范围内可以调控,保证构件的均匀性以及可以控制的致密度。
(2)点胶针头的直径从亚微米级到毫米级,精度可控度高,构件的大小及形状可灵活设计。
(3)设备简单,操作方便,成本低廉。
微波烧结是指材料以微波辐射作为外加热源,材料因其自身对于微波具有一定的吸收(介质损耗)进而得到能量而使材料致密化的过程。相对于传统烧结过程中,材料表面、内部和中心区域温度梯度大,晶粒大小不均匀,内部容易形成孔洞、偏析等较大缺陷,微波烧结依靠微波电磁场辐射透入材料内部,材料整体发生介质损耗而升温,各部分温差小,易得到均匀细晶结构。与传统烧结相比,微波烧结主要有整体加热、低温快烧、无加热惯性、选择性加热等显著特点。
发明内容
本发明的目的在于解决了目前陶瓷材料韧性、导电导热性差的问题,改善了陶瓷材料的力学性能,扩大了陶瓷材料除航空、航天的应用领域,发明的一种的石墨烯陶瓷复合材料、及其制备方法,结合3D打印和微波烧结技术,制备过程方便快捷、烧结速度快且烧结致密。
一种基于3D打印制备石墨烯陶瓷复合材料的方法,其特征在于,包括以下步骤:
(1)Al2O3粉、SiC粉、石墨烯三种原料的占比为:SiC粉的质量分数为20~30wt.%,石墨烯的质量分数为3~7wt.%,其余为Al2O3;将Al2O3粉、SiC粉、石墨烯与无水乙醇混合,超声分散12h,然后进行球磨,球磨过后的浆料在60℃干燥箱干燥4h,干燥结束后研磨、过80目筛,加入分散剂和粘结剂,在55~85℃的温度下溶于去离子水中,充分搅拌均匀制成水基浆料;
(2)将水基浆料放入挤压式打印注射筒内,根据要打印材料的形状和参数使用AutoCAD软件进行三维建模,使用AutoCAD将所建模型输出为STL格式文件,将STL格式文件导入切片软件中,该软件将STL文件切割成与挤出针头直径相似厚度的片层,再导入3D打印设备的控制电脑中进行3D打印;
(3)对打印结束后的产品进行烘干;
(4)把3D打印后的模型进行微波加压烧结,所用微波频率2.45GHz,采用SiC作为吸波层,采用双向微波烧结方法,抽真空后充氩保护,首先加热到330~380℃,保温1个小时,使得分散剂和粘结剂顺利排出,然后以30~100℃/min的升温速率升温到1200~1800℃,烧结50~70min。
进一步地,步骤(1)中所述的Al2O3粉的粒径为1um,纯度99.8%;SiC颗粒的粒径为10um,纯度为99.5%;石墨烯纯度为99.8%。
进一步地,所述分散剂为羧甲基纤维素钠。
进一步地,粘结剂为聚乙烯醇,粘结剂浓度为200mg/mL~300mg/mL。
进一步地,步骤(1)中球磨介质为氧化锆球,球料比为4︰1,球磨8h,转速为300r/min。
进一步地,步骤(3)对产品真空干燥至少12h。
进一步地,步骤(4)中第二次升温的升温速率为30~100℃/min。
进一步地,步骤(4)中抽真空的真空度<0.1Pa,充氩气所加压力>30MPa。
所述方法制得的石墨烯陶瓷复合材料,其特征在于:由Al2O3粉、SiC粉、石墨烯复合而成,Al2O3粉、SiC粉、石墨烯三种原料的占比为:SiC粉的质量分数为20~30wt.%,石墨烯的质量分数为3~7wt.%,其余为Al2O3
本发明的有益效果体现如下:
(1)通过超声分散和球磨机球磨可以使三种材料分散均匀,使得在之后的制备过程中获得性能与组织均匀的材料。
(2)本发明使用SiC和石墨烯的粉末混合添加到Al2O3中,添加的SiC是微波的良好吸收体,所以改善了Al2O3粉体的微波烧结性能,降低陶瓷的烧成温度,且碳化硅晶须有强化晶界、细化晶粒、阻止裂纹拓展的作用。而由于石墨烯的添加,使得材料具有了良好的导热导电性能等,从而获得了新型的陶瓷复合材料。
(3)本发明采用3D打印和微波加压烧结工艺相结合的陶瓷制备方法,在打印过程中,可根据实际需要打印不同结构,用以满足不同工程条件下对于复合材料形状的不同要求,并且材料在氩气保护气氛下加压微波烧结,烧结速度快,防止了SiC的氧化,实现整体加热、可选择性加热、制得致密度高,组织缺陷少,经过加压可以使颗粒之间结合紧密,减少气孔率,增加致密化,可改善组织和性能优化。
具体实施方式
下面结合具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
实施例1:
制备含量为25wt.%的SiC粉、含量为3wt.%的石墨烯,其余为Al2O3粉的3D打印石墨烯陶瓷复合材料:
选取粒径为10um、纯度为99.5%、含量为25wt.%的SiC粉,纯度为99.8%、含量为3wt.%的石墨烯,基体为粒径为1um、纯度99.8%的Al2O3粉,与一定量的无水乙醇混合,超声分散12h,然后进行球磨,球磨介质为氧化锆球,球料比为4︰1,球磨8h,转速为300r/min,球磨过后的浆料在60℃干燥箱干燥4h,干燥结束后研磨过80目筛,再加入分散剂羧甲基纤维素钠和粘结剂聚乙烯醇,在55~85℃的温度下溶于去离子水中,充分搅拌均匀制成水基浆料;接着将水基浆料放入挤压式打印注射筒内,根据要打印材料的形状和参数使用AutoCAD软件进行三维建模,使用AutoCAD将所建模型输出为STL格式文件,将STL格式文件导入切片软件中,该软件将STL文件切割成与挤出针头直径相似厚度的片层,再导入3D打印设备的控制电脑中进行3D打印;对打印结束后的产品进行真空干燥12h。把干燥后的模型进行微波加压烧结,所用微波频率2.45GHz,采用SiC作为吸波层,采用双向微波烧结方法,抽真空后充氩保护,真空度<0.1Pa,所加压力>30MPa,首先将温度加热到330~380℃,保温1个小时,使得分散剂和粘结剂顺利排出,然后温度升高到1200~1800℃,进行烧结,升温速率30~100℃/min,烧结时间50~70min,烧结后得到复合材料。
实施例2:
制备含量为30wt.%的SiC粉、含量为3wt.%的石墨烯,其余为Al2O3粉的3D打印石墨烯陶瓷复合材料:
选取粒径为10um、纯度为99.5%、含量为30wt.%的SiC粉,纯度为99.8%、含量为3wt.%的石墨烯,基体为粒径为1um、纯度99.8%的Al2O3粉,与一定量的无水乙醇混合,超声分散12h,然后进行球磨,球磨介质为氧化锆球,球料比为4︰1,球磨8h,转速为300r/min,球磨过后的浆料在60℃干燥箱干燥4h,干燥结束后研磨过80目筛,再加入分散剂羧甲基纤维素钠和粘结剂聚乙烯醇,在55~85℃的温度下溶于去离子水中,充分搅拌均匀制成水基浆料;接着将水基浆料放入挤压式打印注射筒内,根据要打印材料的形状和参数使用AutoCAD软件进行三维建模,使用AutoCAD将所建模型输出为STL格式文件,将STL格式文件导入切片软件中,该软件将STL文件切割成与挤出针头直径相似厚度的片层,再导入3D打印设备的控制电脑中进行3D打印;对打印结束后的产品进行真空干燥12h。把干燥过后的模型进行微波加压烧结,所用微波频率2.45GHz,采用SiC作为吸波层,采用双向微波烧结方法,抽真空后充氩保护,真空度<0.1Pa,所加压力>30MPa,首先将温度加热到330~380℃,保温1个小时,使得分散剂和粘结剂顺利排出,然后温度升高到1200~1800℃,进行烧结,升温速率30~100℃/min,烧结时间50~70min,烧结后得到复合材料。
实施例3:
制备含量为30wt.%的SiC粉、含量为5wt.%的石墨烯,其余为Al2O3粉的3D打印石墨烯陶瓷复合材料:
选取粒径为10um、纯度为99.5%、含量为30wt.%的SiC粉,纯度为99.8%、含量为5wt.%的石墨烯,基体为粒径为1um、纯度99.8%的Al2O3粉,与一定量的无水乙醇混合,超声分散12h,然后进行球磨,球磨介质为氧化锆球,球料比为4︰1,球磨8h,转速为300r/min,球磨过后的浆料在60℃干燥箱干燥4h,干燥结束后研磨过80目筛,再加入分散剂羧甲基纤维素钠和粘结剂聚乙烯醇,在55~85℃的温度下溶于去离子水中,充分搅拌均匀制成水基浆料;接着将水基浆料放入挤压式打印注射筒内,根据要打印材料的形状和参数使用AutoCAD软件进行三维建模,使用AutoCAD将所建模型输出为STL格式文件,将STL格式文件导入切片软件中,该软件将STL文件切割成与挤出针头直径相似厚度的片层,再导入3D打印设备的控制电脑中进行3D打印。对打印结束后的产品进行真空干燥12h。把干燥过后的模型进行微波加压烧结,所用微波频率2.45GHz,采用SiC作为吸波层,采用双向微波烧结方法,抽真空后充氩保护,真空度<0.1Pa,所加压力>30MPa,首先将温度加热到330~380℃,保温1个小时,使得分散剂和粘结剂顺利排出,然后温度升高到1200~1800℃,进行烧结,升温速率30~100℃/min,烧结时间50~70min,烧结后得到复合材料。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (9)

1.一种基于3D打印制备石墨烯陶瓷复合材料的方法,其特征在于,包括以下步骤:
(1)Al2O3粉、SiC粉、石墨烯三种原料的占比为:SiC粉的质量分数为20~30wt.%,石墨烯的质量分数为3~7wt.%,其余为Al2O3;将Al2O3粉、SiC粉、石墨烯与无水乙醇混合,超声分散12h,然后进行球磨,球磨过后的浆料在60℃干燥箱干燥4h,干燥结束后研磨、过80目筛,加入分散剂和粘结剂,在55~85℃的温度下溶于去离子水中,充分搅拌均匀制成水基浆料;
(2)将水基浆料放入挤压式打印注射筒内,根据要打印材料的形状和参数使用AutoCAD软件进行三维建模,使用AutoCAD将所建模型输出为STL格式文件,将STL格式文件导入切片软件中,该软件将STL文件切割成与挤出针头直径相似厚度的片层,再导入3D打印设备的控制电脑中进行3D打印;
(3)对打印结束后的产品进行烘干;
(4)把3D打印后的模型进行微波加压烧结,所用微波频率2.45GHz,采用SiC作为吸波层,采用双向微波烧结方法,抽真空后充氩保护,首先加热到330~380℃,保温1个小时,使得分散剂和粘结剂顺利排出,然后以30~100℃/min的升温速率升温到1200~1800℃,烧结50~70min。
2.根据权利要求1所述的3D打印制备石墨烯陶瓷复合材料的方法,其特征在于:步骤(1)中所述的Al2O3粉的粒径为1um,纯度99.8%;SiC颗粒的粒径为10um,纯度为99.5%;石墨烯纯度为99.8%。
3.根据权利要求1所述的3D打印制备石墨烯陶瓷复合材料的方法,其特征在于:所述分散剂为羧甲基纤维素钠。
4.根据权利要求1所述的3D打印制备石墨烯陶瓷复合材料的方法,其特征在于:粘结剂为聚乙烯醇,粘结剂浓度为200mg/mL~300mg/mL。
5.根据权利要求1所述的3D打印制备石墨烯陶瓷复合材料的方法,其特征在于:步骤(1)中球磨介质为氧化锆球,球料比为4︰1,球磨8h,转速为300r/min。
6.根据权利要求1所述的3D打印制备石墨烯陶瓷复合材料的方法,其特征在于:步骤(3)对产品真空干燥至少12h。
7.根据权利要求1所述的3D打印制备石墨烯陶瓷复合材料的方法,其特征在于:步骤(4)中第二次升温的升温速率为30~100℃/min。
8.根据权利要求1所述的3D打印制备石墨烯陶瓷复合材料的方法,其特征在于:步骤(4)中抽真空的真空度<0.1Pa,充氩气所加压力>30MPa。
9.权利要求1-8任一项所述方法制得的石墨烯陶瓷复合材料,其特征在于:由Al2O3粉、SiC粉、石墨烯复合而成,Al2O3粉、SiC粉、石墨烯三种原料的占比为:SiC粉的质量分数为20~30wt.%,石墨烯的质量分数为3~7wt.%,其余为Al2O3
CN202010893483.8A 2020-08-31 2020-08-31 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法 Pending CN112125653A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010893483.8A CN112125653A (zh) 2020-08-31 2020-08-31 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010893483.8A CN112125653A (zh) 2020-08-31 2020-08-31 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112125653A true CN112125653A (zh) 2020-12-25

Family

ID=73847669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010893483.8A Pending CN112125653A (zh) 2020-08-31 2020-08-31 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112125653A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707734A (zh) * 2021-01-07 2021-04-27 青岛理工大学 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法
CN112837842A (zh) * 2021-01-05 2021-05-25 商都中建金马冶金化工有限公司 一种电极糊及其制备方法
CN112876721A (zh) * 2021-01-14 2021-06-01 四川大学 一种高性能3d打印压电制件及其制备方法
CN114956827A (zh) * 2022-05-09 2022-08-30 深圳市宁鹏时代科技有限公司 一种陶瓷打印材料的制备方法、3d打印方法和陶瓷制品
CN115116755A (zh) * 2022-06-12 2022-09-27 西北工业大学 一种多面体扭转结构高效光热转化材料及制备方法和应用
CN115521139A (zh) * 2022-10-18 2022-12-27 北京无线电测量研究所 一种石墨烯-石榴石型铁氧体复合材料,制备及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018981A1 (ko) * 2011-07-29 2013-02-07 한국과학기술원 그래핀/세라믹 나노복합분말 및 그의 제조방법
US20130184143A1 (en) * 2011-07-29 2013-07-18 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Graphene-Reinforced Ceramic Composites and Uses Therefor
CN106542839A (zh) * 2016-10-28 2017-03-29 宁波鑫汇力精密工具有限公司 一种晶须型增韧陶瓷的制备方法
CN108178636A (zh) * 2018-02-11 2018-06-19 济南大学 一种Si3N4/SiC复合吸波陶瓷及其制备方法
CN109482886A (zh) * 2019-01-07 2019-03-19 吉林大学 一种3d打印陶瓷与纤维复合增强铝基材料的制备方法
CN110981452A (zh) * 2019-12-16 2020-04-10 安徽云数推网络科技有限公司 一种氧化石墨烯增韧氧化铝基陶瓷刀具的制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018981A1 (ko) * 2011-07-29 2013-02-07 한국과학기술원 그래핀/세라믹 나노복합분말 및 그의 제조방법
US20130184143A1 (en) * 2011-07-29 2013-07-18 The Arizona Board Of Regents, On Behalf Of The University Of Arizona Graphene-Reinforced Ceramic Composites and Uses Therefor
CN106542839A (zh) * 2016-10-28 2017-03-29 宁波鑫汇力精密工具有限公司 一种晶须型增韧陶瓷的制备方法
CN108178636A (zh) * 2018-02-11 2018-06-19 济南大学 一种Si3N4/SiC复合吸波陶瓷及其制备方法
CN109482886A (zh) * 2019-01-07 2019-03-19 吉林大学 一种3d打印陶瓷与纤维复合增强铝基材料的制备方法
CN110981452A (zh) * 2019-12-16 2020-04-10 安徽云数推网络科技有限公司 一种氧化石墨烯增韧氧化铝基陶瓷刀具的制备工艺

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112837842A (zh) * 2021-01-05 2021-05-25 商都中建金马冶金化工有限公司 一种电极糊及其制备方法
CN112837842B (zh) * 2021-01-05 2022-12-13 商都中建金马冶金化工有限公司 一种电极糊及其制备方法
CN112707734A (zh) * 2021-01-07 2021-04-27 青岛理工大学 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法
CN112707734B (zh) * 2021-01-07 2023-04-14 青岛理工大学 一种基于3d打印的石墨烯/陶瓷有序复合材料制备方法
CN112876721A (zh) * 2021-01-14 2021-06-01 四川大学 一种高性能3d打印压电制件及其制备方法
CN112876721B (zh) * 2021-01-14 2022-05-17 四川大学 一种高性能3d打印压电制件及其制备方法
CN114956827A (zh) * 2022-05-09 2022-08-30 深圳市宁鹏时代科技有限公司 一种陶瓷打印材料的制备方法、3d打印方法和陶瓷制品
CN115116755A (zh) * 2022-06-12 2022-09-27 西北工业大学 一种多面体扭转结构高效光热转化材料及制备方法和应用
CN115116755B (zh) * 2022-06-12 2024-03-29 西北工业大学 一种多面体扭转结构光热转化材料及制备方法和应用
CN115521139A (zh) * 2022-10-18 2022-12-27 北京无线电测量研究所 一种石墨烯-石榴石型铁氧体复合材料,制备及应用
CN115521139B (zh) * 2022-10-18 2023-10-20 北京无线电测量研究所 一种石墨烯-石榴石型铁氧体复合材料,制备及应用

Similar Documents

Publication Publication Date Title
CN112125653A (zh) 一种基于3d打印制备的石墨烯陶瓷复合材料及其制备方法
KR102364295B1 (ko) 탄화붕소 복합재료 및 그의 제조방법
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
Fu et al. Effect of silicon addition on the microstructure, mechanical and thermal properties of Cf/SiC composite prepared via selective laser sintering
CN113045332B (zh) 一种超高孔隙率的高熵碳化物超高温陶瓷及制备方法
CN106866151B (zh) 一种浆料注射工艺制备碳纤维增韧硼化锆-碳化硅复合材料的方法
US20210323875A1 (en) Short-Fiber-Reinforced Oriented MAX-Phase Ceramic-Based Composite and Preparation Method Therefor
CN104150940B (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN112624777B (zh) 一种激光3d打印复杂构型碳化硅复合材料部件的制备方法
CN103145422A (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
CN110304923B (zh) 一种基于颗粒级配的碳化硼基陶瓷复合材料的制备方法
CN111533560A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN113480314A (zh) 一种碳化硼陶瓷无压烧结制备工艺
CN113061036A (zh) 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法
CN112723889B (zh) 一种高强韧碳化硼-硼化钛-石墨烯复合陶瓷及其制备方法
CN108411137B (zh) 超细晶碳化钨基硬质合金的制备方法
CN108585875B (zh) 一种大尺寸、高强度石墨烯纳米片/碳化硅复合材料及其制备方法
CN115286408A (zh) 一种基于颗粒级配复合技术的激光3d打印制备碳化硅复合材料部件的方法
KR101144884B1 (ko) 질화물 강화 텅스텐 나노복합재료 및 그 제조방법
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
CN114956844A (zh) 一种三维碳纤维增韧陶瓷基复合材料及其制备方法
CN111390188B (zh) 一种新型高强铝合金颗粒强化铝基复合材料及其制备方法
CN116396089B (zh) 一种三维碳化硅/碳化钼陶瓷骨架增强碳基复合材料及其制备方法和应用
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination