CN108751996A - 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺 - Google Patents
一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺 Download PDFInfo
- Publication number
- CN108751996A CN108751996A CN201810698984.3A CN201810698984A CN108751996A CN 108751996 A CN108751996 A CN 108751996A CN 201810698984 A CN201810698984 A CN 201810698984A CN 108751996 A CN108751996 A CN 108751996A
- Authority
- CN
- China
- Prior art keywords
- boron carbide
- carbide ceramics
- graphene
- ceramics material
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/563—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺。本发明的碳化硼陶瓷材料,以重量百分数计,包含如下组分:B4C 74.5%‑80.5%、SiC 15%、Al2O3/Y2O33%‑9%、石墨烯1.5%。本发明的碳化硼陶瓷材料是在氩气气氛保护下,通过优化组分配比、烧结温度、保温时间等工艺参数,采用放电等离子技术,以较快的升温速率制备得到。本发明制备出的陶瓷材料不但具备高的致密度,同时还具备较高的硬度和较好的韧性,致密度达到100%,硬度达到30.87±0.19GPa,断裂韧性达到5.76±0.29MPa.m1/2。
Description
技术领域
本发明属于放电等离子烧结材料技术领域,涉及石墨烯增韧的碳化硼陶瓷材料等离子烧结制备工艺。
背景技术
碳化硼是自然界中一种重要的超硬材料,其硬度仅次于金刚石和立方氮化硼,具有密度低、弹性模量高、耐磨性好、腐蚀性能好等优点,是一种综合性能优良的新型陶瓷材料,可以用来作为密封材料,中子吸收材料、防弹材料、发动机喷嘴、抛光加工硬材料的研磨、防弹材料、核辐射保护等,广泛应用于核能、国防、机械等领域
碳化硼陶瓷的结构中共价键极强,共价键分数在90%以上,自扩散系数非常低,内部气孔的消除、晶界和体积扩散都需要非常高的温度,纯碳化硼陶瓷的烧结极其困难,即使在高温下也很难达到致密。另外,碳化硼粉体表面通常具有一层氧化物薄膜(B2O3),阻碍了烧结的进行。基于以上原因,如何更有效地促成碳化硼的烧结和致密一直是该领域的研究重点。
目前,工业化生产碳化硼陶瓷的主要方法是热压烧结和无压烧结。无压烧结烧结温度极其高,在2250~2300℃,保温时间长,保温时间为1-2h,但是致密化很困难,只有80-87%的致密度。热压烧结相对于无压烧结温度低,但要得到98%的致密度,烧结温度也必须达到2000℃以上,保温时间也不能低于1小时。高的烧结温度使得无压烧结和热压烧结耗散大量的电能,提高了生产成本。此外,在2000℃以上的高温下烧结,使得晶粒快速长大并粗化,不利于气孔的排除,使得材料中残留大量的气孔,增加气孔率,减小致密度,从而造成了碳化硼陶瓷硬度低,韧性差。因此,碳化硼的烧结必须加入有效的添加剂降低温度的同时促进致密化
与传统的烧结方法相比,放电等离子烧结(SPS)是一种先进的烧结方法,具有较高的加热率、较短的保温时间和较高的效率,能在短时间内使材料快速致密,这是细化晶粒的必要条件。用SPS烧结制备难致密的碳化硼陶瓷时,与传统烧结方式比,烧结温度降低200-300℃,升温速率在100-200℃左右,保温时间在1-10min左右。放电等离子耗能低,环境友好,高效,可细化晶粒,改善碳化硼陶瓷的力学性能和微观结构,且烧结体致密度高,特殊的烧结机理赋予材料新结构和高性能,更有利于烧结方法的推广应用。它是利用外加脉冲强电流形成的点成净化材料,提高粉末表面的扩散能力,再在较低的机械压力下利用强电流短时加热粉体进行烧结致密。
碳化硼陶瓷烧结温度高,致密化困难,硬度高但韧性差,用放电等离子低温快速烧结工艺优化助烧剂含量,对提高碳化硼陶瓷材料力学性能以及促进其产业化具有重大意义。
发明内容
本发明的目的在于提供一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺。
实现上述目的的技术方案如下:
一种石墨烯增韧的碳化硼陶瓷材料,以重量百分数计,包含如下组分:B4C74.5%-80.5%、SiC 15%、Al2O3/Y2O33%-9%、石墨烯1.5%。
本发明还提供上述碳化硼陶瓷材料的放电等离子烧结制备工艺,包括如下步骤:
步骤1,按比例称取B4C、SiC、Al2O3/Y2O3、石墨烯粉末;
步骤2,将步骤1的混合粉料倒入锥形瓶中,以无水乙醇为介质,在超声震荡机上震荡搅拌2小时;
步骤3,将震荡后的混合粉料进行干燥,然后研磨并过筛;
步骤4,将混合粉体装入模具,粉体与石墨模具内壁,上、下压头及粉体之间用碳纸隔开;
步骤5,石墨磨具中的粉体预压成型;
步骤6,氩气氛围中,采用放电等离子烧结工艺,以100℃/min的升温速率持续升温到1850-1925℃,保温1-7min,随后随炉冷却,制得碳化硼陶瓷材料。
进一步的,步骤4中,将碳纸紧贴于石墨磨具内壁,模具内壁碳纸及上下压头处的碳纸都需涂上六方氮化硼。
进一步的,步骤5中,预压时间5min,压力10Mpa。
本发明与现有技术相比,其显著优点是:
(1)本发明利用放电等离子能量利用率高和环境友好的特性,在低温快速烧结条件下,以更低的成本和更少的环境污染,实现B4C高致密化和优良的力学性能。
(2)本发明通过助烧剂的协同作用,采用了放电等离子烧结技术制备出的碳化硼陶瓷具有优良力学性能及微观组织结构,其中综合性能最高的样品的致密度达到100%,硬度达到30.87±0.19GPa,断裂韧性达到5.76±0.29MPa.m1/2。
附图说明
图1为实施例2制得的碳化硼陶瓷材料的断裂面SEM图。
图2为实施例5制得的碳化硼陶瓷材料的断裂面SEM图。
图3为对比例1制得的碳化硼陶瓷材料的断裂面SEM图。
具体实施方式
下面结合实施例对本发明做进一步详细说明。
实施例1
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C80.5%、SiC15%、Al2O3/Y2O33%、石墨烯1.5%进行配料,其中Al2O3/Y2O3按1:1配制,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1900℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为99.01%,维氏硬度为30.88±0.23GPa,断裂韧性为4.37±0.34MPa.m1/2。
实施例2
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C78.5%、SiC15%、Al2O3/Y2O35%、石墨烯1.5%进行配料,其中Al2O3/Y2O3按1:1配制,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1900℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为98.61%,维氏硬度为30.59±0.31GPa,断裂韧性为5.68±0.28MPa.m1/2。
实施例3
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C76.5%、SiC15%、Al2O3/Y2O37%、石墨烯1.5%进行配料,其中Al2O3/Y2O3按1:1配制,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1900℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为98.57%,维氏硬度为26.39±0.28GPa,断裂韧性为6.15±0.26MPa.m1/2。
实施例4
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C74.5%、SiC15%、Al2O3/Y2O39%、石墨烯1.5%进行配料,其中Al2O3/Y2O3按1:1配制,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1900℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为97.74%,维氏硬度为25.20±0.33GPa,断裂韧性为6.95±0.31MPa.m1/2。
实施例5
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C78.5%、SiC15%、Al2O3/Y2O35%、石墨烯1.5%进行配料,其中Al2O3/Y2O3按1:1配制,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1925℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为100%,维氏硬度为30.87±0.19GPa,断裂韧性为5.76±0.29MPa.m1/2。
从图1可以看出碳化硼陶瓷在放电等离子烧结中添加石墨烯可以起到增韧的效果,石墨烯的嵌入和拔出需要消耗大量的断裂能,阻止裂纹的进一步扩展。图2可以看出加入Al2O3/Y2O3产生液相,达到烧结温度时,使得碳化硼陶瓷几乎完全致密,碳化硼的力学性能也达到最高。图3可以看出,降低碳化硼地烧结温度对碳化硼地致密度有很大影响,气孔率增加,致密度减小,力学性能也降低。对比发现,烧结温度不宜过低,应在1900℃以上,碳化硼致密度将大于98%。
对比例1
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C78.5%、SiC15%、Al2O3/Y2O35%、石墨烯1.5%进行配料,其中Al2O3/Y2O3按1:1配制,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1850℃,保温5min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为92.63%,维氏硬度为22.71±0.34GPa,断裂韧性为5.99±0.27MPa.m1/2。
此对比例说明烧结温度对材料的密度和力学性能影响很大,降低碳化硼材料的烧结温度,材料的致密度和力学性能明显下降。
对比例2
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C78.5%、SiC15%、Al2O3/Y2O35%、石墨烯1.5%进行配料,其中Al2O3/Y2O3按1:1配制,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1900℃,保温3min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为95.41%,维氏硬度为29.50±0.23GPa,断裂韧性为5.05±0.21MPa.m1/2。
此对比例说明保温时间对材料性能影响较大,保温时间不足,材料的致密度降低,最后材料力学性能也处于较低水平。
对比例3
一种碳化硼陶瓷材料及其放电等离子烧结工艺,具体为:按质量百分数B4C78.5%、SiC15%、Al2O3/Y2O35%、石墨烯1.5%进行配料,其中Al2O3/Y2O3按1:1配制,将配制好的混合粉末以无水乙醇为介质,放于超声震荡机上震荡2小时,超声震荡结束后烘干研磨,过100目筛,将涂有氮化硼润滑剂的石墨纸紧贴于石墨磨具内壁,将过筛后的粉料压于石墨磨具中,预压10Mpa,保压5分钟,将装有粉末的石墨磨具外层包裹碳毡,放于等离子烧结炉中,将炉腔内抽成真空状态,当真空计显示10Pa以下,然后冲入氩气;设置单轴压力为30Mpa,开启等离子电源进行加热,以100℃/min的升温速率将试样加热至1925℃,保温1min,然后随炉冷却。经测试得,该碳化硼陶瓷材料的致密度为99.62%,维氏硬度为30.59±0.20GPa,断裂韧性为5.71±0.34MPa.m1/2。
此对比例说明当达到一定的烧结温度后,保温时间对材料性能影响不大,降低保温时间,致密度没有明显降低,材料力学性能变化不大。
Claims (5)
1.一种石墨烯增韧的碳化硼陶瓷材料,其特征在于,以重量百分数计,包含如下组分:B4C 74.5%-80.5%、SiC 15%、Al2O3/Y2O3 3%-9%、石墨烯1.5%。
2.如权利要求所述的石墨烯增韧的碳化硼陶瓷材料,其特征在于,以重量百分数计,包含如下组分:B4C 78.5%、SiC15%、石墨烯1.5%、Al2O3/Y2O3 5%。
3.一种如权利要求1-2所述的石墨烯增韧的碳化硼陶瓷材料等离子烧结制备工艺,其特征在于,包括如下步骤:
(1)按比例称取B4C、SiC、Al2O3/Y2O3、石墨烯粉末;
(2)将步骤1的粉料混合,以无水乙醇为介质,在超声震荡机上震荡搅拌2小时;
(3)将震荡后的混合粉料进行干燥,然后研磨并过筛;
(4)将混合粉体装入模具,粉体与石墨模具内壁,上、下压头及粉体之间用碳纸隔开;
(5)石墨磨具中的粉体预压成型;
(6)氩气氛围中,采用放电等离子烧结工艺,以100℃/min的升温速率持续升温到1850-1925℃,保温1-7min,随后随炉冷却,制得碳化硼陶瓷材料。
4.如权利要求3所述的石墨烯增韧的碳化硼陶瓷材料等离子烧结制备工艺,其特征在于,步骤4中,将碳纸紧贴于石墨磨具内壁,模具内壁碳纸及上下压头处的碳纸都需涂上六方氮化硼。
5.如权利要求3所述的石墨烯增韧的碳化硼陶瓷材料等离子烧结制备工艺,其特征在于,步骤5中,预压时间5min,压力10Mpa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810698984.3A CN108751996A (zh) | 2018-06-29 | 2018-06-29 | 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810698984.3A CN108751996A (zh) | 2018-06-29 | 2018-06-29 | 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108751996A true CN108751996A (zh) | 2018-11-06 |
Family
ID=63975198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810698984.3A Pending CN108751996A (zh) | 2018-06-29 | 2018-06-29 | 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108751996A (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109336607A (zh) * | 2018-11-12 | 2019-02-15 | 东莞理工学院 | 一种碳化硼制备方法 |
CN109928757A (zh) * | 2018-12-26 | 2019-06-25 | 武汉理工大学 | 一种自组装碳化硼-石墨烯复合陶瓷及其制备方法 |
CN111423233A (zh) * | 2020-05-27 | 2020-07-17 | 陕西科技大学 | 一种碳化硅增强碳化硼基陶瓷材料及其制备方法 |
CN111499385A (zh) * | 2020-03-19 | 2020-08-07 | 武汉理工大学 | 一种碳化硼-石墨烯微叠层复合材料及其制备方法 |
CN111777415A (zh) * | 2020-07-10 | 2020-10-16 | 上海衡益特陶新材料有限公司 | 一种碳化硼防弹材料及其制备方法 |
CN111892414A (zh) * | 2019-05-05 | 2020-11-06 | 中南大学 | 一种短碳纤维增强碳化硼复合材料及其制备方法 |
CN113788681A (zh) * | 2021-10-12 | 2021-12-14 | 景德镇学院 | 一种碳化硼轻质防弹材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816222A (en) * | 1967-04-27 | 1974-06-11 | Glaverbel | Method for preparing vitreous body by diffusion of ions through a coating layer |
CN101269967A (zh) * | 2008-05-13 | 2008-09-24 | 武汉理工大学 | 一种制备碳化硼陶瓷的方法 |
CN102757224A (zh) * | 2012-07-31 | 2012-10-31 | 中国科学院上海硅酸盐研究所 | 烧结制备致密碳化硼基陶瓷材料的方法 |
CN103979971A (zh) * | 2014-04-09 | 2014-08-13 | 宁波东联密封件有限公司 | 一种液相烧结碳化硼防弹材料及其制备方法 |
CN107963888A (zh) * | 2017-10-27 | 2018-04-27 | 浙江立泰复合材料股份有限公司 | 一种碳化硼陶瓷片 |
-
2018
- 2018-06-29 CN CN201810698984.3A patent/CN108751996A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816222A (en) * | 1967-04-27 | 1974-06-11 | Glaverbel | Method for preparing vitreous body by diffusion of ions through a coating layer |
CN101269967A (zh) * | 2008-05-13 | 2008-09-24 | 武汉理工大学 | 一种制备碳化硼陶瓷的方法 |
CN102757224A (zh) * | 2012-07-31 | 2012-10-31 | 中国科学院上海硅酸盐研究所 | 烧结制备致密碳化硼基陶瓷材料的方法 |
CN103979971A (zh) * | 2014-04-09 | 2014-08-13 | 宁波东联密封件有限公司 | 一种液相烧结碳化硼防弹材料及其制备方法 |
CN107963888A (zh) * | 2017-10-27 | 2018-04-27 | 浙江立泰复合材料股份有限公司 | 一种碳化硼陶瓷片 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109336607A (zh) * | 2018-11-12 | 2019-02-15 | 东莞理工学院 | 一种碳化硼制备方法 |
CN109928757A (zh) * | 2018-12-26 | 2019-06-25 | 武汉理工大学 | 一种自组装碳化硼-石墨烯复合陶瓷及其制备方法 |
CN109928757B (zh) * | 2018-12-26 | 2021-04-27 | 武汉理工大学 | 一种自组装碳化硼-石墨烯复合陶瓷及其制备方法 |
CN111892414A (zh) * | 2019-05-05 | 2020-11-06 | 中南大学 | 一种短碳纤维增强碳化硼复合材料及其制备方法 |
CN111499385A (zh) * | 2020-03-19 | 2020-08-07 | 武汉理工大学 | 一种碳化硼-石墨烯微叠层复合材料及其制备方法 |
CN111499385B (zh) * | 2020-03-19 | 2021-03-16 | 武汉理工大学 | 一种碳化硼-石墨烯微叠层复合材料及其制备方法 |
CN111423233A (zh) * | 2020-05-27 | 2020-07-17 | 陕西科技大学 | 一种碳化硅增强碳化硼基陶瓷材料及其制备方法 |
CN111777415A (zh) * | 2020-07-10 | 2020-10-16 | 上海衡益特陶新材料有限公司 | 一种碳化硼防弹材料及其制备方法 |
CN113788681A (zh) * | 2021-10-12 | 2021-12-14 | 景德镇学院 | 一种碳化硼轻质防弹材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108751996A (zh) | 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺 | |
CN108179302B (zh) | 一种高导热金刚石/铜复合材料的制备方法 | |
CN110257684B (zh) | 一种FeCrCoMnNi高熵合金基复合材料的制备工艺 | |
CN103572087B (zh) | 碳化硼颗粒增强铝基复合材料的制备方法 | |
CN110903091B (zh) | 一种SiC-Ti3SiC2复合材料及其制备方法 | |
CN108675790A (zh) | 一种石墨/碳化硅隔热背衬及其制备方法 | |
CN108516832A (zh) | 一种石墨烯增韧的碳化硼陶瓷材料及其制备工艺 | |
CN107513634A (zh) | 一种制备高体分SiCp/Al复合材料的致密化工艺 | |
CN103833403B (zh) | 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品 | |
CN107937792B (zh) | 一种梯度复合陶瓷刀具材料及其制备方法 | |
CN110818428A (zh) | 一种共晶增强增韧氮化硅陶瓷的制备方法 | |
AU2015276668A1 (en) | Tungsten carbide-cubic boron nitride composite material and preparation method thereof | |
CN109320251B (zh) | 一种高性能无压烧结碳化硅复合陶瓷的制备方法 | |
CN105294084A (zh) | 一种高硬高强韧氧化铝陶瓷复合材料及其制备方法 | |
CN111635234A (zh) | 一种聚晶立方氮化硼复合片及其制备方法和应用 | |
CN106187199A (zh) | 一种高度织构化Ti2AlN陶瓷的制备方法 | |
CN108409333A (zh) | 一种AlMgB14-TiB2/Ti梯度功能复合材料及其制备方法 | |
CN109336607A (zh) | 一种碳化硼制备方法 | |
CN109504869A (zh) | 一种具有仿生多级结构的金属基纳米复合材料及其制备方法 | |
CN109136713A (zh) | 一种制备高强度高韧性WC-Co硬质合金的方法 | |
CN114058893B (zh) | 一种AlCoCrFeNi作粘结剂的WC-Y2O3-ZrO2基体硬质合金的制备方法 | |
CN112266251A (zh) | 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法 | |
CN108503370A (zh) | 一种单相氮化硅陶瓷及其sps制备工艺 | |
CN110791674B (zh) | 一种难熔碳化物颗粒增强钨渗铜复合材料的制备方法 | |
CN105665710A (zh) | 一种硬质合金喷嘴的直接成形固结方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181106 |
|
RJ01 | Rejection of invention patent application after publication |