CN108675790A - 一种石墨/碳化硅隔热背衬及其制备方法 - Google Patents

一种石墨/碳化硅隔热背衬及其制备方法 Download PDF

Info

Publication number
CN108675790A
CN108675790A CN201810636886.7A CN201810636886A CN108675790A CN 108675790 A CN108675790 A CN 108675790A CN 201810636886 A CN201810636886 A CN 201810636886A CN 108675790 A CN108675790 A CN 108675790A
Authority
CN
China
Prior art keywords
graphite
heat
carbon siclx
insulated backing
insulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810636886.7A
Other languages
English (en)
Other versions
CN108675790B (zh
Inventor
吴海华
彭建辉
主悔
黄才华
陈永钊
邹德荣
刘松华
鄢柳柳
刘建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Hubei Sanjiang Aerospace Jianghe Chemical Technology Co Ltd
Original Assignee
China Three Gorges University CTGU
Hubei Sanjiang Aerospace Jianghe Chemical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU, Hubei Sanjiang Aerospace Jianghe Chemical Technology Co Ltd filed Critical China Three Gorges University CTGU
Priority to CN201810636886.7A priority Critical patent/CN108675790B/zh
Publication of CN108675790A publication Critical patent/CN108675790A/zh
Application granted granted Critical
Publication of CN108675790B publication Critical patent/CN108675790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种石墨/碳化硅隔热背衬及其制备方法。所述的石墨/碳化硅隔热背衬由实体和相对疏松的孔隙部分组成,所有孔隙大小控制在φ1mm以下,且孤立分散存在,其体积占比不超过20%(如图1所示)。其制备方法如下:首先制备石墨/酚醛树脂混合粉末,再利用选择性激光烧结成型技术制备石墨/碳化硅隔热背衬坯体,最后经过二次固化、真空压力浸渍酚醛树脂溶液、碳化、真空压力浸渍硅溶胶和高温热压烧结等工艺处理获得石墨/碳化硅隔热背衬。该方法具有材料利用率高、无粉尘污染、生产成本低、综合性能可控等特点。所制备的石墨/碳化硅隔热背衬具有低的密度、高的抗压强度、高的耐温能力、低的导热系数以及良好的隔热效果。

Description

一种石墨/碳化硅隔热背衬及其制备方法
技术领域
本发明属于无机非材料成形制造技术领域,具体为一种石墨/碳化硅隔热背衬及其制备方法。
背景技术
为了防止小型固体火箭发动机的金属壳体被燃气烧坏或因过热而降低强度危及其结构的完整性,同时减少热量的散耗而带来的明显的红外信号特征,必须对发动机金属壳体进行可靠的防护。目前普遍采用喷管1(内层)和隔热背衬2(中间层)以及金属壳体3(外层)组合式被动热防护结构(如图2所示),隔热背衬2装配在喷管1和金属壳体3之间,起到承载和隔热双重作用。因此,隔热背衬不仅具有良好的抗压能力、抗高温冲击能力以及低的导热系数,而且应具有低的密度,以便给发动机带来更好的机动性。同时,具有一定的形状精度和尺寸精度,以便安装在喷管1和金属壳体3中间。
目前,国内小型固体火箭发动机用的隔热背衬制备过程如下:首先通过热压成型方法获得玻璃/酚醛树脂或者碳/酚醛树脂或者玻璃/有机硅树脂坯体,然后采取机械切削加工方式切除多余材料,获得中空的内腔和外形结构。这种隔热背衬因其内部有机物会分解和烧蚀,因而只能满足较短时间的隔热,而不能用于长时间的隔热。因采取除去材料方式,故材料总体利用率不高、粉尘污染较大,因坯体成型困难,故难以对隔热背衬的综合性能如导热系数和抗压强度等进行主动调控。
此外,针对高超声速的热防护材料需求,国外开发了刚性陶瓷隔热瓦,它是由陶瓷纤维(如石英、氧化铝、硅酸铝纤维等)与无机粘接剂(如硅溶胶、硼硅酸盐)在高温下烧结而成的一种刚性多孔材料。相对于玻璃/酚醛树脂或者碳/酚醛树脂或者玻璃/有机硅树脂等烧蚀材料而言,刚性隔热瓦具有耐高温、高维形、可重复使用等优点,然而其抗压能力不足,难以制成复杂的中空结构。
发明内容
本发明目的在于提供一种小型固体火箭发动机用石墨/碳化硅隔热背衬及其制备方法。所述的石墨/碳化硅隔热背衬由实体部分和孔隙部分组成,所有的孔隙大小控制在以下,孔隙部分体积占比不超过20%。所述的制备方法如下:首先获得石墨/酚醛树脂混合粉末,然后利用选择性激光烧结成型技术快速制备石墨/碳化硅隔热背衬坯体,最后经过二次固化、真空压力浸渍酚醛树脂溶液、碳化、真空压力浸渍硅溶胶和高温烧结等后处理,获得石墨/碳化硅隔热背衬。该方法摒弃了传统的石墨/碳化硅隔热背衬制备工艺路线,具有材料利用率高、无粉尘污染、生产成本低、综合性能可控等特点,所制备的石墨/碳化硅隔热背衬具有高的抗压强度、高的耐温能力、低的密度、低的导热系数以及良好的隔热效果。
本发明是这样实现上述目的的:通过改变混合粉末组成,如天然鳞片石墨粉末、热固性酚醛树脂粉末和高纯硅粉末大小和比例来调整隔热背衬的综合性能;再次,通过对石墨/碳化硅隔热背衬坯体进行二次固化、真空压力浸渍液态酚醛树脂、碳化、真空浸渍硅溶胶溶液、高温烧结等后处理工艺来调整其综合性能。
本发明提出在石墨/碳化硅隔热背衬内部包含有多个相互孤立的细小孔隙,这些细小孔隙是在高温压力烧结过程中可膨胀石墨受热膨化后形成的,相对于实体部分而言,可膨胀石墨存在的区域是疏松多孔的,通过改变可膨胀石墨粉末粒度、加入量及膨化倍率可以调整隔热背衬内部孔隙大小和数量,从而获得低的导热系数以及良好的隔热效果。
本发明先后通过真空压力浸渍液态酚醛树脂、纳米硅溶胶以及高温压力烧结等有助于石墨/碳化硅隔热背衬的抗压强度。通过调整真空度、浸渍时间和浸渍次数等工艺参数可以改变浸渍深度和浸渍量,从而使其表层相对致密,而心部相对疏松。在高温加压条件下,高纯硅粉、纳米二氧化硅与玻璃碳(酚醛树脂碳化产物)发生原位反应生成碳化硅颗粒和碳化硅晶须,增加了天然鳞片粉末之间连接强度,这有助于提高石墨隔热背衬的抗压强度。采用本发明提供的工艺方法制备的石墨/碳化硅隔热背衬的物相组成是石墨、玻璃碳、碳化硅颗粒和碳化硅晶须等,因而,具有低的密度、高的耐温能力。
为解决现有的小型固体火箭发动机用隔热背衬不能长时间的隔热、材料利用率不高、粉尘污染较大、导热系数、抗压强度等难以调控等问题,本发明的目的在于提供一种石墨/碳化硅隔热背衬及其制备方法。石墨/碳化硅隔热背衬由实体部分和孔隙部分组成,所有的孔隙大小控制在以下,孔隙部分体积占比不超过20%。
为了获得所述的石墨/碳化硅隔热背衬,应采取以下步骤:
a.将天然鳞片石墨(含碳量大于99.5%)、高纯硅粉(化学纯度为99%)和热固性酚醛树脂粉末按照一定质量比混合均匀。
b.将石墨/碳化硅隔热背衬CAD模型的.stl(三角形面片文件)导入选择性激光烧结成型机中,选择合理的工艺参数,快速制备石墨/碳化硅隔热背衬坯体;
c.对石墨/碳化硅隔热背衬坯体进行二次固化;
d.对石墨/碳化硅隔热背衬坯体进行真空压力浸渍酚醛树脂溶液;
e.在惰性气体保护下,对石墨/碳化硅隔热背衬进行碳化处理;
f.石墨/碳化硅隔热背衬预制体进行真空压力浸渍硅溶胶溶液;
g.在惰性气体保护下,进行高温热压烧结,获得石墨/碳化硅隔热背衬。
优选地,所述步骤a天然鳞片石墨粉末为200~500目,热固性酚醛树脂粉末为500~900目,高纯硅粉为100~200目;天然鳞片石墨质量分数为35~60%,热固性酚醛树脂粉末的质量分数为25~35%,高纯硅粉的质量分数为15~30%。
优选地,所述步骤b选择性激光烧结成型工艺参数:填充功率10~30W,分层厚度为0.1~0.15mm,填充间距为0.1~0.15mm,填充速度为1000~3000mm/s,轮廓扫描方式填充。
优选地,所述步骤c二次固化工艺参数:第一阶段60~90℃,保温时间为5~10min;第二阶段90~120℃,保温时间为10~30min;第三阶段150~160℃,保温时间为5~10min。
优选地,所述步骤d中,真空度为100~300pa,酚醛树脂溶液浓度为15~30%,在大气压的作用下浸渍5~10min,优选地,电热鼓风恒温干燥箱烘干温度为60℃,时间为2~4h。重复上述过程1~2次。
优选地,所述步骤e和f所述惰性保护气氛为99%以上高纯氮气或者氩气。
优选地,所述步骤e中碳化工艺:将石墨/碳化硅隔热背衬坯体放入真空气氛碳化炉中,用99%以上、200目石墨粉末包埋,抽真空的同时以60~120℃/h升温至400℃,保温0.5~1h;待真空度值达到10~20pa,通入纯度99%的氮气或氩气,再以30~60℃/h升温至600℃;最后以240~300℃/h升温至800℃,保温0.5~1h,随炉冷却至室温,取出,获得石墨/碳化硅隔热背衬预制体。
优选地,所述步骤f中真空压力浸渍硅溶胶工艺:将石墨/碳化硅隔热背衬预制体放入真空压力浸渍机中,抽真空,待真空度至100~300pa,用20~30wt%硅溶胶溶液将其浸没,与外界接通,在大气压作用下浸渍3~10min,取出,用电热鼓风恒温干燥箱烘干,优选,烘干温度为120~150℃,时间为1~2h。重复上述过程1~2次。
优选地,所述步骤g中高温热压烧结工艺:将经过真空压力浸渍硅溶胶的石墨/碳化硅隔热背衬预制体放入真空气氛烧结炉中,用含碳量99%以上高纯石墨粉末包埋(本发明在二次固化、碳化、烧结步骤中,用含碳量99%以上高纯石墨粉末包埋作用是起到均匀加热石墨隔热背衬坯体、预制体的作用,或者起到支撑防止变形作用),抽真空至10~20Pa,通入纯度99%以上的氮气或氩气,以300~480℃/h升温至1500~1600℃,保温时间为2~4h,外加压力为2~4Mpa,最后,随炉冷却至室温,取出,获得石墨/碳化硅隔热背衬。
采用了以上技术方案,本发明具有以下优点和积极效果:
1.利用本发明可以实现石墨/碳化硅隔热背衬内外结构一体化成型,无需切削加工,有利于提高材料利用率,减少粉尘污染,降低生产成本;
2.利用本发明可以实现石墨/碳化硅隔热背衬综合性能主动调控,在保证石墨/碳化硅隔热背衬具有低的密度、低的导热系数以及良好的隔热效果同时,获得高的抗压强度和高的耐温能力。
附图说明
图1是小型固体火箭发动机用石墨/碳化硅隔热背衬结构示意图;其中,1.实体,2.孔隙,3.扩张段,4.喉衬段,5.收敛段。
图2是小型固体火箭发动机用被动热防护结构示意图;其中,1’喷管,2’隔热背衬,3’金属壳体。
具体实施方式
下面结合附图对本发明的具体实施例描述本发明:
实施例1:
a.将含碳量为99.5%、270目天然鳞片石墨粉末、500目热固性酚醛树脂和99%、200目高纯硅粉和80目可膨胀石墨(膨胀倍率为200)按照质量比45:35:15:5分批放入干法高效滚筒式球磨机中,使之混合均匀。
b.利用选择性激光烧结成型技术将石墨/酚醛树脂混合粉末3D打印成型,获得石墨/碳化硅隔热背衬坯体。选择性激光烧结成型工艺参数:填充功率15W,分层厚度为0.1mm,填充间距为0.1mm,填充速度为1500mm/s,轮廓扫描方式填充。
c.将石墨/碳化硅隔热背衬坯体放入电加热炉中,用99%以上、200目石墨粉末包埋,然后加热固化。优先地,二次固化工艺参数:第一阶段60℃,保温时间为10min;第二阶段100℃,保温时间为15min;第三阶段160℃,保温时间为5min。
d.将经过二次固化处理的石墨/碳化硅隔热背衬坯体放入真空压力浸渍机中,抽真空至150pa,用浓度为25%酚醛树脂溶液将其浸没,再通入空气,在大气压作用下浸渍5min,取出,清理表面残留的酚醛树脂溶液,用电热鼓风恒温干燥箱烘干,烘干温度为60℃,时间为3h。重复上述过程1次。
e.将石墨/碳化硅隔热背衬坯体放入真空气氛碳化炉中,用99%以上、200目石墨粉末包埋,抽真空的同时以100℃/h升温至350℃,保温0.5h;待真空度值达到10pa,通入纯度99%氩气,再以30℃/h升温至600℃;最后以240℃/h升温至800℃,保温0.5h,随炉冷却至室温,取出,获得石墨/碳化硅隔热背衬预制体。
f.将石墨/碳化硅隔热背衬预制体放入真空压力浸渍机中,抽真空,待真空度至100pa,用30wt%硅溶胶溶液将其浸没,与外界接通,在大气压作用下浸渍8min,取出,用电热鼓风恒温干燥箱烘干,烘干温度为120℃,时间为1h。重复上述过程1次。
g.将经过真空压力浸渍硅溶胶的石墨/碳化硅隔热背衬预制体放入真空气氛烧结炉中,用99%以上、200目石墨粉末包埋,抽真空至10Pa,通入纯度99%以上的氮气,以300℃/h升温至1550℃,保温时间为2h,外加压力为2Mpa,最后,随炉冷却至室温,取出,获得如图1、2所述的包含有多个空隙的石墨/碳化硅隔热背衬。经检测,所制备的石墨/碳化硅隔热背衬的密度为1.12*103千克/m3,导热系数为4.5W/(m·K),抗压强度为50MPa。
实施例2:
a.将含碳量为99.5%、300目天然鳞片石墨粉末、900目热固性酚醛树脂和99%、100目高纯硅粉和100目可膨胀石墨(膨胀倍率为150)按照质量比45:32:25:3分批放入干法高效滚筒式球磨机中,使之混合均匀。
b.利用选择性激光烧结成型技术将石墨/酚醛树脂混合粉末3D打印成型,获得石墨/碳化硅隔热背衬坯体。选择性激光烧结成型工艺参数:填充功率25W,分层厚度为填充间距为0.12mm,填充速度为2000mm/s,轮廓扫描方式填充。
d.将石墨/碳化硅隔热背衬坯体放入电加热炉中,用99%以上、200目石墨粉末包埋,然后加热固化。优先地,二次固化工艺参数:第一阶段90℃,保温时间为5min;第二阶段120℃,保温时间为10min;第三阶段160℃,保温时间为8min。
f.将经过二次固化处理的石墨/碳化硅隔热背衬坯体放入真空压力浸渍机中,抽真空至100pa,用浓度为25%酚醛树脂溶液将其浸没,再通入空气,在大气压作用下浸渍3min,取出,清理表面残留的酚醛树脂溶液,用电热鼓风恒温干燥箱烘干,烘干温度为60℃,时间为4h。重复上述过程1次。
g.将石墨/碳化硅隔热背衬坯体放入真空气氛碳化炉中,用99%以上、200目石墨粉末包埋,抽真空的同时以60℃/h升温至350℃,保温0.5h;待真空度值达到10pa,通入纯度99%的氮气,再以60℃/h升温至600℃;最后以300℃/h升温至800℃,保温0.5h,随炉冷却至室温,取出,获得石墨/碳化硅隔热背衬预制体。
h.将石墨/碳化硅隔热背衬预制体放入真空压力浸渍机中,抽真空,待真空度至200pa,用30wt%硅溶胶溶液将其浸没,与外界接通,在大气压作用下浸渍5min,取出,用电热鼓风恒温干燥箱烘干,烘干温度为150℃,时间为1h。重复上述过程2次。
j.将经过真空压力浸渍硅溶胶的石墨/碳化硅隔热背衬预制体放入真空气氛烧结炉中,用99%以上、200目石墨粉末包埋,抽真空至10Pa,通入纯度99%以上的氩气,以360℃/h升温至1550℃,保温时间为2h,外加压力为4Mpa,最后,随炉冷却至室温,取出,获得如图1、2所述的包含有多个空隙的石墨/碳化硅隔热背衬。经检测,所制备的石墨/碳化硅隔热背衬的密度为1.18*103千克/m3,导热系数为6W/(m·K),抗压强度为55MPa。以上所述仅为本发明的优选实例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内所作的任何更改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种石墨/碳化硅隔热背衬,其特征在于所述的石墨/碳化硅隔热背衬包括实体和分布在实体上的多个孔隙,所有的孔隙大小控制在φ1mm以下,且多个孔隙之间孤立分散存在,其体积占比不超过实体的20%。
2.根据权利要求1所述的石墨/碳化硅隔热背衬的制备方法,其特征在于,包括如下步骤:
石墨/酚醛树脂混合粉末制备:将天然鳞片石墨粉末、硅粉、可膨胀石墨和热固性酚醛树脂粉末加入干法高效滚筒式球磨机中,混合均匀;
石墨/碳化硅隔热背衬坯体3D打印成型:利用选择性激光烧结成型技术快速打印制备石墨/碳化硅隔热背衬坯体;
二次固化:将石墨/碳化硅隔热背衬坯体放入电加热炉中,梯度加热固化;
真空压力浸渍酚醛树脂溶液:先将经过二次固化处理的石墨/碳化硅隔热背衬坯体放入真空压力浸渍机中,抽真空下用酚醛树脂溶液将其浸没,再通入空气,在大气压作用下浸渍5~10min,取出,清理表面残留的酚醛树脂溶液,烘干,重复上述过程1~2次;
碳化:将浸渍酚醛树脂后的石墨/碳化硅隔热背衬坯体放入真空气氛碳化炉中,抽真空及通惰性气体条件下,梯度升温碳化,冷却至室温,得到石墨/碳化硅隔热背衬预制体;
真空压力浸渍硅溶胶:将石墨/碳化硅隔热背衬预制体放入真空压力浸渍机中,抽真空,待真空下用硅溶胶溶液将其浸没,再在大气压作用下浸渍3~10min,取出,烘干,重复上述过程1~2次;
高温热压烧结:将经过真空压力浸渍硅溶胶的石墨/碳化硅隔热背衬预制体放入真空气氛烧结炉中,抽真空及通惰性气体条件下,烧结后,冷却至室温,取出,获得包含有多个空隙的石墨/碳化硅隔热背衬。
3.根据权利要求2所述的石墨/碳化硅隔热背衬的制备方法,其特征在于,步骤(1)中天然鳞片石墨粉末的含碳量大于99.5%,粒度为200~500目;硅粉纯度为99%,粒度为100~200目,可膨胀石墨粒度为50~150目,膨胀倍率为100~300,热固性酚醛树脂粉末的粒度为500~900目;
所述的天然鳞片石墨质量分数为35~49%,热固性酚醛树脂粉末的质量分数为25~35%,高纯硅粉的质量分数为15~30%,可膨胀石墨质量分数1~10%。
4.根据权利要求2所述的石墨/碳化硅隔热背衬的制备方法,其特征在于,所述的选择性激光烧结成型工艺参数:填充功率10~30W,分层厚度为0.1~0.15mm,填充间距为0.1~0.15mm,填充速度为1000~3000mm/s,轮廓扫描方式填充打印成型得到石墨/碳化硅隔热背衬坯体。
5.根据权利要求2所述的石墨/碳化硅隔热背衬的制备方法,其特征在于,所述的二次固化工艺参数:第一阶段60~90℃,保温时间为5~10min;第二阶段90~120℃,保温时间为10~30min;第三阶段150~160℃,保温时间为5~10min。
6.根据权利要求2所述的石墨/碳化硅隔热背衬的制备方法,其特征在于,所述的真空压力浸渍酚醛树脂溶液步骤中,真空压力浸渍机中,抽真空至100~300pa,酚醛树脂溶液的质量浓度为15~30%。
7.根据权利要求2所述的石墨/碳化硅隔热背衬的制备方法,其特征在于,碳化步骤中,将浸渍酚醛树脂后的石墨/碳化硅隔热背衬坯体放入真空气氛碳化炉中,用含碳量99%以上高纯石墨粉末包埋,抽真空至10~20Pa,的同时以60~120℃/h升温至400℃,保温0.5~1h;待真空度值达到10~20pa,通入纯度99%的氮气或氩气,再以30~60℃/h升温至600℃;最后以240~300℃/h升温至800℃,保温0.5~1h,随炉冷却至室温,取出,获得石墨/碳化硅隔热背衬预制体。
8.根据权利要求2所述的石墨/碳化硅隔热背衬的制备方法,其特征在于,真空压力浸渍硅溶胶步骤中,将石墨/碳化硅隔热背衬预制体放入真空压力浸渍机中,抽真空,待真空度至100~300pa,用质量分数为20~30wt%硅溶胶溶液将其浸没,与外界接通,在大气压作用下浸渍3~10min,取出,用电热鼓风恒温干燥箱烘干,重复上述过程1~2次。
9.根据权利要求2所述的石墨/碳化硅隔热背衬的制备方法,其特征在于,高温热压烧结步骤中,将经过真空压力浸渍硅溶胶的石墨/碳化硅隔热背衬预制体放入真空气氛烧结炉中,用含碳量99%以上高纯石墨粉末包埋,抽真空至10~20Pa,通入纯度99%以上的氮气或氩气,以300~480℃/h升温至1500~1600℃,保温时间为2~4h,外加压力为2~4Mpa,最后,随炉冷却至室温,取出,获得石墨/碳化硅隔热背衬。
CN201810636886.7A 2018-06-20 2018-06-20 一种石墨/碳化硅隔热背衬及其制备方法 Active CN108675790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810636886.7A CN108675790B (zh) 2018-06-20 2018-06-20 一种石墨/碳化硅隔热背衬及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810636886.7A CN108675790B (zh) 2018-06-20 2018-06-20 一种石墨/碳化硅隔热背衬及其制备方法

Publications (2)

Publication Number Publication Date
CN108675790A true CN108675790A (zh) 2018-10-19
CN108675790B CN108675790B (zh) 2021-01-26

Family

ID=63811611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810636886.7A Active CN108675790B (zh) 2018-06-20 2018-06-20 一种石墨/碳化硅隔热背衬及其制备方法

Country Status (1)

Country Link
CN (1) CN108675790B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320246A (zh) * 2018-11-01 2019-02-12 三峡大学 一种高温抗氧化石墨陶瓷复合材料及其制备方法
CN109530655A (zh) * 2018-11-20 2019-03-29 三峡大学 一种低速重载用铜基石墨自润滑复合件及其制造方法
CN110498685A (zh) * 2019-08-02 2019-11-26 中国航发北京航空材料研究院 一种碳纤维增强陶瓷基复合材料制备方法
CN110964228A (zh) * 2019-11-25 2020-04-07 西北工业大学 一种碳化硅-氮化硼纳米片异质填料及制备方法、环氧树脂导热复合材料及制备方法
CN111153706A (zh) * 2020-01-16 2020-05-15 三峡大学 一种石墨基碳化硅陶瓷复合隔热材料及其制备方法
CN111217609A (zh) * 2019-11-29 2020-06-02 宁波伏尔肯科技股份有限公司 一种3d打印整体式碳化硅隔热屏的制备方法
CN112284170A (zh) * 2020-10-29 2021-01-29 中国科学院上海应用物理研究所 一种多孔陶瓷增强导热的无机盐相变储热元件的组装方法及由此形成的储热元件
CN114478056A (zh) * 2022-03-07 2022-05-13 武汉楚辰新材料科技有限公司 一种热交换器用多孔石墨管的整体成型方法
CN114538928A (zh) * 2022-04-25 2022-05-27 长沙中瓷新材料科技有限公司 石墨碳基匣钵
CN114671696A (zh) * 2022-03-07 2022-06-28 西北工业大学 基于粉末3d打印和rmi工艺制备航空发动机涡轮转子的方法
CN115141028A (zh) * 2022-05-29 2022-10-04 西北工业大学 基于凝胶注模预强化制备碳化硅基复合材料整体涡轮盘的方法
WO2023072613A1 (de) * 2021-11-01 2023-05-04 Nippon Kornmeyer Carbon Group Gmbh Verfahren zur herstellung von carbonisierten oder graphitierten 3d-gegenständen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295712A (en) * 1976-02-07 1977-08-11 Shinagawa Refractories Co Stamping material for conduits
CN105481477A (zh) * 2015-12-29 2016-04-13 湖南博望碳陶有限公司 一种石墨/SiC复合材料的制备方法
CN106316447A (zh) * 2016-07-28 2017-01-11 马琰珂 一种稻壳基多孔碳化硅陶瓷材料及其制备方法
CN107140996A (zh) * 2017-05-17 2017-09-08 中钢集团洛阳耐火材料研究院有限公司 一种碳化硅‑石墨升液管及制备方法
CN107954744A (zh) * 2016-10-14 2018-04-24 河南海纳德新材料有限公司 微孔红柱石轻质耐火砖及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743552B2 (en) * 2001-08-07 2004-06-01 Inphase Technologies, Inc. Process and composition for rapid mass production of holographic recording article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295712A (en) * 1976-02-07 1977-08-11 Shinagawa Refractories Co Stamping material for conduits
CN105481477A (zh) * 2015-12-29 2016-04-13 湖南博望碳陶有限公司 一种石墨/SiC复合材料的制备方法
CN106316447A (zh) * 2016-07-28 2017-01-11 马琰珂 一种稻壳基多孔碳化硅陶瓷材料及其制备方法
CN107954744A (zh) * 2016-10-14 2018-04-24 河南海纳德新材料有限公司 微孔红柱石轻质耐火砖及其制备方法
CN107140996A (zh) * 2017-05-17 2017-09-08 中钢集团洛阳耐火材料研究院有限公司 一种碳化硅‑石墨升液管及制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320246A (zh) * 2018-11-01 2019-02-12 三峡大学 一种高温抗氧化石墨陶瓷复合材料及其制备方法
CN109530655A (zh) * 2018-11-20 2019-03-29 三峡大学 一种低速重载用铜基石墨自润滑复合件及其制造方法
CN110498685A (zh) * 2019-08-02 2019-11-26 中国航发北京航空材料研究院 一种碳纤维增强陶瓷基复合材料制备方法
CN110964228A (zh) * 2019-11-25 2020-04-07 西北工业大学 一种碳化硅-氮化硼纳米片异质填料及制备方法、环氧树脂导热复合材料及制备方法
CN111217609A (zh) * 2019-11-29 2020-06-02 宁波伏尔肯科技股份有限公司 一种3d打印整体式碳化硅隔热屏的制备方法
CN111153706A (zh) * 2020-01-16 2020-05-15 三峡大学 一种石墨基碳化硅陶瓷复合隔热材料及其制备方法
CN112284170A (zh) * 2020-10-29 2021-01-29 中国科学院上海应用物理研究所 一种多孔陶瓷增强导热的无机盐相变储热元件的组装方法及由此形成的储热元件
WO2023072613A1 (de) * 2021-11-01 2023-05-04 Nippon Kornmeyer Carbon Group Gmbh Verfahren zur herstellung von carbonisierten oder graphitierten 3d-gegenständen
CN114478056A (zh) * 2022-03-07 2022-05-13 武汉楚辰新材料科技有限公司 一种热交换器用多孔石墨管的整体成型方法
CN114671696A (zh) * 2022-03-07 2022-06-28 西北工业大学 基于粉末3d打印和rmi工艺制备航空发动机涡轮转子的方法
CN114671696B (zh) * 2022-03-07 2023-04-07 西北工业大学 基于粉末3d打印和rmi工艺制备航空发动机涡轮转子的方法
CN114538928A (zh) * 2022-04-25 2022-05-27 长沙中瓷新材料科技有限公司 石墨碳基匣钵
CN114538928B (zh) * 2022-04-25 2022-07-12 长沙中瓷新材料科技有限公司 石墨碳基匣钵
CN115141028A (zh) * 2022-05-29 2022-10-04 西北工业大学 基于凝胶注模预强化制备碳化硅基复合材料整体涡轮盘的方法
CN115141028B (zh) * 2022-05-29 2023-08-29 西北工业大学 基于凝胶注模预强化制备碳化硅基复合材料整体涡轮盘的方法

Also Published As

Publication number Publication date
CN108675790B (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
CN108675790A (zh) 一种石墨/碳化硅隔热背衬及其制备方法
CN109320246A (zh) 一种高温抗氧化石墨陶瓷复合材料及其制备方法
CN108975936A (zh) 一种石墨陶瓷复合型及其制备方法
CN105503227B (zh) 一种立体织物增强碳化硅‑金刚石复合材料的制备方法
CN108439983B (zh) 一种石墨陶瓷复合管成型方法
CN104892014B (zh) 一种耐1200℃轻质刚性陶瓷纤维隔热瓦的制备方法
CN104150940B (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN108178647A (zh) 一种轻质高强隔热莫来石纤维多孔陶瓷的制备方法
JP6276514B2 (ja) セラミックマトリックス複合材料内の内部キャビティ及びそのためのマンドレルを作成する方法
CN108751996A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺
CN102101785A (zh) 一种双尺度的碳化硅泡沫陶瓷材料及其制备方法
CN111153706A (zh) 一种石墨基碳化硅陶瓷复合隔热材料及其制备方法
CN109928756A (zh) 一种碳化硅增强碳基复合材料及制备方法
CN107698270A (zh) 原位合成非晶态SiOC纳米线增强陶瓷型芯的方法
JP2013256436A5 (zh)
CN105110779B (zh) 一种焊接晶须制备莫来石多孔陶瓷的方法
CN109516810A (zh) 一种基于p曲面的多孔碳化硅陶瓷的制备方法
CN103833403A (zh) 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品
CN108585917A (zh) 氮化硅-碳化硅复相多孔陶瓷的制备方法
CN111995414B (zh) 一种聚丙烯腈基碳纤维增强的陶瓷型芯及其制备方法
JP2001073049A5 (zh)
CN102184873A (zh) 一种快速制备金刚石-碳化硅电子封装材料的方法
CN109336562B (zh) 一种氧化铝基陶瓷复合材料的制备方法
CN106083205B (zh) 一种通过化学气相渗透提高整体式氧化铝基陶瓷铸型高温强度的方法
CN105016773B (zh) 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant