CN114409408A - 一种激光3d打印用碳化硅复合粉体及其制备方法 - Google Patents

一种激光3d打印用碳化硅复合粉体及其制备方法 Download PDF

Info

Publication number
CN114409408A
CN114409408A CN202210189310.7A CN202210189310A CN114409408A CN 114409408 A CN114409408 A CN 114409408A CN 202210189310 A CN202210189310 A CN 202210189310A CN 114409408 A CN114409408 A CN 114409408A
Authority
CN
China
Prior art keywords
silicon carbide
interface
carbide composite
laser
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210189310.7A
Other languages
English (en)
Inventor
陈照峰
刘天龙
杨丽霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202210189310.7A priority Critical patent/CN114409408A/zh
Publication of CN114409408A publication Critical patent/CN114409408A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明公开了一种激光3D打印用碳化硅复合粉体及其制备方法,由碳化硅颗粒、界面改性短切碳纤维及酚醛树脂构成,其中碳化硅颗粒占55~75wt%,界面改性短切碳纤维占10~25wt%,酚醛树脂占15~20wt%;其中,碳化硅粒径为0.1~100μm,界面改性短切碳纤维直径为4~10μm,长径比为5~12;所述界面改性短切碳纤维界面层为热解碳/碳化硅复合界面,所述酚醛树脂为热固型。本发明制备的激光3D打印用碳化硅复合粉体具有增材适应性高、分散均匀性好、比重低的优点,适用于轻质高强碳化硅构件的增材制造成形。

Description

一种激光3D打印用碳化硅复合粉体及其制备方法
技术领域
本发明属于增材制造陶瓷粉体制备技术领域,特别涉及一种激光3D打印用碳化硅复合粉体及其制备方法。
背景技术
碳化硅陶瓷作为耐高温材料,具有优异的高温力学性能、耐腐蚀性、耐辐照和抗氧化性能,在航空、航天、核能、能源开采等领域得到广泛应用。增材制造作为一种零损耗的新型制备技术,基于逐层叠加原理,可实现任意复杂结构的一体化成形,是实现碳化硅复杂构件轻量化整体制造的重要方法。
目前,国内外碳化硅构件增材制造主要以基于粉末的激光选区烧结技术和基于浆料的立体光刻技术为主。激光选区烧结通过CO2激光束逐层扫描烧结粉末获得复杂构件,美国得州大学、武汉理工大学等机构采用激光选区烧结增材制造碳化硅预制体,结合树脂浸渍、热解和液相渗硅工艺,得到高性能碳化硅构件。立体光刻技术采用紫外光逐层扫描固化液态树脂获得三维实体,中国科学院上海硅酸盐研究所等机构采用立体光刻技术制备了含光敏树脂-碳化硅坯体,同样采用热解和渗硅获得了碳化硅构件。
申请公开号为CN201610496893.2的中国发明专利公开了一种采用激光选区烧结工艺制备碳化硅陶瓷件的方法,包括以下步骤:按照预定质量比称取碳粉、碳化硅粉末、粘结剂及固化剂倒入球磨罐内,并进行球磨以得到粘接剂-碳化硅混合粉末;采用计算机对待制备的零件进行三维数字建模,并将三维数字模型信息输入到激光选区烧结成型机,以所述粘接剂-碳化硅混合粉末为原料,采用激光选区烧结快速成形工艺进行粉末烧结成型,以得到所述零件的碳化硅素坯;对所述碳化硅素坯进行加热固化;将固化后的所述碳化硅素坯放置于由Ar保护的中温管式烧结炉中进行碳化处理,以得到多孔碳化硅坯件;将所述多孔碳化硅胚件在真空下进行熔渗烧结处理,以得到致密的碳化硅陶瓷件。
申请公开号为CN112624777A的中国发明专利公开了一种激光3D打印复杂构型碳化硅复合材料部件的制备方法。所述制备方法包括以下步骤:步骤(1):制备激光3D打印用复合原料粉体,所述复合原料粉体以体积百分比计,包括:短切碳纤维10~70%,碳化硅20~70%,残炭率大于35%的有机树脂20~50%和炭黑5~20%;步骤(2):采用激光3D打印方法将复合原料粉体成型为复杂构型的碳化硅复合材料素坯;步骤(3):所述素坯在真空气氛中脱脂使得有机树脂裂解碳化并形成完全由无机物构成的脱脂素坯;步骤(4):将脱脂后的素坯在真空环境中进行液相反应渗硅以获得所述激光3D打印复杂构型碳化硅复合材料部件。
综上所述,现阶段激光3D打印碳化硅陶瓷尚未实现直接制备,均需结合反应熔渗技术实现碳化硅坯体的烧结成型,而基于单一碳化硅粉体制备的碳化硅构件存在强度不足、韧性差、密度大的问题,而添加短切碳纤维的碳化硅复合粉体成形构件在后续反应渗硅过程中,硅熔体会与碳纤维发生反应腐蚀,降低了碳纤维的增强增韧作用,阻碍了增材制造轻量化高强度碳化硅陶瓷的发展应用。
发明内容
为解决上述问题,本发明提出一种激光3D打印用碳化硅复合粉体及其制备方法。以短切碳纤维作为增强相,通过在碳纤维表面沉积热解碳热应力过渡层-碳化硅熔体屏障层,实现对短切碳纤维的界面改性,保护碳纤维在反应熔渗过程中免受高温硅熔体的侵蚀。采用基于溶剂蒸发法的均匀混合技术,将界面改性短切碳纤维和碳化硅粉体均匀分散在酚醛树脂溶液内,使界面改性短切碳纤维和碳化硅颗粒表面包覆酚醛树脂层,避免干法混合导致的粉体偏析问题,制备得到高增材适应性碳化硅复合粉体。
一种激光3D打印用碳化硅复合粉体及其制备方法,由碳化硅颗粒、界面改性短切碳纤维及酚醛树脂构成,其中碳化硅颗粒占55~75wt%,界面改性短切碳纤维占10~25wt%,酚醛树脂占15~20wt%;其中,碳化硅粒径为0.1~100μm,界面改性短切碳纤维直径为4~10μm,长径比为5~12;所述界面改性短切碳纤维界面层为热解碳/碳化硅复合界面,所述酚醛树脂为热固型。
一种激光3D打印用碳化硅复合粉体制备方法,其特征在于包括以下顺序步骤:
(1)将短切碳纤维分散在石墨模具中置于化学气相沉积炉,采用化学气相渗透工艺在碳纤维表面沉积一层热解碳界面,反应气源为丙烯和Ar,二者气流量比为1∶2,沉积温度为900~1100℃,沉积厚度约为0.1~0.5μm;
(2)沉积热解碳界面后,采用化学气相渗透工艺在碳纤维表面继续沉积一层碳化硅界面,反应气源为三氯甲基硅烷、H2和Ar,三者气流量比为1∶10∶10,沉积温度为950~1200℃,沉积厚度约为0.1~1μm,得到热解碳/碳化硅复合界面改性短切碳纤维;
(3)以无水乙醇为溶剂,采用磁力搅拌,将酚醛树脂配制为质量分数为10~40wt%的酚醛树脂溶液,转速为120r/min;
(4)在酚醛树脂溶液中逐量加入界面改性短切碳纤维和碳化硅粉体,并在150r/min转速下进行充分地搅拌,使界面改性短切碳纤维和碳化硅均匀分散,搅拌时间为2~8h;
(5)将均匀分散后的浆料置于60℃恒温烘箱中进行干燥处理,干燥时间8-16h;
(6)将烘干后的粉末聚集体通过粉碎机进行粉碎后放入球磨机中球磨,设定以180r/min的转速正反转各0.5h,球磨2-4h,最后将粉末过160目筛,得到激光3D打印用碳化硅复合粉体。
与现有材料及技术相比,本发明具有如下有益效果:(1)采用基于溶剂蒸发法的均匀混合技术,在制备酚醛包覆碳化硅与碳纤维复合粉体的同时,实现碳化硅粉体与短切碳纤维复合粉末均匀混合,满足增材制造对复合粉体的增材适应性要求;(2)在短切碳纤维表面沉积热解碳/碳化硅复合界面,避免增材制造过程中短切碳纤维在后续反应熔渗过程中受到高温硅熔体的侵蚀,充分发挥短切碳纤维在碳化硅构件中的增强增韧作用。
本发明采用溶剂蒸发法,以界面改性短切碳纤维和碳化硅颗粒混合制备增材制造用碳化硅复合粉体,满足现阶段增材制造轻质高强碳化硅构件用粉体需要,解决了现阶段单一粉体增材制造构件性能偏低和干法制备复合粉体增材制造构件中存在的偏析分层及硅熔体侵蚀导致的性能下降问题,本发明制备的激光3D打印用碳化硅复合粉体具有增材适应性高、比重低的优点,适用于轻质高强碳化硅构件的增材制造成形。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
实施例1
一种激光3D打印用碳化硅复合粉体及其制备方法,由碳化硅颗粒、界面改性短切碳纤维及酚醛树脂构成,其中碳化硅颗粒占60wt%,界面改性短切碳纤维占20wt%,酚醛树脂占20wt%;其中,碳化硅粒径为23μm,界面改性短切碳纤维直径为5μm,长径比为6;所述界面改性短切碳纤维界面层为热解碳/碳化硅复合界面,所述酚醛树脂为热固型。
上述激光3D打印碳化硅复合粉体制备方法包括以下顺序的步骤:
(1)将短切碳纤维分散在石墨模具中置于化学气相沉积炉,采用化学气相渗透工艺在碳纤维表面沉积一层热解碳界面,反应气源为丙烯和Ar,二者气流量比为1∶2,沉积温度为900℃,沉积厚度约为0.1μm;
(2)沉积热解碳界面后,采用化学气相渗透工艺在碳纤维表面继续沉积一层碳化硅界面,反应气源为三氯甲基硅烷、H2和Ar,三者气流量比为1∶10∶10,沉积温度为1100℃,沉积厚度约为0.3μm,得到热解碳/碳化硅复合界面改性短切碳纤维;
(3)以无水乙醇为溶剂,采用磁力搅拌,将酚醛树脂配制为质量分数为10wt%的酚醛树脂溶液,转速为120r/min;
(4)在酚醛树脂溶液中逐量加入界面改性短切碳纤维和碳化硅粉体,并在150r/min转速下进行充分地搅拌,使界面改性短切碳纤维和碳化硅均匀分散,搅拌时间为4h;
(5)将均匀分散后的浆料置于60℃恒温烘箱中进行干燥处理,干燥时间8h;
(6)将烘干后的粉末聚集体通过粉碎机进行粉碎后放入球磨机中球磨,设定以180r/min的转速正反转各0.5h,球磨2h,最后将粉末过160目筛,得到激光3D打印用碳化硅复合粉体。
实施例2
一种激光3D打印用碳化硅复合粉体及其制备方法,由碳化硅颗粒、界面改性短切碳纤维及酚醛树脂构成,其中碳化硅颗粒占70wt%,界面改性短切碳纤维占15wt%,酚醛树脂占15wt%;其中,碳化硅粒径为60μm,界面改性短切碳纤维直径为10μm,长径比为9;所述界面改性短切碳纤维界面层为热解碳/碳化硅复合界面,所述酚醛树脂为热固型。
上述激光3D打印碳化硅复合粉体制备方法包括以下顺序的步骤:
(1)将短切碳纤维分散在石墨模具中置于化学气相沉积炉,采用化学气相渗透工艺在碳纤维表面沉积一层热解碳界面,反应气源为丙烯和Ar,二者气流量比为1∶2,沉积温度为1000℃,沉积厚度约为0.4μm;
(2)沉积热解碳界面后,采用化学气相渗透工艺在碳纤维表面继续沉积一层碳化硅界面,反应气源为三氯甲基硅烷、H2和Ar,三者气流量比为1∶10∶10,沉积温度为1200℃,沉积厚度约为1μm,得到热解碳/碳化硅复合界面改性短切碳纤维;
(3)以无水乙醇为溶剂,采用磁力搅拌,将酚醛树脂配制为质量分数为40wt%的酚醛树脂溶液,转速为120r/min;
(4)在酚醛树脂溶液中逐量加入界面改性短切碳纤维和碳化硅粉体,并在150r/min转速下进行充分地搅拌,使界面改性短切碳纤维和碳化硅均匀分散,搅拌时间为6h;
(5)将均匀分散后的浆料置于60℃恒温烘箱中进行干燥处理,干燥时间10h;
(6)将烘干后的粉末聚集体通过粉碎机进行粉碎后放入球磨机中球磨,设定以180r/min的转速正反转各0.5h,球磨2h,最后将粉末过160目筛,得到激光3D打印用碳化硅复合粉体。
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护的范围的行为。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (4)

1.一种激光3D打印用碳化硅复合粉体及其制备方法,碳化硅复合粉体由碳化硅颗粒、界面改性短切碳纤维及酚醛树脂构成,其中碳化硅颗粒占55~75wt%,界面改性短切碳纤维占10~25wt%,酚醛树脂占15~20wt%;所述界面改性短切碳纤维界面层为热解碳/碳化硅复合界面;一种激光3D打印用碳化硅复合粉体制备方法,其特征在于包括以下顺序步骤:
(1)将短切碳纤维分散在石墨模具中置于化学气相沉积炉,采用化学气相渗透工艺在碳纤维表面沉积一层热解碳界面,反应气源为丙烯和Ar,二者气流量比为1∶2,沉积温度为900~1100℃,沉积厚度约为0.1~0.5μm;
(2)沉积热解碳界面后,采用化学气相渗透工艺在碳纤维表面继续沉积一层碳化硅界面,反应气源为三氯甲基硅烷、H2和Ar,三者气流量比为1∶10∶10,沉积温度为950~1200℃,沉积厚度约为0.1~2μm,得到热解碳/碳化硅复合界面改性短切碳纤维;
(3)以无水乙醇为溶剂,采用磁力搅拌,将酚醛树脂配制为质量分数为10~40wt%的酚醛树脂溶液,转速为120r/min;
(4)在酚醛树脂溶液中逐量加入界面改性短切碳纤维和碳化硅粉体,并在150r/min转速下进行充分地搅拌,使界面改性短切碳纤维和碳化硅均匀分散,搅拌时间为2~8h;
(5)将均匀分散后的浆料置于60℃恒温烘箱中进行干燥处理,干燥时间8-16h;
(6)将烘干后的粉末聚集体通过粉碎机进行粉碎后放入球磨机中球磨,设定以180r/min的转速正反转各0.5h,球磨2-4h,最后将粉末过160目筛,得到激光3D打印用碳化硅复合粉体。
2.根据权利要求1所述的一种激光3D打印用碳化硅复合粉体及其制备方法,其特征在于所述的界面改性短切碳纤维界面层为热解碳/碳化硅复合界面,其中热解碳界面层为热应力过渡层,碳化硅界面层为熔体屏障层。
3.根据权利要求1所述的一种激光3D打印用碳化硅复合粉体及其制备方法,其特征在于所述的碳化硅复合粉体采用基于溶剂蒸发法的均匀混合技术。
4.根据权利要求1所述的一种激光3D打印用碳化硅复合粉体及其制备方法,其特征在于所述的碳化硅粒径为碳化硅粒径为0.1~100μm,界面改性短切碳纤维直径为4~10μm,长径比为5~12,所述酚醛树脂为热固型。
CN202210189310.7A 2022-02-28 2022-02-28 一种激光3d打印用碳化硅复合粉体及其制备方法 Pending CN114409408A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210189310.7A CN114409408A (zh) 2022-02-28 2022-02-28 一种激光3d打印用碳化硅复合粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210189310.7A CN114409408A (zh) 2022-02-28 2022-02-28 一种激光3d打印用碳化硅复合粉体及其制备方法

Publications (1)

Publication Number Publication Date
CN114409408A true CN114409408A (zh) 2022-04-29

Family

ID=81261341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210189310.7A Pending CN114409408A (zh) 2022-02-28 2022-02-28 一种激光3d打印用碳化硅复合粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN114409408A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116462512A (zh) * 2023-05-10 2023-07-21 中国科学院重庆绿色智能技术研究院 一种增材制造的高致密纯碳化硅及其制备方法和应用
CN118184381A (zh) * 2024-03-13 2024-06-14 浙江星辉新材料科技有限公司 一种碳碳复合材料废料的处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1634860A2 (de) * 2004-09-08 2006-03-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung eines Carbidkeramikmaterials, Carbidkeramikmaterial, Vorkörper für ein carbidkeramisches Bauteil und Verfahren zur Bereitstellung eines Ausgangsmaterials für einen Vorkörper für keramisches Material
CN1850730A (zh) * 2006-05-26 2006-10-25 中国科学院上海硅酸盐研究所 气相渗硅工艺制备碳纤维增强碳化硅基复合材料的方法
CN104496508A (zh) * 2014-12-01 2015-04-08 西安交通大学 基于光固化3D打印的SiC陶瓷基涡轮叶片的制造方法
CN106927846A (zh) * 2017-04-13 2017-07-07 华中科技大学 一种C/C‑SiC复合材料零件的制备方法及其产品
US20190255732A1 (en) * 2018-02-19 2019-08-22 Rolls-Royce Corporation Additive layer method for application of slurry-based features
CN111018537A (zh) * 2019-12-18 2020-04-17 华中科技大学 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法
CN113061036A (zh) * 2021-03-05 2021-07-02 华中科技大学 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1634860A2 (de) * 2004-09-08 2006-03-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung eines Carbidkeramikmaterials, Carbidkeramikmaterial, Vorkörper für ein carbidkeramisches Bauteil und Verfahren zur Bereitstellung eines Ausgangsmaterials für einen Vorkörper für keramisches Material
CN1850730A (zh) * 2006-05-26 2006-10-25 中国科学院上海硅酸盐研究所 气相渗硅工艺制备碳纤维增强碳化硅基复合材料的方法
CN104496508A (zh) * 2014-12-01 2015-04-08 西安交通大学 基于光固化3D打印的SiC陶瓷基涡轮叶片的制造方法
CN106927846A (zh) * 2017-04-13 2017-07-07 华中科技大学 一种C/C‑SiC复合材料零件的制备方法及其产品
US20190255732A1 (en) * 2018-02-19 2019-08-22 Rolls-Royce Corporation Additive layer method for application of slurry-based features
CN111018537A (zh) * 2019-12-18 2020-04-17 华中科技大学 3D打印制备碳纤维增强SiC陶瓷基复合材料的方法
CN113061036A (zh) * 2021-03-05 2021-07-02 华中科技大学 一种复杂结构碳纤维-SiC晶须增强的SiSiC复合材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李贺军等: "《液固高压成形技术与应用》", 31 January 2013, 国防工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116462512A (zh) * 2023-05-10 2023-07-21 中国科学院重庆绿色智能技术研究院 一种增材制造的高致密纯碳化硅及其制备方法和应用
CN118184381A (zh) * 2024-03-13 2024-06-14 浙江星辉新材料科技有限公司 一种碳碳复合材料废料的处理方法

Similar Documents

Publication Publication Date Title
CN114409408A (zh) 一种激光3d打印用碳化硅复合粉体及其制备方法
CN102515870B (zh) 一种C/SiC-ZrB2-ZrC超高温陶瓷基复合材料的制备方法
CN110330351B (zh) 一种SiC纤维增强SiC陶瓷基零件的制备方法及产品
CN112723890B (zh) 一种光固化陶瓷浆料和碳化硅陶瓷的制备方法
CN105130438B (zh) 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
CN106866151B (zh) 一种浆料注射工艺制备碳纤维增韧硼化锆-碳化硅复合材料的方法
CN108409347A (zh) 一种原位生成Ti3SiC2相增韧碳化硅陶瓷基复合材料的制备方法
Tang et al. Mechanical and ablation properties of a C/C-HfB2-SiC composite prepared by high-solid-loading slurry impregnation combined with precursor infiltration and pyrolysis
CN103113124A (zh) 一种纤维增韧SiC陶瓷基复合材料三维构件的制备方法
CN103979974B (zh) 一种C/SiC-HfB2-HfC超高温陶瓷基复合材料的制备方法
CN112142486A (zh) 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法
CN111423233A (zh) 一种碳化硅增强碳化硼基陶瓷材料及其制备方法
Du et al. Ablation behaviors and mechanism of ultra‐thick anti‐oxidation layer coating on carbon‐bonded carbon fiber composites
CN104529499A (zh) 一种自愈合碳化硅纤维增强硅硼氮碳复合材料的制备方法
CN114133251A (zh) 一种浸渍浆料及其制备方法
Jin et al. Additive manufacturing Cf/SiC composites with high fiber content by stereolithography combined with precursor infiltration and pyrolysis
CN116425548B (zh) 一种基于颗粒级配粉体的粘结剂喷射打印碳化硅陶瓷复合材料及其制备方法
CN103806267A (zh) 一种在碳纤维表面制备碳化锆陶瓷界面相的方法
Chen et al. Additive manufacturing of high mechanical strength continuous Cf/SiC composites using a 3D extrusion technique and polycarbosilane‐coated carbon fibers
CN114736400B (zh) 一种可陶瓷化酚醛气凝胶及其制备方法
CN111153712A (zh) 一种多孔陶瓷互穿网络中子屏蔽复合材料及其制备方法
HUANG et al. Selective laser sintering of SiC green body with low binder content
CN106631059B (zh) ZrC改性沥青基C/C复合材料及其制备方法和应用
Dong et al. Effect of sintering temperature on microstructure and properties of 3D printing polysilazane reinforced Al2O3 core
KR20220137842A (ko) 확장가능한 무침투 세라믹 매트릭스 복합재의 방법 및 조성물

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220429

RJ01 Rejection of invention patent application after publication