CN113061036A - 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法 - Google Patents

一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法 Download PDF

Info

Publication number
CN113061036A
CN113061036A CN202110245735.0A CN202110245735A CN113061036A CN 113061036 A CN113061036 A CN 113061036A CN 202110245735 A CN202110245735 A CN 202110245735A CN 113061036 A CN113061036 A CN 113061036A
Authority
CN
China
Prior art keywords
sic
sio
powder
preparation
sisic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110245735.0A
Other languages
English (en)
Inventor
李晨辉
邹阳
胡梁
吴伟健
刘江安
吴甲民
史玉升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202110245735.0A priority Critical patent/CN113061036A/zh
Priority to PCT/CN2021/081044 priority patent/WO2022183527A1/zh
Publication of CN113061036A publication Critical patent/CN113061036A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于反应烧结碳化硅制备领域,更具体地,涉及一种复杂结构碳纤维‑SiC晶须增强的SiSiC复合材料及制备方法,制备方法包括:包括如下步骤:(a)将碳化硅、短切碳纤维、热塑性酚醛树脂充分混合后得到SiC‑Cf混合粉体;(b)将SiC‑Cf混合粉体进行3D打印成形,得到SiC‑Cf生坯;(c)对SiC‑Cf生坯浸渗SiO2‑C料浆,而后第一次热处理得到含SiC晶须的SiCw‑SiC‑Cf坯体;(d)对SiCw‑SiC‑Cf坯体浸渗聚碳硅烷有机溶液,然后第二次热处理得到第二坯体;(e)采用渗硅工艺对第二坯体进行致密化。本发明制备得到的碳纤维‑SiC晶须增强的SiSiC复合材料具有优异的力学性能,适用于高超声速飞行器热防护系统、航空发动机热端部件、高性能刹车片等高端装备领域,具有广阔的应用前景。

Description

一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备 方法
技术领域
本发明属于反应烧结碳化硅制备领域,更具体地,涉及一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法。
背景技术
随着航空航天、汽车、空间光学等领域科技水平的快速发展,其核心部件,如高超声速飞行器热防护系统、航空发动机热端部件、高性能刹车系统和空间反射镜等对材料性能的要求愈发苛刻。SiC陶瓷基复合材料以其低密度、高热导、耐烧蚀冲刷和耐磨损等优异性能,有望在上述领域得到成功应用。然而,SiC陶瓷脆性大、裂纹敏感度高,其固有的难加工的特性制约了这种材料被成形为复杂结构零件,极大的限制了其应用范围。对于具有复杂结构的SiC陶瓷材料,传统的加工手段存在工艺复杂、造价高昂的问题。如采用模压或冷等静压得到素坯,再借助数控机床设备(CNC)将其加工成所需形状的成型工艺严重依赖CNC的加工能力,对于一些具有复杂拓扑优化结构(如带有夹层的蜂窝结构)的构件加工成本高昂,有时甚至难以达到设计要求。而采用包括注浆成型、凝胶注模成型以及近年较多采用的直接凝固成型等陶瓷湿法成型技术虽然可以用于制备复杂结构,但这些方法均需借助模具,对于小批量生产来说成本高,不适用于个性化定制。且陶瓷湿法成型技术均需先配制高固相含量、流动性良好的料浆,而实际料浆固相含量很难超过70wt%,因此坯体在后期的固化、脱脂及烧结阶段难以避免一定程度的收缩,样品的几何精度相对较低。
3D打印(增材制造)被列为提升国家竞争力、应对未来挑战亟需发展的先进制造技术,其中激光选区烧结(Selective Laser Sintering,SLS)和3DP打印成形等为代表的基于粉床的增材制造技术给快速高效成形大型复杂陶瓷复合材料带来了新的可能。作为3D打印技术中的分支,SLS和3DP等技术适合于快速制造具有复杂结构和特异形状的复合材料,能满足整体、分体等各种陶瓷部件的快速成形制造要求;且成形过程中不需要设置支撑结构,简化了成形部件的后处理工序,从而有望解决复杂结构SiC陶瓷基复合材料制备所面临的难题。近年来,采用3D打印成形SiC材料已有相关报道,如CN200510020015.5公开了一种激光烧结快速成形SiC陶瓷的制备方法,其采用激光烧结技术成形SiC预制体,然后熔渗金属硅并用碱液处理得到复杂形状SiC陶瓷,但是该方法所用的SiC粉末需要经由喷雾造粒来确保较好的流动性,使得该方法所需原料成本高,制备工艺繁琐。
对于SiC陶瓷基复合材料,一个主要的缺点是材料的韧性较差,这限制了由这类材料制备的零件的可靠性。碳纤维是一种重要的一维增强材料,用于传统陶瓷基复合材料力学性能的改善取得了巨大成功。但由于纤维对粉体铺粉性能的不利影响,较少地将其直接应用于基于粉床铺设的3D打印成型。另一方面,原位合成一维陶瓷增强相实现对材料的纤维/晶须/纳米线增韧的技术在多孔陶瓷和碳复合耐火材料等领域已有一些研究,但将这一技术与3D打印结合来制造纤维/晶须增韧的复杂形状SiC陶瓷尚未引起重视。
发明内容
针对现有技术的上述缺点和/或改进需求,本发明提供了一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法。本发明通过采用3D打印技术成形复杂形状SiC-Cf生坯,借助原位合成技术在坯体内部生成均匀分布的SiC晶须,并结合渗硅工艺实现致密化。该方法所得到的SiSiC材料内含有Cf和SiCw两种增强相,因而具有优异的力学性能,尤其适用于高超声速飞行器热防护系统、航空发动机热端部件、高性能刹车片等高端复合材料的制造。
为实现上述目的,按照本发明的一个方面,提供一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料的制备方法,包括如下步骤:
(a)将碳化硅SiC、短切碳纤维Cf、热塑性酚醛树脂充分混合后得到SiC-Cf混合粉体;
(b)将SiC-Cf混合粉体进行3D打印成形,得到SiC-Cf生坯;
(c)对SiC-Cf生坯浸渗SiO2-C料浆,而后第一次热处理得到含SiC晶须SiCw的SiCw-SiC-Cf坯体,所述SiO2-C料浆为SiO2、C和有机溶剂的混合体系;
(d)对SiCw-SiC-Cf坯体浸渗聚碳硅烷有机溶液,然后第二次热处理得到第二坯体;
(e)采用渗硅工艺对第二坯体进行致密化,最终获得所述复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
作为优选,步骤(a)中所述SiC-Cf混合粉体中SiC的粒径分布为:粒径0.1~10μm占全部SiC粉体的0~2wt%,粒径10~25μm占全部SiC粉体的22~35wt%,粒径25~150μm占全部SiC粉体的63~78wt%。
作为优选,步骤(b)中进行3D打印成形为激光选区烧结、3DP中的一种。
作为优选,步骤(c)中所述SiO2-C料浆的制备方法为:选择无定形二氧化硅,纳米炭黑为原料,以水或者乙醇为分散液,采用湿法球磨使其充分混合,干燥后碾磨破碎得到SiO2-C复合粉体,然后将SiO2-C复合粉体与有机溶剂混合,即得到SiO2-C料浆。
作为优选,步骤(c)中浸渗SiO2-C料浆的方法为真空浸渗或压力浸渗。
作为优选,步骤(c)中所述第一次热处理的条件为真空或氩气气氛或氦气气氛,温度1300℃~1600℃,保温3~6h。
作为优选,步骤(d)中渗聚碳硅烷为真空浸渗或压力浸渗。
作为优选,步骤(d)中所述第二次热处理的条件为惰性气氛或还原性气氛,所述惰性气氛为氩气气氛或氦气气氛,温度1100℃~1400℃,保温1~4h。
作为优选,步骤(e)中所述渗硅工艺为:将第二坯体底部平铺金属硅颗粒,边抽真空边加热至1500℃~1700℃,保温1~6h,冷却降温即可。
按照本发明的另一方面,还保护一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料,利用前面所述的制备方法制备而成。
本发明的有益效果有:
1.本发明所提出的一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料的制备方法与已有技术相比,通过对3D打印成形得到的坯体真空浸渗SiO2-C料浆,并原位合成技术使得材料内生成均匀分布的SiC晶须,最后借助液相渗硅得到复杂结构碳纤维-SiC晶须增强的SiSiC复合材料,采用原位合成技术在材料内生成SiC晶须,避免了直接引入SiC晶须/纤维存在的难以分散均匀,机械混合导致SiC晶须/纤维结构破坏的问题;
2.本发明短切碳纤维和原位生成的SiC晶须形成纳米-微米跨尺度协同增韧,相较单一的采用碳纤维或者SiC纤维作为增强相的增韧效果更佳,可以较大幅度改善材料的脆性。
3.基于本发明提供的方法制备得到的含碳纤维-SiC晶须增强的SiSiC复合材料由于具有优异的力学性能,适用于高超声速飞行器热防护系统、航空发动机热端部件、高性能刹车片等高端装备领域,具有广阔的应用前景。
附图说明
图1为实施例1制备得到的复杂形状碳纤维-SiC晶须增强的SiSiC复合材料形貌图。
图2基于实施例1和对比实施例1步骤(c)处理后含SiCw晶须的SiCw-SiC-Cf的SEM测试图,其中图2中的(a)、(b)、(c)是实施例1的400微米、50微米、40微米尺度下的测试图;图2中的(d)、(e)、(f)是对比实施例1的400微米、50微米、40微米尺度下的测试图。
图3是实施例1制备的SiSiC复合材料的XRD衍射图谱。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。
实施例
本实施例中,SiO2-C料浆通过以下方法制备而成:
选择无定形二氧化硅,纳米炭黑为原料,以水或者乙醇为分散液,采用湿法球磨使其充分混合,干燥后碾磨破碎得到SiO2-C复合粉体,然后将SiO2-C复合粉体与煤油按照1∶8质量比混合,即得到SiO2-C料浆。
实施例1
(a)以SiC、Cf、热塑性酚醛树脂为原料,充分混合后得到SiC-Cf混合粉体;所述SiC-Cf混合粉体中SiC的具体特征为:粒径10~25μm的粉体占全部SiC粉体的22wt%,粒径25~150μm的粉体占全部SiC粉体的78wt%。
(b)利用上述SiC-Cf混合粉体进行激光选区烧结成形,得到SiC-Cf生坯;
(c)对SiC-Cf生坯浸渗SiO2-C料浆,生坯干燥后放置于刚玉坩埚内在Ar气氛下于1600℃热处理,保温3h,得到SiCw-SiC-Cf试样。
(d)对SiCw-SiC-Cf试样浸渗聚碳硅烷(PCS)的有机溶液,然后在Ar气氛下1400℃加热并保温1h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1700℃,保温1h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。图1为实施例1制备得到的复杂形状碳纤维-SiC晶须增强的SiSiC复合材料形貌图。
实施例2
(a)以碳化硅(SiC)、短切碳纤维(Cf)、热塑性酚醛树脂为原料,充分混合后得到SiC-Cf混合粉体;所述SiC-Cf混合粉体中SiC的具体特征为:粒径10~25μm的粉体占全部SiC粉体的25wt%,粒径25~150μm的粉体占全部SiC粉体的75wt%。
(b)利用上述SiC-Cf混合粉体进行3DP成形,得到SiC-Cf生坯;
(c)对SiC-Cf生坯浸渗SiO2-C料浆,干燥后放置于刚玉坩埚内在真空条件下于1500℃热处理,保温4h,得到SiCw-SiC-Cf试样。
(d)对SiCw-SiC-Cf试样浸渗聚碳硅烷(PCS)的有机溶液,然后CO气氛下1300℃加热并保温2h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1650℃,保温1.5h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
实施例3
(a)以碳化硅(SiC)、短切碳纤维(Cf)、热塑性酚醛树脂为原料,充分混合后得到SiC-Cf混合粉体;所述SiC-Cf混合粉体中SiC的具体特征为:粒径0.1~10μm的粉体占全部SiC粉体的1wt%,粒径10~25μm的粉体占全部SiC粉体的28wt%,粒径25~150μm的粉体占全部SiC粉体的71wt%。
(b)利用上述SiC-Cf混合粉体进行激光选区烧结成形,得到SiC-Cf生坯;
(c)对SiC-Cf生坯浸渗SiO2-C料浆,干燥后放置于刚玉坩埚内在真空条件下于1400℃热处理,保温5h,得到SiCw-SiC-Cf试样。
(d)对SiCw-SiC-Cf试样浸渗聚碳硅烷(PCS)的有机溶液,然后Ar气氛下1200℃加热并保温3h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1600℃,保温2.0h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
实施例4
(a)以碳化硅(SiC)、短切碳纤维(Cf)、热塑性酚醛树脂为原料,充分混合后得到SiC-Cf混合粉体;所述SiC-Cf混合粉体中SiC的具体特征为:粒径10~25μm的粉体占全部SiC粉体的32wt%,粒径25~150μm的粉体占全部SiC粉体的68wt%。
(b)利用上述SiC-Cf混合粉体进行3DP成形,得到SiC-Cf生坯;
(c)对SiC-Cf生坯浸渗SiO2-C料浆,干燥后放置于刚玉坩埚内在Ar气氛条件下于1300℃热处理,保温6h,得到SiCw-SiC-Cf试样。
(d)对SiCw-SiC-Cf试样浸渗聚碳硅烷(PCS)的有机溶液,然后Ar气氛下1100℃加热并保温4h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1550℃,保温2.5h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
实施例5
(a)以碳化硅(SiC)、短切碳纤维(Cf)、热塑性酚醛树脂为原料,充分混合后得到SiC-Cf混合粉体;所述SiC-Cf混合粉体中SiC的具体特征为:粒径0.1~10μm的粉体占全部SiC粉体的约2wt%,粒径10~25μm的粉体占全部SiC粉体的35wt%,粒径25~150μm的粉体占全部SiC粉体的63wt%。
(b)利用上述SiC-Cf混合粉体进行激光选区烧结成形,得到SiC-Cf生坯;
(c)对SiC-Cf生坯浸渗SiO2-C料浆,干燥后放置于刚玉坩埚内在Ar气氛条件下于1450℃热处理,保温4.5h,得到SiCw-SiC-Cf试样。
(d)对SiCw-SiC-Cf试样浸渗聚碳硅烷(PCS)的有机溶液,然后CO气氛下1350℃加热并保温2.5h。
(e)采用渗硅工艺对上一步得到的试样进行致密化,渗硅温度1500℃,保温3.0h,随炉冷却降温即得到所述的复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
对比实施例
对比实施例1
本实施例与实施例1不同之处在于,步骤(c)为将SiC-Cf生坯表面清粉后,不浸渗SiO2-C料浆,直接置于烘箱110℃干燥;而后放置于刚玉坩埚内在Ar气氛下于1600℃热处理并保温3h。
对比实施例2
本实施例与实施例1不同之处在于,无步骤(d)。
测试实施例
1.力学性能测试。分别针对实施例1、2和对比实施例1、2所得的试样,测试了材料的力学性能,结果如表1所示。其中抗弯强度的测试依据ASTM C1161-18标准采用三点弯曲法测定,断裂韧性的测试依据ASTM C1421-18标准采用单边切口梁法测定。
表1实施例力学性能测试结果表
实施例 抗弯强度/MPa 断裂韧性/MPa·m<sup>0.5</sup>
实施例1 260 3.5
实施例2 245 3.8
对比实施例1 189 2.3
对比实施例2 195 2.5
通过表1可知:本发明提供的实施例1和实施例2相较对比实施例1和对比实施例2所制备的SiSiC复合材料的抗弯强度和断裂韧性具有较明显提高,证明了本发明提供的方法可以制备出力学性能更优的SiSiC复合材料。
2.SEM测试。
图2是实施例1和对比实施例1步骤(3)制备的含SiCw晶须的SiCw-SiC-Cf的SEM测试图,其中图2中的(a)、(b)、(c)是实施例1的所得样品断口在不同尺度下的二次电子形貌;图2中的(d)、(e)、(f)是对比实施例1所得样品的端口在不同尺度下观测到的二次电子形貌。
由图2可知,由于对比实施例1中对“将SiC-Cf生坯表面清粉后,不浸渗SiO2-C料浆,直接置于烘箱110℃干燥;而后放置于刚玉坩埚内在Ar气氛下于1600℃热处理并保温3h”,试样内部没有生成SiC晶须。而实施例1中由于预先对SiC-Cf生坯浸渗SiO2-C料浆,使得充分接触的SiO2-C复合粉体进入坯体材料内部。1600℃热处理过程中,SiO2-C复合粉体周围局部形成饱和SiOx蒸汽,进而在坯体内部孔隙内反应生成SiC晶须。
这一结果证明了本发明提供的方法是使得材料内部原位生成大量SiC晶须的必要条件。
3.XRD测试。
图3是实施例1制备的SiSiC复合材料XRD测试图。测试方法为将实施例1得到的SiSiC复合材料先经酸处理去除残硅,再经去离子水清洗、干燥,然后破碎并充分研磨过325目筛,最后得到的粉体进行粉末x射线衍射。
由图3可知,实施例1制备的SiSiC复合材料内包含两种SiC相,分别为α-SiC(对应原料中预先加入的SiC颗粒)和β-SiC(对应原位生成的SiC晶须),证明了本发明提供的方法可以成功制备出包含SiC晶须的SiSiC复合材料。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料的制备方法,其特征在于,包括如下步骤:
(a)将碳化硅SiC、短切碳纤维Cf、热塑性酚醛树脂充分混合后得到SiC-Cf混合粉体;
(b)将SiC-Cf混合粉体进行3D打印成形,得到SiC-Cf生坯;
(c)对SiC-Cf生坯浸渗SiO2-C料浆,而后第一次热处理得到含SiC晶须SiCw的SiCw-SiC-Cf坯体,所述SiO2-C料浆为SiO2、C和有机溶剂的混合体系;
(d)对SiCw-SiC-Cf坯体浸渗聚碳硅烷有机溶液,然后第二次热处理得到第二坯体;
(e)采用渗硅工艺对第二坯体进行致密化,最终获得所述复杂结构碳纤维-SiC晶须增强的SiSiC复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(a)中所述SiC-Cf混合粉体中SiC的粒径分布为:粒径0.1~10μm占全部SiC粉体的0~2wt%,粒径10~25μm占全部SiC粉体的22~35wt%,粒径25~150μm占全部SiC粉体的63~78wt%。
3.根据权利要求1所述的制备方法,其特征在于,步骤(b)中进行3D打印成形为激光选区烧结、3DP中的一种。
4.根据权利要求1所述的制备方法,其特征在于,步骤(c)中所述SiO2-C料浆的制备方法为:选择无定形二氧化硅,纳米炭黑为原料,以水或者乙醇为分散液,采用湿法球磨使其充分混合,干燥后碾磨破碎得到SiO2-C复合粉体,然后将SiO2-C复合粉体与有机溶剂混合,即得到SiO2-C料浆。
5.根据权利要求4所述的制备方法,其特征在于,步骤(c)中浸渗SiO2-C料浆的方法为真空浸渗或压力浸渗。
6.根据权利要求4所述的制备方法,其特征在于,步骤(c)中所述第一次热处理的条件为真空或氩气气氛或氦气气氛,温度1300℃~1600℃,保温3~6h。
7.根据权利要求1所述的制备方法,其特征在于,步骤(d)中渗聚碳硅烷为真空浸渗或压力浸渗。
8.根据权利要求7所述的制备方法,其特征在于,步骤(d)中所述第二次热处理的条件为惰性气氛或还原性气氛,所述惰性气氛为氩气气氛或氦气气氛,温度1100℃~1400℃,保温1~4h。
9.根据权利要求1所述的制备方法,其特征在于,步骤(e)中所述渗硅工艺为:将第二坯体底部平铺金属硅颗粒,边抽真空边加热至1500℃~1700℃,保温1~6h,冷却降温即可。
10.一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料,其特征在于,根据权利要求1~9任一项所述的制备方法制备而成。
CN202110245735.0A 2021-03-05 2021-03-05 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法 Pending CN113061036A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110245735.0A CN113061036A (zh) 2021-03-05 2021-03-05 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法
PCT/CN2021/081044 WO2022183527A1 (zh) 2021-03-05 2021-03-16 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110245735.0A CN113061036A (zh) 2021-03-05 2021-03-05 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法

Publications (1)

Publication Number Publication Date
CN113061036A true CN113061036A (zh) 2021-07-02

Family

ID=76559951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110245735.0A Pending CN113061036A (zh) 2021-03-05 2021-03-05 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法

Country Status (2)

Country Link
CN (1) CN113061036A (zh)
WO (1) WO2022183527A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666764A (zh) * 2021-09-15 2021-11-19 北京理工大学 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN114230356A (zh) * 2022-01-21 2022-03-25 辽宁科技大学 玻璃纤维催化转化碳化硅纤维增强碳化硅陶瓷的制备方法
CN114409408A (zh) * 2022-02-28 2022-04-29 南京航空航天大学 一种激光3d打印用碳化硅复合粉体及其制备方法
CN114671696A (zh) * 2022-03-07 2022-06-28 西北工业大学 基于粉末3d打印和rmi工艺制备航空发动机涡轮转子的方法
CN114874020A (zh) * 2022-05-13 2022-08-09 厦门大学 一种碳纤维增强碳化硅陶瓷基多孔复合材料及其制备方法
CN116730736A (zh) * 2023-06-09 2023-09-12 中国科学院上海硅酸盐研究所 一种基于激光打印与真空-压力辅助原位浸渗树脂预增密的SiC复合材料的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354729B (zh) * 2023-04-12 2023-12-01 嘉庚(江苏)特材有限责任公司 一种SiC陶瓷零部件及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951454A (zh) * 2013-07-23 2014-07-30 太仓派欧技术咨询服务有限公司 一种SiC晶须增强的陶瓷基复合材料
CN104086203A (zh) * 2014-07-14 2014-10-08 西北工业大学 晶须和纤维协同强化陶瓷基复合材料的制备方法
CN104478461A (zh) * 2014-12-24 2015-04-01 中南大学 一种晶须改性碳/碳复合材料的制备方法
CN108424160A (zh) * 2018-03-28 2018-08-21 中国航发北京航空材料研究院 一种短周期碳化硅纤维增强碳化硅复合材料的制备方法
CN110304933A (zh) * 2019-06-28 2019-10-08 西安交通大学 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
CN110357648A (zh) * 2019-07-09 2019-10-22 中国航发北京航空材料研究院 一种制备多级多尺度纤维增韧陶瓷基复合材料的方法
CN111018537A (zh) * 2019-12-18 2020-04-17 华中科技大学 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455212A (en) * 1994-03-15 1995-10-03 The University Of British Columbia In situ production of silicon carbide-containing ceramic composite powders
WO2001009407A1 (fr) * 1999-08-02 2001-02-08 Tokyo Electron Limited Materiau au carbure de silice, equipement de traitement de semi-conducteurs, et procede d'elaboration de materiau au carbure de silice
GB2475233A (en) * 2009-11-09 2011-05-18 Julio Joseph Faria Process for forming carbon fibre reinforced ceramic composite
CN102951919B (zh) * 2012-11-09 2014-03-26 航天材料及工艺研究所 一种在C/SiC复合材料中原位生长β-SiC纳米纤维的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951454A (zh) * 2013-07-23 2014-07-30 太仓派欧技术咨询服务有限公司 一种SiC晶须增强的陶瓷基复合材料
CN104086203A (zh) * 2014-07-14 2014-10-08 西北工业大学 晶须和纤维协同强化陶瓷基复合材料的制备方法
CN104478461A (zh) * 2014-12-24 2015-04-01 中南大学 一种晶须改性碳/碳复合材料的制备方法
CN108424160A (zh) * 2018-03-28 2018-08-21 中国航发北京航空材料研究院 一种短周期碳化硅纤维增强碳化硅复合材料的制备方法
CN110304933A (zh) * 2019-06-28 2019-10-08 西安交通大学 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
CN110357648A (zh) * 2019-07-09 2019-10-22 中国航发北京航空材料研究院 一种制备多级多尺度纤维增韧陶瓷基复合材料的方法
CN111018537A (zh) * 2019-12-18 2020-04-17 华中科技大学 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙传尧: "《选矿工程师手册 第2册 上 选矿通论》", 31 March 2015 *
张云龙: "《碳化硅及其复合材料的制造与应用》", 31 July 2015 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666764A (zh) * 2021-09-15 2021-11-19 北京理工大学 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN113666764B (zh) * 2021-09-15 2022-05-20 北京理工大学 一种短切碳纤维增强碳化硅陶瓷复合材料墨水直写成型方法
CN114230356A (zh) * 2022-01-21 2022-03-25 辽宁科技大学 玻璃纤维催化转化碳化硅纤维增强碳化硅陶瓷的制备方法
CN114409408A (zh) * 2022-02-28 2022-04-29 南京航空航天大学 一种激光3d打印用碳化硅复合粉体及其制备方法
CN114671696A (zh) * 2022-03-07 2022-06-28 西北工业大学 基于粉末3d打印和rmi工艺制备航空发动机涡轮转子的方法
CN114671696B (zh) * 2022-03-07 2023-04-07 西北工业大学 基于粉末3d打印和rmi工艺制备航空发动机涡轮转子的方法
CN114874020A (zh) * 2022-05-13 2022-08-09 厦门大学 一种碳纤维增强碳化硅陶瓷基多孔复合材料及其制备方法
CN114874020B (zh) * 2022-05-13 2022-12-06 厦门大学 一种碳纤维增强碳化硅陶瓷基多孔复合材料及其制备方法
CN116730736A (zh) * 2023-06-09 2023-09-12 中国科学院上海硅酸盐研究所 一种基于激光打印与真空-压力辅助原位浸渗树脂预增密的SiC复合材料的制备方法
CN116730736B (zh) * 2023-06-09 2024-04-12 中国科学院上海硅酸盐研究所 一种基于激光打印与真空-压力辅助原位浸渗树脂预增密的SiC复合材料的制备方法

Also Published As

Publication number Publication date
WO2022183527A1 (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN113061036A (zh) 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法
CN111018537A (zh) 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法
RU2176628C2 (ru) Композит (варианты) и способ его приготовления, способ обработки волоконной заготовки (варианты)
Song et al. Performance optimization of complicated structural SiC/Si composite ceramics prepared by selective laser sintering
Bai et al. Stereolithography additive manufacturing and sintering approaches of SiC ceramics
CN110330351B (zh) 一种SiC纤维增强SiC陶瓷基零件的制备方法及产品
Zou et al. Preform impregnation to optimize the properties and microstructure of RB-SiC prepared with laser sintering and reactive melt infiltration
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN111996473B (zh) 一种变结构超高温陶瓷基复合材料及其制备方法
CN107698271B (zh) 耐高温高强韧性氮化硅基透波复合材料及制备方法
CN106588060A (zh) 一种高致密的碳化硅陶瓷基复合材料及其制备方法
Zou et al. Effects of short carbon fiber on the macro-properties, mechanical performance and microstructure of SiSiC composite fabricated by selective laser sintering
CN101456737A (zh) 一种碳化硼基复合陶瓷及其制备方法
CN112624777B (zh) 一种激光3d打印复杂构型碳化硅复合材料部件的制备方法
CN110304923B (zh) 一种基于颗粒级配的碳化硼基陶瓷复合材料的制备方法
Chen et al. Effect of laser power on mechanical properties of SiC composites rapidly fabricated by selective laser sintering and direct liquid silicon infiltration
CN102924106A (zh) 一种碳-碳化硅复合材料的制备方法及其产品
Chen et al. A stereolithographic diamond-mixed resin slurry for complex SiC ceramic structures
CN115557800A (zh) 一种多孔碳均匀陶瓷化制备碳化硅基复合材料的方法
CN114315394A (zh) 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法
CN114988901A (zh) 一种高致密SiC/SiC复合材料的快速制备方法
JP3127371B2 (ja) セラミック含有炭素/炭素複合材料及びその製造方法
CN111747748B (zh) 超高温防/隔热一体化ZrC/Zr2C复相材料及其制备方法
CN113716975A (zh) 3d打印制备木材生物质多孔碳化硅的方法及多孔碳化硅

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210702