CN111423233A - 一种碳化硅增强碳化硼基陶瓷材料及其制备方法 - Google Patents

一种碳化硅增强碳化硼基陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111423233A
CN111423233A CN202010464125.5A CN202010464125A CN111423233A CN 111423233 A CN111423233 A CN 111423233A CN 202010464125 A CN202010464125 A CN 202010464125A CN 111423233 A CN111423233 A CN 111423233A
Authority
CN
China
Prior art keywords
sintering
ceramic material
mass
sic
boron carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010464125.5A
Other languages
English (en)
Inventor
陈威
郝文慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202010464125.5A priority Critical patent/CN111423233A/zh
Publication of CN111423233A publication Critical patent/CN111423233A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开一种碳化硅增强碳化硼基陶瓷材料及其制备方法,采用碳化硼和碳化硅作为原料,Al2O3和Y2O3混合物为烧结助剂,经混合球磨后干燥过筛,装入模具,在氮气气氛,温度1850‑1950℃,在压力35MPa‑45MPa的条件下烧结,得到B4C‑SiC复合陶瓷材料。其中纳米SiC颗粒通过球磨可以均匀的分布在B4C‑SiC复合陶瓷材料的基体当中,有效地提高B4C‑SiC复合陶瓷材料的致密度,而且在烧结过程中加入氮气保护也能有效的防止粉料被氧化而产生氧气降低对材料的致密度,提高材料的性能。

Description

一种碳化硅增强碳化硼基陶瓷材料及其制备方法
技术领域
本发明属于工业陶瓷技术领域,具体涉及一种碳化硅增强碳化硼基陶瓷材料及其制备方法。
背景技术
碳化硼(B4C)具有熔点高(2450℃)、硬度高(仅次于金刚石和氮化硼)、弹性模量高、密度小(2.52g/cm3)、质量轻,热稳定性好、热中子吸收横截面高等优点,是一种性能优良的特种陶瓷硬质材料。碳化硼材料具有许多独特的性质,是很多工程应用领域中的重要候选材料,并在诸多领域都得到了广泛应用。例如,控制核裂变:碳化硼可以吸收大量的中子而不会形成任何放射性同位素,因此它在核能发电场里他是很理想的中子吸收剂,而中子吸收剂主要是控制核分裂的速率;研磨材料:用于硬质合金、宝石等硬质材料的磨削、研磨、钻孔及抛光;涂层涂料:作为军舰和直升机的陶瓷涂层,其重量轻并且有抵抗穿甲弹穿透热压涂层的能力;喷嘴:在军火工业中可用作制造枪炮喷嘴,极硬又耐磨,耐高/低温且耐高压。
然而,碳化硼材料存在的缺点限制了其进一步的应用:一方面,碳化硼断裂韧性较低;另一方面,碳化硼原子间的化学键93.9%为共价键,具有较低的自扩散系数,晶界移动阻力较大,难以烧结致密。而且采用现有的热压烧结工艺需要的烧结温度较高,很难制备出具备良好的综合物理力学性能。
发明内容
针对现有技术中存在的问题,本发明提供一种碳化硅增强碳化硼基陶瓷材料及其制备方法,通过添加不同含量的增强相碳化硅(SiC),改善碳化硼材料低断裂韧性的性能同时降低烧结温度,制备出具有优异物理力学性能的碳化硅增强碳化硼基(B4C-SiC)复合陶瓷材料。
为达到上述目的,本发明所述一种碳化硅增强碳化硼基陶瓷材料的制备方法包括如下步骤:
步骤1,称取烧结材料,所述烧结材料包括:B4C、SiC和烧结助剂,其中B4C的质量烧结材料质量的68%~87%,SiC的质量为烧结材料质量的5%~20%,烧结助剂的质量为烧结材料质量的8%~12%,所述烧结助剂包括Al2O3和Y2O3
步骤2,将步骤1中称取的B4C、SiC、Al2O3与Y2O3混合均匀,得到烧结混合料;
步骤3,将步骤2中得到的混合料磨碎并过筛,得到烧结混合粉料;
步骤4,将步骤3中得到的烧结混合粉料进行干燥,得到干燥的混合粉料;
步骤5,将步骤4得到的干燥的混合粉料装入模具,在氮气气氛下烧结,烧结温度1850℃-1950℃,压力为35MPa-45MPa,保温保压时间10min-30min,得到B4C-SiC复合陶瓷材料。
进一步的,步骤2中,通过球磨混料的方式混合B4C、SiC、Al2O3与Y2O3,进行球磨混料时,将B4C、SiC、Al2O3与Y2O3置于球磨罐中,加入二氧化锆磨球,并倒入酒精,使用行星式球磨机充分混匀,行星式球磨机速度为90r·min-1-120r·min-1,球磨时间为11h-12h。
进一步的,步骤2中,加入的二氧化锆磨球质量与烧结混合料质量的比值为2:1或3:1,加入的酒精的质量与烧结混合料质量的比值为2:1或3:1。
进一步的,进行步骤3之前将烧结混合料烘干。
进一步的,步骤1中,B4C的纯度为99.9%,平均粒径0.8μm,SiC的纯度伪98.5%,平均粒径0.45μm,Al2O3和Y2O3纯度均大于>99.5%。
进一步的,步骤1中,Al2O3和Y2O3的质量比为(2:3)~(3:2)。
一种B4C-SiC复合陶瓷材料,基于上述的制备方法制备。
与现有技术相比,本发明至少具有以下有益的技术效果:
本发明公开一种碳化硅增强碳化硼基陶瓷材料的制备方法,采用碳化硼和碳化硅作为原料,Al2O3和Y2O3的混合物为烧结助剂,经混合球磨后干燥过筛,装入模具,在氮气气氛,温度1850℃-1950℃,压力35MPa-45MPa的条件下烧结,得到B4C-SiC复合陶瓷材料。其中纳米SiC颗粒通过球磨可以均匀的分布在B4C-SiC复合陶瓷材料的基体当中,有效地提高B4C-SiC复合陶瓷材料的致密度,而且在烧结过程中加入氮气保护也能有效的防止粉料被氧化而产生氧气降低对材料的致密度,提高材料的硬度。同时SiC的断裂韧性要高于B4C,当复合陶瓷材料发生断裂时,裂纹遇到SiC颗粒时会使裂纹发生偏转,吸收主裂纹扩展的部分能量,增大裂纹扩展的阻力,使得B4C-SiC复合材料不仅保留了高硬度的特性,而且弯曲强度及断裂韧性也得到了良好的提升,具有良好的物理力学性能。
进一步的,步骤2中,加入二氧化锆磨球的质量与烧结混合料总质量的比值为2:1或3:1,酒精的质量与烧结混合料总质量的比值为2:1或3:1。由于B4C的硬度较大,若加入过多的氧化锆球和酒精,在球磨过程会使氧化锆球产生脱落,使的混合料中出现杂质氧化锆或其他杂质,因此适量的氧化锆球和酒精可以在实现细化晶粒的同时,保证不会出现大量的杂质。
进一步的,Al2O3和Y2O3的质量比为(2:3)~(3:2)。Al2O3+Y2O3复合烧结助剂在烧结过程中会生成Y3Al5O12液相,该液相的生成有助于阻碍高温下晶界移动,起到细化晶粒的作用,使烧结更完全。而控制Al2O3和Y2O3的质量分配比例为(2:3)~(3:2),有利于Y3Al5O12液相的生成。
进一步的,通过在模具内设置石墨纸,使得产品脱模简单,无粘连。
一种B4C-SiC复合陶瓷材料,基于上述方法制备,既提升了B4C-SiC复合陶瓷材料的韧性,同时保留着其高硬度的特性,从整体上提升了陶瓷材料的力学性能,对于该材料得到广泛的应用具有重要的意义。B4C-SiC复合陶瓷材料也是一种耐腐蚀,耐磨损的陶瓷材料,它对于海洋腐蚀、高温等恶劣的环境中服役的机械装备零部件也提供一种新的选择。
附图说明
图1为热压烧结路线图;
图2为模具结构示意图;
图3为热压烧结工艺图;
图4a为实施例2的微观组织图;
图4b为实施例2制备的产品的断面图;
图5a为实施例3的微观组织图;
图5b为实施例3制备的产品的断面图。
附图中:1-压块,2-上压头,3-衬套,4-套圈,5-垫片,6-混合粉料。
具体实施方式
为了使本发明的目的和技术方案更加清晰和便于理解。以下结合附图和实施例,对本发明进行进一步的详细说明,此处所描述的具体实施例仅用于解释本发明,并非用于限定本发明。
实施例1
参照图1,一种碳化硅增强碳化硼基陶瓷材料的制备方法,包括以下步骤:
1)配料:称取21.75g的碳化硼、1.25g的碳化硅、0.8g Al2O3和1.2g Y2O3作为烧结材料。其中,碳化硼纯度99.9%,平均粒径0.8μm,碳化硅纯度98.5%,平均粒径0.45μm,Al2O3纯度99.5%,平均粒径为1.17μm和Y2O3纯度99.5%,平均粒径为0.37μm。采用高纯度的原料可以很好的保证烧结后陶瓷材料的物相出现杂质。在烧结过程中加入10%的Al2O3和Y2O3混合物烧结助剂可以降低烧结温度,而且Al2O3和Y2O3的熔点较低,在烧结过程中容易出现液相,促进颗粒重排,有助于提升降低气孔率。
2)球磨混料:将称量好的烧结材料置于球磨罐中,加入二氧化锆质量相同的大、中、小球,倒入酒精,使用行星式球磨机充分混匀,得到烧结混合料,球磨速度为90r·min-1,球磨时间为12h;其中,加入二氧化锆小球质量与料质量的比值为2:1,加入酒精质量与料质量的比值为2:1。通过球磨,可以有效的将所有的原料粉末均匀的混合在一起,而且在球磨过程中加入适量的氧化锆球可以使混料进一步粉碎细化。由于碳化硼材料硬度比较大故不宜球磨的速度过快、球磨时间过长,防止在球磨过程中产生杂质。由于混料与球磨球之间会发生旋转和碰撞,会发生团聚甚至结块现象,因此在球磨过程中加入适量的酒精可以防止粉末的结块,促进粉末与球之间的接触,同时加入适量的酒精也可以控制在球磨过程中产生的热量,防止粉料在高温下发生反应,对后续的烧结产生不良影响。
3)烘干:将球磨好的烧结混合料放于鼓风干燥箱中加热烘干,直至失去全部的酒精;
4)过筛:将烘干后的烧结混合料碾碎,并用80目筛网过筛,得到烧结混合粉料;
5)烘干:将过筛后的烧结混合粉料再次放于鼓风干燥箱中加热烘干,在70℃下烘干3h,得到充分干燥的混合粉料;
6)装料:在模具四周垫上厚度为0.2mm的石墨纸以便于脱模,将5)所得到的充分干燥的混合粉料装入模具中。图2示出了模具的结构示意图,模具包括压块1,上压头2,衬套3,套圈4和垫片5,套圈4套设在衬套3外,压块1的上部深入衬套3中,上压头2下部伸入衬套3中,混合粉末6放入衬套3中压块1的上方,上压头2放在混合粉料6上方;
7)热压烧结:将装好混合粉料的模具放置于HIGH MULTI 5000多功能烧结炉中,安装调试好之后进行烧结,热压烧结工艺为氮气气氛保护,烧结温度1850℃,压力35MPa,保温保压时间10min;
8)脱模:待炉温降至室温,打开炉盖,取出模具,将烧结好的试样从模具中取出,并揭掉粘在试样上的石墨纸,得到一种B4C-SiC复合陶瓷材料。
实施例2
参照图1,一种碳化硅增强碳化硼基陶瓷材料的制备方法,包括以下步骤:
1)配料:称取20.5g的碳化硼、2.5g的碳化硅、0.8g Al2O3和1.2g Y2O3作为烧结材料。其中,碳化硼纯度99.9%,平均粒径0.8μm,碳化硅纯度98.5%,平均粒径0.45μm,Al2O3纯度99.5%,平均粒径为1.17μm和Y2O3纯度99.5%,平均粒径为0.37μm。采用高纯度的原料可以很好的保证烧结后陶瓷材料的物相出现杂质。在烧结过程中加入10%的Al2O3和Y2O3混合物烧结助剂可以降低烧结温度,而且Al2O3和Y2O3的熔点较低,在烧结过程中容易出现液相,促进颗粒重排,有助于提升降低气孔率。
2)球磨混料:将称量好的烧结材料置于球磨罐中,加入二氧化锆质量相同的大、中、小球,倒入酒精,使用行星式球磨机充分混匀,得到烧结混合料,球磨速度为90r·min-1,球磨时间为12h;其中,加入二氧化锆小球质量与料质量的比值为2:1,加入酒精质量与料质量的比值为2:1。通过球磨,可以有效的将所有的原料粉末均匀的混合在一起,而且在球磨过程中加入适量的氧化锆球可以使混料进一步粉碎细化。由于碳化硼材料硬度比较大故不宜球磨的速度过快、球磨时间过长,防止在球磨过程中产生杂质。由于混料与球磨球之间会发生旋转和碰撞,会发生团聚甚至结块现象,因此在球磨过程中加入适量的酒精可以防止粉末的结块,促进粉末与球之间的接触,同时加入适量的酒精也可以控制在球磨过程中产生的热量,防止粉料在高温下发生反应,对后续的烧结产生不良影响。
3)烘干:将球磨好的烧结混合料放于鼓风干燥箱中加热烘干,直至失去全部的酒精;
4)过筛:将烘干后的烧结混合料碾碎,并用80目筛网过筛,得到烧结混合粉料;
5)烘干:将过筛后的烧结混合粉料再次放于鼓风干燥箱中加热烘干,在80℃下烘干2.5h,得到充分干燥的混合粉料;
6)装料:在模具四周垫上厚度为0.2mm的石墨纸以便于脱模,将5)所得到的充分干燥的混合粉料装入模具中。图2示出了模具的结构示意图,模具包括压块1,上压头2,衬套3,套圈4和垫片5,套圈4套设在衬套3外,压块1的上部深入衬套3中,上压头2下部伸入衬套3中,混合粉末6放入衬套3中压块1的上方,上压头2放在混合粉料6上方;
7)热压烧结:将装好混合粉料的模具放置于HIGH MULTI 5000多功能烧结炉中,安装调试好之后进行烧结,热压烧结工艺为氮气气氛保护,烧结温度1900℃,压力35MPa,保温保压时间10min;
8)脱模:待炉温降至室温,打开炉盖,取出模具,将烧结好的试样从模具中取出,并揭掉粘在试样上的石墨纸,得到一种B4C-SiC复合陶瓷材料。
本实施例得到的B4C-SiC陶瓷材料的微观组织图如图4a所示,该图是通过对烧结后陶瓷表面进行腐蚀并清洗后,在电子显微镜下得到的照片,由图4a可以看出:没有单独存在的小颗粒,颗粒与颗粒之间烧结颈明显存在。本实施例得到的B4C-SiC陶瓷材料的断面图如图4b所示,由图4b可以看出:陶瓷在断裂过程中出现了颗粒被拔出的现象,造成断口表面凹坑的出现,陶瓷的断裂机制为延晶断裂和穿晶断裂。
实施例3
参照图1,一种碳化硅增强碳化硼基陶瓷材料的制备方法,包括以下步骤:
1)配料:按质量比例称取20g的碳化硼、2.5g的碳化硅、1.25g Al2O3和1.25g Y2O3作为烧结材料。其中,碳化硼纯度99.9%,平均粒径0.8μm,碳化硅纯度98.5%,平均粒径0.45μm,Al2O3纯度99.5%,平均粒径为1.17μm和Y2O3纯度99.5%,平均粒径为0.37μm。采用高纯度的原料可以很好的保证烧结后陶瓷材料的物相出现杂质。在烧结过程中加入10%的Al2O3和Y2O3混合物烧结助剂可以降低烧结温度,而且Al2O3和Y2O3的熔点较低,在烧结过程中容易出现液相,促进颗粒重排,有助于提升降低气孔率。
2)球磨混料:将称量好的烧结材料置于球磨罐中,加入二氧化锆质量相同的大、中、小球,倒入酒精,使用行星式球磨机充分混匀,得到烧结混合料,球磨速度为100r·min-1,球磨时间为12h;其中,加入二氧化锆小球质量与料质量的比值为2:1,加入酒精质量与料质量的比值为2:1。通过球磨,可以有效的将所有的原料粉末均匀的混合在一起,而且在球磨过程中加入适量的氧化锆球可以使混料进一步粉碎细化。由于碳化硼材料硬度比较大故不宜球磨的速度过快、球磨时间过长,防止在球磨过程中产生杂质。由于混料与球磨球之间会发生旋转和碰撞,会发生团聚甚至结块现象,因此在球磨过程中加入适量的酒精可以防止粉末的结块,促进粉末与球之间的接触,同时加入适量的酒精也可以控制在球磨过程中产生的热量,防止粉料在高温下发生反应,对后续的烧结产生不良影响。
3)烘干:将球磨好的烧结混合料放于鼓风干燥箱中加热烘干,直至失去全部的酒精;
4)过筛:将烘干后的烧结混合料碾碎,并用100目筛网过筛,得到烧结混合粉料;
5)烘干:将过筛后的烧结混合粉料再次放于鼓风干燥箱中加热烘干,在80℃下烘干2.5h,得到充分干燥的混合粉料;
6)装料:在模具四周垫上厚度为0.2mm的石墨纸以便于脱模,将5)所得到的充分干燥的混合粉料装入模具中;
7)热压烧结:将装好混合粉料的模具放置于HIGH MULTI 5000多功能烧结炉中,安装调试好之后进行烧结,热压烧结工艺如图3所示:氮气气氛保护,温度1900℃,压力40MPa,保温保压时间30min;碳化硼是一种难以烧结的陶瓷材料,采用热压烧结时需在高温高压下。但是通过添加第二相可以降低烧结温度,在1900℃下烧结一般热压烧结炉就可以满足,而且在此参数下烧结,可以满足粉末由无序向有序的转变,达到致密所需要的能量,得到良好物理力学性能的B4C-SiC复合陶瓷材料。
8)脱模:待炉温降至室温,打开炉盖,取出模具,将烧结好的试样从模具中取出,并揭掉粘在试样上的石墨纸,得到一种B4C-SiC复合陶瓷材料。
本实施例得到的B4C-SiC陶瓷材料的微观组织图如图5a所示,该图是通过对烧结后陶瓷表面进行腐蚀并清洗后,在电子显微镜下得到的照片。由图5a可以看出:样品有少量的开气孔存在,但没有单独存在的小颗粒,颗粒与颗粒之间烧结颈明显存在,结合紧密。本实施例得到的B4C-SiC陶瓷材料的断面图如图5b所示,由图5b可以进一步看出:陶瓷烧结较为致密,断面形貌蜿蜒曲折,陶瓷的断裂机制为延晶断裂和穿晶断裂。
实施例4
参照图1,一种碳化硅增强碳化硼基陶瓷材料的制备方法,包括以下步骤:
1)配料:称取17.5g的碳化硼、5g的碳化硅、1.5g Al2O3和1g Y2O3作为烧结材料。其中,碳化硼纯度99.9%,平均粒径0.8μm,碳化硅纯度98.5%,平均粒径0.45μm,Al2O3纯度99.5%,平均粒径为1.17μm和Y2O3纯度99.5%,平均粒径为0.37μm。采用高纯度的原料可以很好的保证烧结后陶瓷材料的物相出现杂质。在烧结过程中加入10%的Al2O3和Y2O3混合物烧结助剂可以降低烧结温度,而且Al2O3和Y2O3的熔点较低,在烧结过程中容易出现液相,促进颗粒重排,有助于提升降低气孔率。
2)球磨混料:将称量好的烧结材料置于球磨罐中,加入二氧化锆质量相同的大、中、小球,倒入酒精,使用行星式球磨机充分混匀,得到烧结混合料,球磨速度为120r·min-1,球磨时间为11h;其中,加入二氧化锆小球质量与料质量的比值为2:1,加入酒精质量与料质量的比值为2:1。通过球磨,可以有效的将所有的原料粉末均匀的混合在一起,而且在球磨过程中加入适量的氧化锆球可以使混料进一步粉碎细化。由于碳化硼材料硬度比较大故不宜球磨的速度过快、球磨时间过长,防止在球磨过程中产生杂质。由于混料与球磨球之间会发生旋转和碰撞,会发生团聚甚至结块现象,因此在球磨过程中加入适量的酒精可以防止粉末的结块,促进粉末与球之间的接触,同时加入适量的酒精也可以控制在球磨过程中产生的热量,防止粉料在高温下发生反应,对后续的烧结产生不良影响。
3)烘干:将球磨好的烧结混合料放于鼓风干燥箱中加热烘干,直至失去全部的酒精;
4)过筛:将烘干后的烧结混合料碾碎,并用120目筛网过筛,得到烧结混合粉料;
5)烘干:将过筛后的烧结混合粉料再次放于鼓风干燥箱中加热烘干,在70℃下烘干3h,得到充分干燥的混合粉料;
6)装料:在模具四周垫上厚度为0.2mm的石墨纸以便于脱模,将5)所得到的充分干燥的混合粉料装入模具中。图2示出了模具的结构示意图,模具包括压块1,上压头2,衬套3,套圈4和垫片5,套圈4套设在衬套3外,压块1的上部深入衬套3中,上压头2下部伸入衬套3中,混合粉末6放入衬套3中压块1的上方,上压头2放在混合粉料6上方;
7)热压烧结:将装好混合粉料的模具放置于HIGH MULTI 5000多功能烧结炉中,安装调试好之后进行烧结,热压烧结工艺为氮气气氛保护,烧结温度1900℃,压力40MPa,保温保压时间10min;
8)脱模:待炉温降至室温,打开炉盖,取出模具,将烧结好的试样从模具中取出,并揭掉粘在试样上的石墨纸,得到一种B4C-SiC复合陶瓷材料。
实施例5
参照图1,一种碳化硅增强碳化硼基陶瓷材料的制备方法,包括以下步骤:
1)配料:按质量比例称取17g的碳化硼、5g的碳化硅、1.8g Al2O3和1.2g Y2O3作为烧结材料。其中,碳化硼纯度99.9%,平均粒径0.8μm,碳化硅纯度98.5%,平均粒径0.45μm,Al2O3纯度99.5%,平均粒径为1.17μm和Y2O3纯度99.5%,平均粒径为0.37μm。采用高纯度的原料可以很好的保证烧结后陶瓷材料的物相出现杂质。在烧结过程中加入10%的Al2O3和Y2O3混合物烧结助剂可以降低烧结温度,而且Al2O3和Y2O3的熔点较低,在烧结过程中容易出现液相,促进颗粒重排,有助于提升降低气孔率。
2)球磨混料:将称量好的烧结材料置于球磨罐中,加入二氧化锆质量相同的大、中、小球,倒入酒精,使用行星式球磨机充分混匀,得到烧结混合料,球磨速度为90r·min-1,球磨时间为11.5h;其中,加入二氧化锆小球质量与料质量的比值为3:1,加入酒精质量与料质量的比值为3:1。通过球磨,可以有效的将所有的原料粉末均匀的混合在一起,而且在球磨过程中加入适量的氧化锆球可以使混料进一步粉碎细化。由于碳化硼材料硬度比较大故不宜球磨的速度过快、球磨时间过长,防止在球磨过程中产生杂质。由于混料与球磨球之间会发生旋转和碰撞,会发生团聚甚至结块现象,因此在球磨过程中加入适量的酒精可以防止粉末的结块,促进粉末与球之间的接触,同时加入适量的酒精也可以控制在球磨过程中产生的热量,防止粉料在高温下发生反应,对后续的烧结产生不良影响。
3)烘干:将球磨好的烧结混合料放于鼓风干燥箱中加热烘干,直至失去全部的酒精;
4)过筛:将烘干后的烧结混合料碾碎,并用120目筛网过筛,得到烧结混合粉料;
5)烘干:将过筛后的烧结混合粉料再次放于鼓风干燥箱中加热烘干,在90℃下烘干2h,得到充分干燥的混合粉料;
6)装料:在模具四周垫上厚度为0.2mm的石墨纸以便于脱模,将5)所得到的充分干燥的混合粉料装入模具中;
7)热压烧结:将装好混合粉料的模具放置于HIGH MULTI 5000多功能烧结炉中,安装调试好之后进行烧结,热压烧结工艺为氮气气氛保护,温度1950℃,压力45MPa,保温保压时间30min;
8)脱模:待炉温降至室温,打开炉盖,取出模具,将烧结好的试样从模具中取出,并揭掉粘在试样上的石墨纸,得到一种B4C-SiC复合陶瓷材料。
实施例的物理力学性能如下表所示(所述的实施例是本发明的5个实施例性能参数,而不是全部的实施例)。
Figure BDA0002512028480000111
Figure BDA0002512028480000121
由上表可以看出:上述5个实施例中,实施例3制得的产物的硬度最高;实施例4制得的,断裂韧性最大、密度最大,相比于实施例3而言实施例4的弯曲强度提升了10%,断裂韧性高提升了6.3%,密度提升了2.7%;实施例5制得的产物的弯曲强度最高。而且相比于纯碳化硼陶瓷(断裂韧性为4.01MPa·m1/2),五个实施例的断裂韧性都有不同程度的提升,分别为15%、48%、69%、79.8%、77.3%。综上,说明随着SiC颗粒的加入,有利于提升B4C-SiC复合陶瓷的致密度,改善陶瓷的弯曲强度,同时提升陶瓷的断裂韧性,从整体上改善B4C-SiC复合陶瓷的物理力学性能。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (7)

1.一种碳化硅增强碳化硼基陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤1,称取烧结材料,所述烧结材料包括:B4C、SiC和烧结助剂,其中B4C的质量烧结材料质量的68%~87%,SiC的质量为烧结材料质量的5%~20%,烧结助剂的质量为烧结材料质量的8%~12%,所述烧结助剂包括Al2O3和Y2O3
步骤2,将步骤1中称取的B4C、SiC、Al2O3与Y2O3混合均匀,得到烧结混合料;
步骤3,将步骤2中得到的混合料磨碎并过筛,得到烧结混合粉料;
步骤4,将步骤3中得到的烧结混合粉料进行干燥,得到干燥的混合粉料;
步骤5,将步骤4得到的干燥的混合粉料装入模具,在氮气气氛下烧结,烧结温度1850℃-1950℃,压力为35MPa-45MPa,保温保压时间10min-30min,得到B4C-SiC复合陶瓷材料。
2.根据权利要求1所述的一种碳化硅增强碳化硼基陶瓷材料的制备方法,其特征在于,所述步骤2中,通过球磨混料的方式混合B4C、SiC、Al2O3与Y2O3,进行球磨混料时,将B4C、SiC、Al2O3与Y2O3置于球磨罐中,加入二氧化锆磨球,并倒入酒精,使用行星式球磨机充分混匀,行星式球磨机速度为90r·min-1-120r·min-1,球磨时间为11h-12h。
3.根据权利要求2所述的一种碳化硅增强碳化硼基陶瓷材料的制备方法,其特征在于,所述步骤2中,加入的二氧化锆磨球质量与烧结混合料质量的比值为2:1或3:1,加入的酒精的质量与烧结混合料质量的比值为2:1或3:1。
4.根据权利要求1所述的一种碳化硅增强碳化硼基陶瓷材料的制备方法,其特征在于,进行步骤3之前将烧结混合料烘干。
5.根据权利要求1所述的一种碳化硅增强碳化硼基陶瓷材料的制备方法,其特征在于,所述步骤1中,B4C的纯度为99.9%,平均粒径为0.8μm,SiC的纯度伪98.5%,平均粒径为0.45μm,Al2O3和Y2O3纯度均大于>99.5%。
6.根据权利要求1所述的一种碳化硅增强碳化硼基陶瓷材料的制备方法,其特征在于,所述步骤1中,Al2O3和Y2O3的质量比为(2:3)~(3:2)。
7.一种B4C-SiC复合陶瓷材料,基于权利要求1至6任意一项所述的制备方法制备。
CN202010464125.5A 2020-05-27 2020-05-27 一种碳化硅增强碳化硼基陶瓷材料及其制备方法 Pending CN111423233A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010464125.5A CN111423233A (zh) 2020-05-27 2020-05-27 一种碳化硅增强碳化硼基陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010464125.5A CN111423233A (zh) 2020-05-27 2020-05-27 一种碳化硅增强碳化硼基陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111423233A true CN111423233A (zh) 2020-07-17

Family

ID=71557231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010464125.5A Pending CN111423233A (zh) 2020-05-27 2020-05-27 一种碳化硅增强碳化硼基陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111423233A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105243A (zh) * 2021-04-28 2021-07-13 西安石油大学 表面具有碳化硅和硅涂层的b4c/石墨复合材料及其制备方法
CN113773086A (zh) * 2021-09-01 2021-12-10 河北工业职业技术学院 多晶B4C-SiC双层复合材料及其制备方法
CN113800913A (zh) * 2021-10-25 2021-12-17 大连海事大学 碳化硼结构可控的碳化硼/碳复合材料及其制备方法和应用
CN116283302A (zh) * 2023-03-31 2023-06-23 陕西科技大学 一种耐高温熔盐腐蚀陶瓷基复合材料及其制备方法和应用
CN117185817A (zh) * 2023-09-08 2023-12-08 兰溪泛翌精细陶瓷有限公司 一种高性能碳化硼复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552664A (zh) * 2003-12-19 2004-12-08 李文辉 液相烧结复合碳化物陶瓷材料及其陶瓷制品的制造方法
CN102757224A (zh) * 2012-07-31 2012-10-31 中国科学院上海硅酸盐研究所 烧结制备致密碳化硼基陶瓷材料的方法
CN108640687A (zh) * 2018-05-29 2018-10-12 北京理工大学 一种碳化硼/碳化硅复相陶瓷及其制备方法
CN108751996A (zh) * 2018-06-29 2018-11-06 南京理工大学 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552664A (zh) * 2003-12-19 2004-12-08 李文辉 液相烧结复合碳化物陶瓷材料及其陶瓷制品的制造方法
CN102757224A (zh) * 2012-07-31 2012-10-31 中国科学院上海硅酸盐研究所 烧结制备致密碳化硼基陶瓷材料的方法
CN108640687A (zh) * 2018-05-29 2018-10-12 北京理工大学 一种碳化硼/碳化硅复相陶瓷及其制备方法
CN108751996A (zh) * 2018-06-29 2018-11-06 南京理工大学 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李少峰: "液相烧结法制备 B4C- SiC 复合陶瓷材料的研究", 《佛山陶瓷》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105243A (zh) * 2021-04-28 2021-07-13 西安石油大学 表面具有碳化硅和硅涂层的b4c/石墨复合材料及其制备方法
CN113773086A (zh) * 2021-09-01 2021-12-10 河北工业职业技术学院 多晶B4C-SiC双层复合材料及其制备方法
CN113800913A (zh) * 2021-10-25 2021-12-17 大连海事大学 碳化硼结构可控的碳化硼/碳复合材料及其制备方法和应用
CN113800913B (zh) * 2021-10-25 2022-09-30 大连海事大学 碳化硼结构可控的碳化硼/碳复合材料及其制备方法和应用
CN116283302A (zh) * 2023-03-31 2023-06-23 陕西科技大学 一种耐高温熔盐腐蚀陶瓷基复合材料及其制备方法和应用
CN117185817A (zh) * 2023-09-08 2023-12-08 兰溪泛翌精细陶瓷有限公司 一种高性能碳化硼复合材料及其制备方法
CN117185817B (zh) * 2023-09-08 2024-04-09 兰溪泛翌精细陶瓷有限公司 一种高性能碳化硼复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN111423233A (zh) 一种碳化硅增强碳化硼基陶瓷材料及其制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
CN105130438B (zh) 一种基于反应烧结制备碳化硼陶瓷复合材料的方法
CN103613389A (zh) 碳化硼陶瓷烧结制备方法
CN101913880B (zh) 一种基于硅烷钛酸酯双组份偶联剂碳化硅陶瓷制造方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN102030532B (zh) 表面微孔SiC陶瓷材料及其制备方法
CN111533560A (zh) 一种碳化硼基复合陶瓷材料及其制备方法
CN112645726B (zh) 一种具有典型长颗粒形貌、富含层错和孪晶的碳化硅晶须陶瓷及其制备方法
CN107266101A (zh) 一种短切碳纤维增强碳化硼基复合材料的制备方法
CN109592982A (zh) 一种碳化硼核中子吸收材料及制备方法
US20070105706A1 (en) Ceramic Armor
CN101928148B (zh) 一种基于硅烷偶联剂低温高致密碳化硅陶瓷制造方法
CN111410538A (zh) 一种增韧碳化硅陶瓷及其制备方法
CN112194492A (zh) 氮化硅陶瓷材料及其制备方法与应用、防弹插板
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
CN113213960B (zh) 一种高韧性、高硬度耐磨陶瓷及其制备方法
CN110627504A (zh) 碳化硼复合材料的无压烧结制备方法
CN105483487B (zh) 一种含锆的碳化硼‑铝合金复合材料及其制备方法
CN111892414A (zh) 一种短碳纤维增强碳化硼复合材料及其制备方法
CN111499386A (zh) 一种复合陶瓷材料及其制备方法
CN102060546A (zh) 一种基于硅烷硼酸酯双组份偶联剂碳化硅陶瓷制造方法
CN106800414A (zh) 原位反应制备含氮化硼的超高温陶瓷基复合材料的方法
CN101928147A (zh) 一种基于硅烷铝酸酯双组份偶联剂碳化硅陶瓷制造方法
CN110330349B (zh) 一种氮化硅纳米纤维增强氮化硼陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200717

RJ01 Rejection of invention patent application after publication